
Recent advances in 2D
material-based phototherapy

Yi Tan1,2, Haider Mohammed Khan3, Bilal Ahmed Sheikh3,
Huan Sun4, Hui Zhang1,5, Jie Chen1,6, Dingming Huang1,2,
Xinmei Chen1,2*, Changchun Zhou4 and Jianxun Sun1,2*
1State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu, China, 2Department of Cariology and Endodontics, West
China Hospital of Stomatology, Sichuan University, Chengdu, China, 3Department of Orthopedics, West
China Hospital, Sichuan University, Chengdu, China, 4National Engineering Research Centre for
Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China, 5Department of
Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China, 6Department of
Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China

Phototherapy, which generally refers to photothermal therapy (PTT) and
photodynamic therapy (PDT), has received significant attention over the past
few years since it is non-invasive, has effective selectivity, and has few side effects.
As a result, it has become a promising alternative to traditional clinical treatments.
At present, two-dimensional materials (2D materials) have proven to be at the
forefront of the development of advanced nanomaterials due to their ultrathin
structures and fascinating optical properties. As a result, much work has been put
into developing phototherapy platforms based on 2D materials. This review
summarizes the current developments in 2D materials beyond graphene for
phototherapy, focusing on the novel approaches of PTT and PDT. New
methods are being developed to go above and beyond conventional treatment
to fully use the potential of 2Dmaterials. Additionally, the efficacy of cutting-edge
phototherapy is assessed, and the existing difficulties and future prospects of 2D
materials for phototherapy are covered.
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1 Introduction

As nanotechnology has rapidly advanced in recent years, researchers have begun
exploring nanomaterials’ potential applications in a wide range of biomedical disciplines
(Xie et al., 2010; Choi et al., 2012; Shi et al., 2017; Zhang Y et al., 2021). Most notably, 2D
materials are rapidly becoming an essential category of nanomaterials for technological
advancement (Nicolosi et al., 2013; Hu et al., 2019), which are self-supporting nanosheets
with thicknesses of one to several atomic layers (<100 nm) (Novoselov et al., 2004;
Chhowalla et al., 2015; Zheng et al., 2021). Since dimensionality is one of the deciding
elements for the performance of nanomaterials, the huge surface area, small thickness,
flexible composition, and easy modification of 2D materials set them apart from 0D and 1D
materials (Novoselov, 2011; Young et al., 2012; Peng et al., 2018; Zhang et al., 2018; Murugan
et al., 2019). Due to their appealing characteristics, 2D materials have attracted significant
attention from those interested in their potential uses in the fields of device manufacture,
environmental cleanup, energy storage, and energy transmission (Li et al., 2011; Bolotsky
et al., 2019; Murugan et al., 2019; Hao et al., 2020).

OPEN ACCESS

EDITED BY

Chunlei Zhang,
Shanghai Jiao Tong University, China

REVIEWED BY

Dan Wu,
Zhejiang University of Technology, China
Siu Hong Dexter Wong,
Hong Kong Polytechnic University, Hong
Kong, SAR China
Xianwen Wang,
Anhui Medical University, China

*CORRESPONDENCE

Xinmei Chen,
chenxinmei61@126.com

Jianxun Sun,
jxsun@scu.edu.cn

SPECIALTY SECTION

This article was submitted
to Nanobiotechnology,
a section of the journal
Frontiers in Bioengineering
and Biotechnology

RECEIVED 10 January 2023
ACCEPTED 10 February 2023
PUBLISHED 03 March 2023

CITATION

Tan Y, Khan HM, Sheikh BA, Sun H,
Zhang H, Chen J, Huang D, Chen X,
Zhou C and Sun J (2023), Recent
advances in 2D material-
based phototherapy.
Front. Bioeng. Biotechnol. 11:1141631.
doi: 10.3389/fbioe.2023.1141631

COPYRIGHT

© 2023 Tan, Khan, Sheikh, Sun, Zhang,
Chen, Huang, Chen, Zhou and Sun. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Review
PUBLISHED 03 March 2023
DOI 10.3389/fbioe.2023.1141631

https://www.frontiersin.org/articles/10.3389/fbioe.2023.1141631/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1141631/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2023.1141631&domain=pdf&date_stamp=2023-03-03
mailto:chenxinmei61@126.com
mailto:chenxinmei61@126.com
mailto:jxsun@scu.edu.cn
mailto:jxsun@scu.edu.cn
https://doi.org/10.3389/fbioe.2023.1141631
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2023.1141631


Since the important research that discovered graphene in 2004
(Nicolosi et al., 2013), several investigations into new classes of 2D
materials have been undertaken as a direct result of the successful
use of graphene and its derivatives, such as nanoelemental
nanosheets (Xenes), transition metal carbides, nitrides and
carbonitrides (MXenes), transition metal dichalcogenides
(TMDs), transition metal oxides (TMOs), layered double
hydroxides (LDHs), metal-organic frameworks (MOFs), and
Egyptian blue class (XCuSi4O10), which are generally fabricated
through the top–down approach (mechanical exfoliation and liquid
phase exfoliation) and bottom–up approach (chemical vapor
deposition, pulsed laser deposition, etc.) (Chen et al., 2018, Chen
et al., 2022; Mei et al., 2018; Gong et al., 2020; Liang et al., 2020; Li J
et al., 2021; Yi et al., 2021; Zheng et al., 2021; Dong et al., 2022; Liu
et al., 2023). With specific nanosheet properties, fascinating
biocompatibility, and degradability, 2D materials have revealed
promising prospects in biomedical applications (Chimene et al.,
2015; Wang and Cheng, 2019). For instance, since 2Dmaterials have
very high surface-to-volume ratios, they have an outstanding
capacity for loading drugs and genes, which makes them suitable
for use as delivery platforms based on the nanoscale (Chimene et al.,
2015; ChenW et al., 2017; Lu et al., 2021). Additionally, encouraging
module values and low toxicity reveal promise for strengthening the
mechanical characteristics of biomedical materials at very low
concentration, which is essential for tissue regeneration (Chimene
et al., 2015; Banerjee, 2018; Zheng et al., 2021). Due to their unique
optical properties, they have been applied in various molecular
imaging techniques (Eom et al., 2020).

Recently, the optical properties of biomedical materials have
been further exploited, with 2D materials being considered

alternative agents for phototherapy. This includes photothermal
therapy (PTT) and photodynamic therapy (PDT), in which the
energy of photons excited by light illumination is used to generate
heat and reactive oxygen species (ROS) to carry out the therapy. A
quick rundown of why this picture agent is better than the norm is as
follows: 1) strong and wide absorption from the ultraviolet (UV) to
the near-infrared (NIR), which may be controlled by changing the
material’s thickness. 2) Quantum yields and photostability are both
relatively high. 3) Photosensitizers and medicines can be added to
facilitate synergistic treatment (Tao et al., 2019; Wang and Cheng,
2019; Liu Q et al., 2020).

The use of 2D materials in cancer phototherapy has been
extensively documented in various published works until now.
However, few evaluations have looked at the use of 2D materials
in PTT for conditions other than cancer and diverse strategies of
PTT and PDT. This review aims to shed light on the newest
developments in 2D materials beyond graphene for PTT and
PDT and develop novel therapeutic techniques. Several
biomedical applications in cancer, bacterial infection, bone
regeneration, and others are presented, and some advances in
phototherapy are shown to demonstrate the various ways in
which phototherapy is being used more widely (Scheme 1). The
review was written to generate enthusiasm for phototherapy
mediated by 2D materials.

2 PTT

The use of photothermal agents (PTAs) to convert photon
energy to thermal energy under light irradiation and thus create

SCHEME 1
Schematic illustration for biomedical applications of phototherapy based on 2D materials.
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local hyperthermia for clinical purposes is a relatively novel
non-invasive treatment method showing promising results in
recent years (Liu X et al., 2019; Hu et al., 2020; Ma K et al., 2021;
Sutrisno et al., 2021; Xu Q et al., 2021). Due to their unusual
optical property and distinctive nanosheet structure, 2D
materials are seen as potentially important options for
photothermal treatments. This is because they may achieve
temporal and spatial control of the generated heat (Wang X
et al., 2019; Liu Q et al., 2020; Wang S et al., 2020; Chang et al.,
2022).

2.1 Photothermal-mediated cancer and
bacterial infection therapy

Recent advances in PTT among 2D materials for anticancer
and antibacterial treatments are introduced with a brief
illustration of several typical examples. This is because
extensive research on PTT for cancer and infectious diseases
has been conducted in most 2D materials, showing similar
treatment strategies.

2.1.1 Single-mode PTT in the first NIR window
(NIR-I)

PTT is now widely used to treat cancerous tumors.
Hyperthermia kills tumor cells due to its destructive effects on
DNA, cell membranes, and mitochondria, inhibiting metabolism
and denaturing proteins (Yuen et al., 2000; Huang et al., 2019; Liu Y
et al., 2020). The nanoscale allows 2Dmaterials to concentrate at the
tumor site through an increased permeability and retention (EPR)
effect. In addition, the use of 2Dmaterials as photothermal agents in
PTT displays extraordinary results for tumor ablation because of
their high photothermal conversion efficiency and their exceptional
light-absorbing capacity (Lin et al., 2018; Dai et al., 2020; Kumar
et al., 2021).

The rising incidence of melanoma has refocused research on
PTT, which places a premium on the bioactivity of PTAs. Releasing
the boron element, a unique borocarbonitride (BCN), has shown a
considerable advantage in treating cutaneous injuries (Zhao et al.,
2020). The melanoma-curing HA@BCN was created by combining
hyaluronic hydrogel (HA) with 2D borocarbonitride (Figure 1A).
The intriguing photothermal characteristics of HA@BCN
nanosheets, whose temperature control is dependent on BCN

FIGURE 1
(A) Schematic illustration of the therapeutic strategy for melanoma based on HA@BCN. (B) Live/dead staining of B16F10 cells in different groups. (C)
Growth of tumor volume in different treatment groups. (D)Digital photographs of skin regeneration during the repair period in different groups. (Adapted
with permission from Zhao et al., 2022. Copyright 2022 American Chemical Society). (E)Micro-CT images and value of BV/TV, BMS, and TOT at 24 weeks
after implantation in different groups. (Adapted with permission from Pan et al., 2020. Copyright 2019 Wiley-VCH).
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concentration and laser power density, are made possible by the high
conversion efficiency of BCN nanosheets. Hyperthermia caused by
laser irradiation increased cancer cell mortality to over 80%
(Figure 1B), which eventually resulted in tumor inhibition
(Figure 1C). The advantages of HA and BCN in tissue
regeneration following PTT accelerated the repair of residual skin
defects (Figure 1D) (Zhao et al., 2022). Since PTT processes for
cancer are largely the same across different 2D materials, PTT
mediated by 2D materials seems to be effective across the board
for cancer treatment. However, due to their unique chemical
compositions, individual nanosheets could show distinctive
responses to different tissues, such as BCN (Zhao et al., 2022) for
skin regeneration and black phosphorus (BP) (Yang X et al., 2018)
and Ti3C2 (Pan et al., 2020) (Figure 1E) for bone regeneration. To
determine which 2D materials are best for treating certain
malignancies, further study is needed to determine if PTT
mediated by distinct nanosheets has distinguishing effects on
tumors.

When applied to bacterial infections, thermal stimuli kill
bacteria by rupturing their membrane, which allows nucleic acid
and enzymes to flow out and degrade. Hyperthermia induction also
destroys the biofilm structure, removing the barrier and leaving the

bacterial matrix susceptible to both thermal stimuli and antibiotics
(Huo et al., 2021; Xu X et al., 2021). Since 2D materials have a flake
shape, the sharp edges of the nanosheets cause extensive physical
damage to the bacterial structure, which may be combined with PTT
to improve antibacterial therapies (Nelson et al., 1986; Perreault
et al., 2015; Wu et al., 2015).

The concentration-dependent antibacterial activity of Ti3C2 was
shown in MXene, and its antibacterial effect was significantly
enhanced when exposed to laser light, even at very low Ti3C2

concentrations (Wang et al., 2021a). Further explanation of the
dual-mode method is provided in Figure 2A. Sharp Nb2C, coated on
a titanium plate, showed nanosheet size-dependent disruption of
biofilm development (Figure 2B). Activation of the Agr quorum
sensing system also caused disruptions in the expression of genes
involved in biofilm formation, resulting in more efficient biofilm
suppression and disintegration. Furthermore, the susceptibility of
bacteria to heat stimuli was elevated by incomplete biofilms, which
explains why phototherapy had such a devastating effect on bacterial
walls and membranes (Figure 2C) (Yang et al., 2021). From the
perspective of synergistic effects, it is clear that using 2Dmaterials in
conjunction with PTT lowers the necessary temperature for
phototherapy and the concentration needed to physically damage

FIGURE 2
(A) Schematic illustration of the therapeutic strategy for bacterial infection based on Nb2C@TP. (B) SEM images of biofilm-resistance performance in
different groups. (C) TEM images of antibacterial performance in different groups. (Adapted with permission from Yang et al., 2021. Copyright
2021 American Chemical Society).
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nanosheets, both of which lead to less damage to the surrounding
tissue and less toxicity to the organism in antibacterial treatments.

2.1.2 Single-mode PTT in the second NIR window
(NIR-II)

Although NIR-II (1000–1350 nm) has a larger penetration
depth of tissue, much of the existing research studies on nano-
photosensitive agents still focus on NIR-I (750–1000 nm). In
addition, advancements in this sector need to be improved by the
scarcity of materials with high light absorption and photothermal
conversion efficiency in the NIR-II range. Because of this, efforts are
being made to find ways to overcome this barrier by using 2D
materials with exceptional optical performance (Sun et al., 2018;
Huang J et al., 2020).

In this context, Nb2C-PVP showed that the 1063-nm laser
penetrated deep tissue with less energy loss and scattering than
the 808-nm laser (Lin et al., 2017). For PTT in the NIR-I and NIR-II
regions, another research synthesized PtAg nanosheets through a
wet-chemistry approach. PtAg showed strong temperature-
increasing ability and excellent photostability under 785 nm and
1064 nm irradiation, qualifying it as a therapeutic agent for tumor
ablation in dual bio-windows (Zhang X et al., 2021). Analyses of
these bio-windows have highlighted the different benefits of NIR-II.
As NIR-II light is weak in producing tissue self-heating, it is more
acceptable for use in the human body, and further inquiry in PTT is
predicted to focus on NIR-II. To effectively remove tumors in the
NIR-II bio-window, a modified CaCO3–PCL scaffold was coated
with CaCuSi4O10 nanosheets and used in treating osteosarcoma.
Thermal stimuli may be the major source of PTT-induced cell
apoptosis because they disrupt genetic activity associated with the
mitotic cell cycle, the response to nucleic acid damage, cell
migration, and other processes (He et al., 2021).

2.1.3 PTT combined with drug therapy
Previous research evaluated the anti-cancer efficacy of PTT

alone with that of PTT coupled with chemotherapy, showing that
the latter was more effective. This is because PTT alone only serves a
brief role during irradiation (Liu et al., 2017; Han X et al., 2018).
Similarly, the antibacterial impact of a single mode of PTT was not
sufficient to completely eradicate the illness since residual germs
would keep multiplying (Yang Y et al., 2022). 2D materials have
been studied for their potential as a delivery platform in
phototherapy due to their unique nanosheet structure, which has
a high surface area and is equipped with adequate anchoring sites for
therapeutic compounds. Synergistic treatment caused by
photothermal stimulation may be applied more easily due to the
enhanced performance of nanocarriers (Lin et al., 2018).

Currently, there is a system in place for the controlled delivery of
medications. Doxorubicin (DOX) was added to 2D Ti2N after it was
treated with soybean phospholipid (SP). Once the organosilica shell
was prepared, cisplatin and the therapeutic substance were loaded.
On arrival at the tumor site, H+ reduced the connection and
facilitated the release of cisplatin, whereas organosilica shell
degradation set in. DOX revealed pH-responsive and
temperature-responsive release that could be readily regulated by
light stimuli as the restriction shell eventually disintegrated (Li D
et al., 2021). PTT’s curative effects were further solidified by the
realization of a synergistic platform in bacterial infection, wherein

nanosheet-induced thermal stimuli revealed a strong lethal effect on
bacteria while simultaneously promoting the release of antibiotics
that distinctively strengthened the antibacterial activity (Guo et al.,
2020; Xu T et al., 2021).

Interestingly, although photothermy does increase drug release
following heat stimulation, it also unexpectedly hastens the diffusion
of medication that is more prone to disseminate into normal tissues.
Prodrugs are novel drugs developed to improve a drug’s stability in
the body and lessen its side effects. Prodrugs, which only become
effective as drugs in a tumor’s unique environment, are a potentially
useful alternative to conventional therapies (Chen D et al., 2021;
Srinivasulu et al., 2021). After laser irradiation, ZrC nanosheets
resulted in the production of the prodrug SN38–Nif (Figures 3A, B).
To further increase tumor inhibition in PTT, the released prodrug
was converted into the chemotherapeutic medicines SN38 and Nif in
the presence of overexpressed carboxylesterase in tumor cells
(Figures 3C–E). Also, since normal cells do not produce esterase,
the prodrug remains unchanged, protecting healthy tissue from
unwanted drug effects (Liu S et al., 2020). Several disorders have
responded well to PTT’s treatment approach. Synergistic therapies
focus on the precise and toxic control of drug release in terms of
release speed, release place, and release sequence, in contrast to the
improved ability to destroy the tumor and bacterial cells. In addition,
anticancer medications and antibiotics for wound fixing may be
administered along with therapeutic agents for tissue healing as part
of a synergistic approach.

2.1.4 PTT combined with other therapeutic agents
Various studies have shown that the unique 2D structure of

nanosheets makes them ideal for drug loading, and the functional
groups connected to the vast surface area may be used to anchor
other bioactive molecules. PTT-mediated release of ferrous ions that
might create ROS for fighting tumors by PTT–chemodynamic
synergistic treatment was established in an original study in
which Ti3C2 stored ferrous ions into nanosheets through
electrostatic adsorption of hydrophilic groups (Wu et al., 2021a).

Though the use of antibiotics in synergistic treatment boosts
PTT’s therapeutic efficacy, it would run against PTT’s goal of
avoiding the development of antibiotic-resistant microorganisms.
Remarkably, antimicrobial peptides are included to combat bacterial
infections, which exhibit little resistance tendency (Gupta et al.,
2019). Unlike conventional antibiotics, the natural antimicrobial
peptide ϵ-poly-L-lysine (ϵ-PL) was maintained on BP nanosheets
and was active during PTT. Since the surface of ϵ-PL is positively
charged, BP@ϵ-PL would bind to the negatively charged bacterial
membrane, contributing to the destruction of the membrane’s
structure due to photothermy (Fu et al., 2022). Infections carried
on by resistant strains may be treatable because of the synergistic
effects of PTT’s rapid and potent antibacterial activity and the
antimicrobial peptides’ persistent ability to adhere to and damage
bacteria. Additionally, PTT-antimicrobial peptide treatment may
accomplish the goal of synergistic therapy requiring sustained
antibacterial ability without the adverse effects of antibiotics.

A photothermal-triggered method was also observed in another
facet of gas treatment. To improve anticancer and antibacterial
therapy, nitric oxide (NO) donors such as S-nitrosothiol and
BNN6 loaded on 2D nanosheets have allowed precise regulation
of (NO) releasing in response to light stimuli (Yang C et al., 2020; Liu
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S et al., 2021). Nanosheets are expected to mediate the concentration
and release of gas at target areas, resolving the issues of unregulated
diffusion and low solubility that hamper gas therapy.

2.1.5 PTT combined with immunotherapy
Currently, immunotherapy has made significant progress in the

battle against aggressive and distant tumors, combining
chemotherapy mixed with PTT for metastasis and recurrence of
cancer (Xu et al., 2013). Immunotherapies, including chimeric
antigen receptor T cell (CAR-T) therapies, immunological
checkpoint blockade (ICB) therapies, and tumor vaccines, have
shown promising results in identifying and killing cancer cells
with durable anticancer responses by stimulating the body’s
immune system (Han C et al., 2018; Helmink et al., 2018; Lecoq
et al., 2022). Despite its potential, immunotherapy is limited in its
use because of patient-to-patient variance, poor antitumor efficacy,

and coexisting adverse effects (Wei et al., 2019; Fisher et al., 2020; Hu
et al., 2022). PTT has been used in conjunction with immunotherapy
to improve cancer therapies in recent years. Evidence from the past
suggests that PTT will have a secondary effect on tumors by
activating the immune system via producing damage-associated
molecular patterns (DAMPs) and tumor-associated antigens
(TAAs) (Ma et al., 2019; Xu and Liang, 2020). In contrast, 2D
materials laden with immunological adjuvants and immune
checkpoint inhibitors serve as excellent nanocarriers, which may
make up for the modest immune activity caused by PTT (Ming et al.,
2020; Wan et al., 2020; Fang et al., 2021).

Immunological adjuvants R837 were added onto BP nanosheets
to boost immune performance since the stimulation of dendritic
cells (DCs) generated by PTT was insufficient for cancer
immunotherapy. Signal cytokine (TNF-α, IL-6, and IL-12)
production and DC maturation were improved by adding

FIGURE 3
(A) Schematic illustration of release and activation of SN38-Nif based on ZrC@prodrug. (B)Drug release percentage with and without irradiation. (C)
Relative cell viability of SMMC-7721 in different groups. (D)Growth of tumor volume in different treatment groups. (E) Digital photographs of tumor after
treatments in different groups. (Adapted with permission from Liu S et al., 2020. Copyright 2020 Wiley-VCH).
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R837 to the immunostimulation protocol compared with the use of
PTT alone (Wan et al., 2020). In comparison, 2D material-mediated
PTT also enhanced the ability of immunological adjuvants to
accomplish their tasks. Cytosine–phosphate–guanine (CpG)
showed an improved ability to enter cells through endocytosis of
nanosheets when placed on 2D Pd, which can enhance CpG’s
capacity to mediate an immune-related pathway. PTT combined
with CpG was more effective in increasing surface molecule
expression (CD86 and CD80) and immune cell proliferation than
either PTT or CpG individually (Ming et al., 2020).

Anti-programmed death-1 peptide (APP) was fused with FePSe3
nanosheets for use in immune checkpoint treatment (Figure 4A).

When bound to FePSe3, APP blocks PD-1’s suppressive effect on the
immunological response, hence enhancing the PTT-induced T-cell-
related immunoreaction (Figures 4B, C) (Fang et al., 2021).
Interestingly, 2D nanosheets might trigger beneficial humoral
immunity in an infection context, demonstrating potent
suppression of the bacterial biofilm by controlling the production
of costimulatory molecules and antigen presentation (Yang C et al.,
2022). Furthermore, it was thought that heat stimulation is effective
in attracting immune cells to infection sites for reducing
inflammation (Zhao et al., 2019). The key advantages of
nanosheets suggest that PTT mediated by 2D materials may
exhibit extraordinary immunological activity in antibacterial

FIGURE 4
(A) Schematic illustration of fabrication of FePSe3@APP@CCM and the strategy of combined PTT immunotherapy. (B) Schematic illustration of DC
maturation during the treatment. (C) Flow cytometry analysis of DC maturation in different groups. (Adapted with permission from Fang et al., 2021.
Copyright 2020 Wiley-VCH).
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treatment. Nonetheless, there has yet to be a known study in this
area. It is hoped that 2D materials will pave the way for new avenues
of investigation into refractory infection by being employed in
antibacterial therapies in combination with immunotherapy.

2.2 Photothermal-mediated bone
regeneration

Several research works have identified additional rare uses of
phototherapy in addition to the aforementioned common photo-
triggered therapies that most 2D nanomaterials share. Numerous
studies over the last several years have shown that 2Dmaterials have
a good impact on bone defects owing to their unique physical and
chemical features that are helpful for bone regeneration (Yang X
et al., 2018; Yang Q et al., 2020). The positive impact of 2D materials
on osteogenesis has also been demonstrated by research in
immunoregulation linked to metabolic reprogramming (Xue
et al., 2018; Du et al., 2022). Although the precise method by
which PTT promotes bone regeneration has yet to be elucidated,
a few studies have shown that moderate temperature will enable the
interchange of nourishment, enhance blood circulation, and
stimulate osteogenic differentiation of stem cells. It was also
hypothesized that photon-involved gene expression might be
manipulated to enhance bone repair during PTT (Wu X et al.,
2022). Therefore, there is a huge unrealized potential in 2Dmaterial-
mediated phototherapy for bone regeneration, which has not been
explored due to lack of research exploiting the optical capabilities of
nanosheets in bone defects.

Recently, poly (lactic-co-glycolic acid) (PLGA), a substrate
appropriate for tissue engineering, was combined with black
phosphorus nanosheets (BPs) to create a BPs@PLGA membrane.
The proliferation rate of mesenchymal stem cells was shown to
increase gradually with increasingly longer duration (0 s, 30 s, and
60 s) of light stimulation after periodic moderate-temperature shocks at
40°C. Overexpression of heat shock proteins (HSPs), which determine a
cell’s thermotolerance, has been linked to the fact that cells are
unaffected by moderate temperatures. Additionally, upregulated
HSPs aided in stem cell differentiation and osteoblast development,
which may also be attributed to the increased production of
osteogenesis-related proteins (Tong et al., 2019). When
hydroxyapatite scaffolds were modified with BPs, a similar result
was observed, with both BP nanosheets and mild heat stimulation
contributing to rebuilding of bone tissue (Wu et al., 2021b).

Researchers have shown some preliminary success in using PTT
for bone repair thanks to a theory based on protein expression. Gene
expression is a potential avenue for future research because of its role
as an upstream process in defining a distinct route. Poly (ε-
caprolactone)/molybdenum disulfide (PCL)/MoS2 membranes
were fabricated and studied to direct bone regeneration (GBR).
Under periodic laser irradiation that caused modest temperature
stimuli, the expression of osteogenesis-related genes such as
RUNX2, OCN, OPN, ALP, BMP2, and COL1a1 was dramatically
increased. HSP gene expression was also upregulated in response to
heat stress. By maintaining a temperature of 40°C, cell apoptosis
could be prevented, and the beneficial effects of PTT on bone
regeneration could be maximized (Ma T et al., 2021). However,
more research and analysis are still needed to optimize the sustained

time of laser irradiation and the final temperature, striking a balance
between bone regeneration and unnecessary tissue damage, even
though periodic irradiation for 60 s at a moderate temperature has
been proven efficient for osteogenesis, without side effects. In
addition, the intrinsic mechanism is not clear enough; additional
research is needed to determine the precise role of PTT. This study,
however, broke the monopoly of high-temperature treatments in
PTT and shed light on the potential of PTT in the treatment of bone
defects, while also opening the door to the investigation of mild-
temperature phototherapy.

2.3 Photothermal-mediated neuronal
modulation

Numerous techniques of neural modulation have been established
in earlier research, with most of their development driven by the search
for modulation with high spatial resolution, which would allow for
more in-depth knowledge of complicated neuronal circuitry. To avoid
invasive surgery and genetic alteration in electrode implants and
optogenetic therapies, recent research has focused on PTT, in which
thermal stimuli activate neurons through transient receptor potential
channels related to temperature responsiveness. Moreover, nanoscale
2D materials have been used in biomedicine with high resolution
precise to subcellular accuracy (Jung and Nam, 2022; Wu Y et al.,
2022). Therefore, PTT mediated by 2D materials is of significant
academic value in fields of neurology.

To this objective, Ti3C2Tx’s ability to regulate neural activity was
studied in an effort to fully exploit the spatial resolution afforded by
2D materials. Neurons from the dorsal root ganglion (DRG) adhere
tightly to the Ti3C2Tx films underneath them due to their nanosheet
structure (Figure 5A), and flakes distributed throughout the films
adhered to the membranes of DRG neurons all over the place
(Figure 5B), without affecting cell viability. When the adhesion
between Ti3C2Tx and DRG is good enough, it is possible to transmit
thermal stimuli from Ti3C2Tx to DRG. Extremely low-energy
irradiation with a 625-nm laser would provide thermal
stimulation encouraging Ca2+ transients via electrical activity
(Figures 5C, D). The Ti3C2Tx film directly contacting DRG
neurons was crucial for effective neuronal stimulation
(Figure 5E). In addition, the subcellular scale of Ti3C2Tx flakes
allowed for neuronal modulation with high spatial resolution, as
Ca2+ transients could not be triggered unless the laser target was
situated in the interference between neurons and nanosheets. This
held true regardless of whether the laser aimed at a neuron or a
Ti3C2Tx flake (Figure 5F) (Wang et al., 2021a). Understanding the
function of neurons, which has long baffled scientists, requires
subcellular-level control of where stimuli are sent to neurons. As
nanomaterials advance, limitations on neurological studies would be
lifted, which would benefit medical imaging and other sectors of
medicine that rely heavily on precise spatial positioning.

2.4 Photothermal-mediated shape
transformation

Another novel aspect of PTT is associated with shape memory
polymers (SMPs), which have a special feature of shape recovery
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under specific external stimulations, including thermal stimuli. The
applications of thermal-responsive SMP in medicine are flourishing
as it has shown significant potential in biosensors and biological
stents (Hao et al., 2021). However, in comparison to light stimuli,
local temperature control of SMP needs more precision (Jiang et al.,
2006). A significant step toward this goal is provided by 2D
nanosheets with exceptional photothermal characteristics, which
can convert thermal power into light stimulus control.

The cuprorivaite nanosheet and conventional SMP PDLLA-co-
TMC (PT) were combined to create a photothermal-sensitive
composite CUP/PT for treating intrauterine adhesions (IUAs)
(Figure 6A). The critical temperature triggering shape alteration
in this PT was slightly higher than body temperature, making it very
appropriate for moderate photothermal use in the human body. In
addition, 2D cuprorivaite, which is essential for the interaction
between light stimulation and shape change, provided CUP/PT
with excellent photothermal conversion ability and good

photothermal stability (Figure 6B). After being stretched to a
longer and thinner pattern at 80°C, CUP/PT tubes were cooled to
room temperature to temporarily retain their new form, making the
implant procedure easier. As earlier studies have shown, even when
subjected to laser irradiation, temperature-dependent SMPs would
retain their deformed state for some time without thermal stimuli (Li
et al., 2019). Nevertheless, when the SMP was treated with a
photothermal agent, the light stimuli were converted into thermal
stimuli, resulting in rapid shape restoration of the stretched SMP at
implant locations after laser irradiation. Pre-stretched smaller SMPs
on IUAs enable easier procedures, and their subsequent recovery to
a somewhat broad starting shape allows them an effective barrier
against intrauterine adhesion (Figure 6C) (Dong et al., 2022).

The photothermal characteristics of BP and the temperature
sensitivity of SMP polyurethane (PU) were successfully combined in
an early experiment. After laser irradiation, the diameter of the
stretched BP/PU column in the mouse vagina significantly increased

FIGURE 5
(A) SEM images of the interface between Ti3C2TX films and DRG neurons. (B) SEM images of the interface between Ti3C2TX flakes and DRG neurons.
(C) Illustration of Ti3C2TX film-mediated DRG electrical activity modulation. (D) Illustration of Ti3C2TX flake-mediated DRG electrical activity modulation.
(E) Illustration of selective modulation of DRG neurons mediated by Ti3C2TX films. (F) Illustration of selective modulation of DRG neurons mediated by
Ti3C2TX flakes. (Adapted with permission from Wang et al., 2021a. Copyright 2021 American Chemical Society).
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to its original size, which was broader enough for fallopian
obturation, demonstrating the excellent shape transformation of
the PU/BP column under light stimuli and its significant potential in
fallopian obturation after laser irradiation (Xie et al., 2018). Based on
the available literature, the 2D nanosheet-modified SMP increases
the likelihood of stent placement by minimally invasive techniques.
Furthermore, depending on the shape transformation performed,
investing in better shape compatibility between bone scaffolds and
bone defects may be beneficial (Zhang et al., 2022).

2.5 Photothermal-mediated cellular uptake

The transfer of chemicals into particular cells, known as cellular
uptake, is the deciding element in therapeutic approaches like
chemotherapy and gene therapy. There is still a hurdle to be
overcome in the absence of a delivery platform capable of
loading drugs and genes with high efficiency of cellular
absorption (Dong et al., 2018; Liu and Du, 2021). Recently,
attempts have been made on nanocarriers to solve this challenge,
with an emphasis on 2D materials that show significant possibility.
The uptake performance of 2D nanosheets is dependent on their size
and concentration, and cells collect them through an energy-
dependent internalization mechanism controlled by clathrin
(Chen et al., 2016; Tyagi et al., 2017; Wang et al., 2017).

However, PTT has recently been utilized in nanomaterials to
further improve cellular absorption, demonstrating that heat
stimulation may substantially increase cellular membrane fluidity
and permeability (Liu Y et al., 2019; Ma et al., 2020). On the other
hand, the importance of PTT’s effects on cellular absorption in
tumor treatment is often overlooked.

Drug delivery systems include BP filled with paclitaxel (PTX). As
a result of 2D materials’ inherent absorption capability, cancer cells
were able to seize a negligible fraction of the nanosheets
(U87MG cells). In response to laser irradiation, BP was heated to
42.5°C ± 0.5°C, which improved cell permeability and allowed a large
number of nanosheets to penetrate the cells, while preventing
unnecessary damage to the surrounding average cell population
(Figure 7A). By combining PTX with nanosheets for delivery into
cancer cells, the anticancer impact of chemotherapy might be
improved (Figures 7B, C) (Wang et al., 2017). In leukemic cells,
laser irradiation also triggered the increase of cell membrane
permeability, which increased the cellular absorption of MoS2-
PEG-CpG nanosheets (Han et al., 2017). Nanosheets laden with
drugs can penetrate cells efficiently due to the robust cellular
absorption mediated by PTT, which also opens the door to the
prospect of highly targeted chemotherapy and local photothermal
treatment. Uptake into the site of the illness may also be possible if
the vehicle is laden with fluorescent compounds used for diagnostic
imaging.

FIGURE 6
(A) Schematic illustration of the therapeutic strategy for IUA prevention based onCUP/PT. (B) Photothermal property of PT andCUP/PT under 1064-
nm laser irradiation. (C) Shape recovery of CUP/PT at different time after irradiation on a desk (I), underneath the skin (II), and inside the isolated uterine
lumen of rat (III), respectively. (Adapted with permission from Dong et al., 2022. Copyright 2022 Wiley-VCH).
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2.6 Photothermal-mediated cell detection

As a crucial signal of tumor metastasis and recurrence,
circulating tumor cells (CTCs) that spread from the site of the
original tumor to the blood circulatory system are of significant
importance in cancer diagnosis and evaluation of tumor
progression. Compared to conventional biopsies, CTC
measurement through liquid biopsy is much less invasive (Dou
et al., 2019; Zhou et al., 2022). In the past, nanomaterials have been
produced to build nanoplatforms for detecting CTCs, taking
advantage of their large surface area and biomolecular size. To a
significant extent, nanoparticles’ magnetic properties are used in
scientific investigation. As a counterpoint, PTT has received
comparatively less attention because of the difficulty of using its
photothermal feature in the collection and release of CTCs (Yoon
et al., 2013, Yoon et al., 2016; Xu et al., 2020). Due to nanosheet
development being in its infancy, PTT is now the subject of research
for potential future application.

Ti3C2 and anti-EpCAMwere included in the gelatin hydrogel.
In its role as a cancer cell capture agent, anti-EpCAM improved
the ensnaring of malignant cells. The cancer cells’ pseudopods
were better able to grab the hydrophilic, rough surface of the
modified hydrogel due to the hydrophilic feature of the Ti3C2

nanosheets. Gelatin hydrogel’s temperature-response capacity
allows for weakening the adhesion between cancer cells and
the hydrogel in response to thermal stimuli; these
stimuli—either direct thermal stimuli or photothermal stimuli
mediated by nanosheets under laser irradiation—could induce
cell release for further analysis without damaging cancer cells
(You et al., 2021).

Attributed to the nanosheet structure and rough surface, 2D
materials are in favor of capturing cells. Though thermal stimuli are
introduced into CTC release, the increase of PTT over direct thermal
stimuli has not been identified. Regardless of generating heat during
PTT, an excellent temporal and spatial resolution, which is unique to
PTT mediated by 2D materials, has not been involved in CTC
detection. In addition, the promotion of cell proliferation of PTT,
that has been proven, is well worth considering in CTC detection.
Given the existing problems in capturing CTCs, such as low
concentration of CTCs in blood at an early stage of cancer and
low viability of cells during detection, 2D-material-mediated PTT
may be a significant complement to current strategies (Yoon et al.,
2016). Different therapeutic strategies of PTT based on 2D materials
are summarized in Table 1.

3 PDT

PDT is another form of non-invasive phototherapy that has
minimal adverse effects and has recently gained more recognition
(Sun L et al., 2021; Zhou et al., 2021). Photosensitizers (PSs) and
light stimuli with a certain wavelength that coincides with the
absorption spectra of PSs make up the core of the PDT
mechanism. When PSs are exposed to suitable light irradiation,
photooxidation is initiated through the Type I or Type II process,
generating various ROS (1O2, ·OH, O, etc.) that have a strong
oxidation capability and clearly damage target cells (Tsubone
et al., 2019; Pang et al., 2020). PDT, which is attributed to the
effects of ROS, has been used in treating cancer, disinfection, and
skin diseases (Heinemann et al., 2017). However, organic compound

FIGURE 7
(A) Schematic illustration of photothermal-mediated cellular uptake of BP-HAS-PTX. (B) CLSM images of U87MG cells incubated with PBS (I), BP-
HAS-PTX without laser irradiation (II), and BP-HAS-PTX with laser irradiation (III), respectively. (C) Mean FITC fluorescence intensity of U87MG cells in
different groups. (Adapted with permission from Wang et al., 2017. Copyright 2017 Ivyspring International Publisher).
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TABLE 1 Summary of different therapeutic strategies of PTT based on 2D materials.

Biomedical
applications

Therapeutic
modalities

2D
substrates

Loadings Functionalized
materials

In vivo models Ref

Cancer therapy Single-mode PTT in
NIR-I

BCN — HA@BCN Melanoma-bearing BALB/
c nude mice; C57 mice
(back skin wound)

Zhao
et al.
(2022)

BP (Xene) — BP–BG scaffold Saos-2 tumor-bearing
BALB/c nude mice; SD rats

(cranial defect)

Yang B
et al.
(2018)

Ti3C2 (MXene) — Ti3C2–BG scaffold Saos-2 tumor-bearing
BALB/c nude mice; SD rats

(cranial defect)

Pan et al.
(2020)

Single-mode PTT in
NIR-II

Nb2C (MXene) — Nb2C–PVP 4T1 tumor-bearing BALB/
c nude mice

Lin et al.
(2017)

PtAg — SH-PEG-FA
functionalized PtAg

4T1 tumor-bearing BALB/
c nude mice

Zhang X
et al.
(2021)

CaCuSi4O10 (X
CuSi4O10)

— CaPCu scaffold 143B tumor-bearing
BALB/c nude mice; SD rats

(calvaria defect)

He et al.
(2021)

PTT combined with
drug therapy

Ti2N (MXene) Doxorubicin/cisplatin Ti2N@oSi SMMC-7721 tumor-
bearing BALB/c nude mice

Liu G
et al.
(2021)

ZrC (MXene) Prodrug SN38-Nif ZrC@prodrug MCF-7 tumor-bearing
BALB/c nude mice

Liu Y
et al.
(2020)

PTT combined with
other therapeutic agent

therapy

Ti3C2 (MXene) Fe2+ Fe(II)-–Ti3C2 MKN45 tumor-bearing
BALB/c nude mice

Wu et al.
(2021a)

Nb2C (MXene) S-Nitrosothiol MS/MXene-BG-SNO Saos-2 tumor-bearing
BALB/c nude mice; SD rats

(cranial defect)

Yang Q
et al.
(2020)

PTT combined with
immunotherapy

BP (Xene) R837 BP-PEG + R837 B16 tumor-bearing C57BL/
6 mice

Wan et al.
(2020)

Pd (Xene) Cytosine–phosphate–guanine Pd(5)-CpG(PS) B16F10 tumor-bearing
C57BL/6 mice

Ming
et al.
(2020)

FePSe3 (MPX3) Anti-PD-1 peptide FePSe3@APP@CCM CT26 tumor-bearing
C57BL/6 mice

Fang et al.
(2021)

Bacterial infection
therapy

Single-mode PTT Ti3C2 (MXene) — Ti3C2 colloidal solution KM mice (back S. aureus
infection)

Wang
et al.

(2021a)

Nb2C (MXene) — Nb2C@TP BALB/c mice (upper dorsal
S. aureus infection)

Yang
et al.
(2021)

PTT combined with
drug therapy

BP (Xene) Kanamycin Gal-BP@Kana BALB/c mice (back
PAO1 infected wound)

Guo et al.
(2020)

Ti3C2 (MXene) Amoxicillin MXene-AMX-PVA BALB/c mice (back S.
aureus infected wound)

Xu M
et al.
(2021)

PTT combined with
therapeutic agent

therapy

BP (Xene) ϵ-Poly-L-lysine BP@ϵ-PL ICR mice (dorsal S. aureus
infection)

Fu et al.
(2022)

Polydopamine
nanosheets

BNN6 GFPB hydrogel BALB/c mice (upper back
S. aureus infected wound)

Liu G
et al.
(2021)

(Continued on following page)
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PS flaws, such as lack of high water solubility and a mismatch
between light excitation and deep tissue penetration, frequently limit
the effectiveness of PDT (Abrahamse and Hamblin, 2017; Du and
Tung, 2020). From this perspective, 2D materials with unique
optical properties may be potential solutions for improving the
therapeutic efficacy of PDT.

3.1 Single 2D material-mediated PDT

2D materials have been frequently used in PDT as PSs due to
their potential bandgap and inherent structures. Due to their
significant hydrophilicity, 2D materials are able to readily
overcome the problems that arise with conventional PSs. PDT
can be used with loading capacity and structural variation,
significantly increasing the treatment efficacy (Wang X et al., 2020).

3.1.1 PDT in cancer treatment
PDT has recently been used in clinical cancer therapy.

Generated ROS can seriously harm biological components like
lipids and nucleic acids, which have a clear cytotoxic effect on
cancer cells (Bacellar et al., 2015). Additionally, ROS will damage the
initial vasculature and impede the development of tumor arteries to
obstruct blood supply to the tumor (Al-husein et al., 2004). Later,
platelets are activated to block any residual blood arteries, which can
prevent the tumor from absorbing nutrients (Nelson et al., 1987).
Since BP has a high quantum yield within a wide wavelength
absorption band and outstanding ROS production properties

under laser irradiation, it has received the greatest attention from
researchers studying photodynamics among innovative 2D
materials used as PSs (Aksoy et al., 2020). It is noteworthy that
BP contained DOX for synergistic cancer therapy. BP nanosheets
demonstrated strong ROS production and excellent photostability
following 606-nm laser irradiation at a low power density. In
contrast, adding additional DOX had little impact on their
photodynamic properties. The PDT–synergistic chemotherapy’s
production of intracellular ROS and release of DOX
demonstrated a positive anticancer effect (Chen Y et al., 2017).

Although UV and visible light are capable of producing ROS, its
study in PDT is limited by the shallow tissue penetration depth.
Accordingly, NIR photons with substantially higher penetration
depth and very less biological tissue absorption may prevail in
subsequent research (Yang et al., 2017; Wang X et al., 2020).
Moreover, NIR lamps make it possible for synergistic
phototherapy to be carried out under single-wavelength
stimulation when PDT and PTT are combined (Jana et al., 2020).
To achieve high stability and small flake size, which were essential to
the permeability and retention effect of tumors, Ti3C2 MXene was
modified by an additive Al3+ method (Figure 8A). Except for the
photothermal behavior under 808-nm laser irradiation, 1O2

formation occurred at the same time in response to the same
laser stimuli (Figure 8B). Numerous ROS were produced inside
the cancer cells due to the cell absorption caused by nanosheets,
which was a key factor in preventing tumor growth (Figure 8C) (Liu
et al., 2017). Considering the similar structure to other nanosheets,
the generation of ROS owed to the photoexcited electrons energy

TABLE 1 (Continued) Summary of different therapeutic strategies of PTT based on 2D materials.

Biomedical
applications

Therapeutic
modalities

2D
substrates

Loadings Functionalized
materials

In vivo models Ref

Bone regeneration PTT BP (Xene) — BPs@PLGA SD rats (tibial defect) Tong
et al.
(2019)

BP (Xene) — ZnL2–BPs@HAP SD rats (tibial defect) Wu et al.
(2021b)

MoS2 (TMDs) — PCL/MoS2 SD rats (tibial defect) Ma T
et al.
(2021)

Neuronal
modulation

PTT Ti3C2 (MXene) — Ti3C2Tx films/Ti3C2 Tx

flakes
— Wang

et al.
(2021b)

Shape
transformation

PTT CaCuSi4O10

(XCuSi4O10)
— CUP/PT SD rats (IUA model) Dong

et al.
(2022)

BP (Xene) — PU/BP BALB/c nude mice
(implanted into the

fallopian tube)

Xie et al.
(2018)

Cellular uptake PTT BP (Xene) Paclitaxel BP-HAS-PTX — Wang
et al.
(2017)

MoS2 (TMDs) Cytosine–phosphate–guanine MoS2–PEG–CpG — Han et al.
(2017)

Cell detection PTT Ti3C2 (MXene) — AntiEpCAM-coated
Ti3C2Tx @gelatin

— You et al.
(2021)

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Tan et al. 10.3389/fbioe.2023.1141631

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1141631


transferring from nanosheets to triplet oxygen (Wang et al., 2015).
The LSPR effect, which has already been described in metal
nanoparticles, may also contribute to the photodynamic capacity
of MXene’s metal components (Jiang et al., 2013; Pasparakis, 2013).
However, because of the lack of research on the photodynamic effect
of MXene, the exact mechanism is still not clear, and the
photodynamic strategy in tumor therapy and other biomedical
applications remains to be studied.

In contrast, research on TMDs amply illustrated the
photodynamic mechanism. TMDs showed exceptional
photocatalytic properties among 2D materials due to a
sufficient bandgap in a particular light region. Recent studies
have found that TMDs in PDT have a promising photodynamic
efficiency. Since heterostructures made from TMDs exhibit
greater capacity in generating ROS, the potential of TMDs has
not been fully realized. Using the cation-exchange approach to
incorporate additional Bi atoms into freshly generated MoSe2
nanosheets, a specific heterostructure was created in MoSe2/

Bi2Se3 nanosheets. Preservation of the electrons on Bi2Se3 and
the photoinduced hole on MoSe2, which provided the nanosheets
with an effective redox-active electron, would occur during laser
irradiation. The photoinduced electron would shift from the
conduction band of Bi2Se3 to the valence band of MoSe2.
Additionally, concomitant PTT made it easier for charge
transfer and heterostructure to coexist, which improved ROS
formation and dramatically enhanced cancer cell apoptosis
(Wang Y et al., 2019).

Similar to PTT, immunogenic cell death (ICD) generated by
PDT also causes the release of DAMPs and TAAs, which facilitates
the maturation of antigen-presenting cells and T-cell infiltration
(Krysko et al., 2012; Li et al., 2018). Nanoplatforms, which carry
immune adjuvants and immune checkpoint inhibitors to boost
immune response, have recently been used in PDT-mediated
immunotherapy. PDT immunotherapy for cancer treatment has
produced excellent results with a number of nanoparticles (Wei
et al., 2022). However, to the best of our knowledge, 2D materials

FIGURE 8
(A) Schematic illustration of fabrication of Ti3C2-DOX and therapeutic strategy of based on Ti3C2-DOX. (B) Absorbance of DCPF in different groups.
(C) CLSM images of HCT-116c cells incubated with Ti3C2-DOX after irradiation. (Adapted with permission from Liu et al., 2017. Copyright 2017 American
Chemical Society). (D) Schematic illustration of therapeutic strategy for bacterial infection andwound healing based onCS-BP. (E) ESP spectra in different
groups. (F) Images of bacterial colony in different groups after treatments. (Adapted with permission fromMao et al., 2018. Copyright 2018 American
Chemical Society).
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have not yet been used in a synergistic method with tremendous
potential for advancement in the treatment of cancer.

3.1.2 PDT in bacterial infection treatment
Beyond cancer treatments, the photodynamic properties of 2D

materials are also used in healthcare. Due to the fact that ROS has
been shown to damage lipids and proteins in bacterial membranes,
which leads to cell mortality, 2D materials have been used as an
antibacterial treatment by utilizing their photodynamic properties
(Xiang et al., 2019). On this subject, BP was studied in exploratory
research (Figure 8D). After loading BP nanosheets onto chitosan
hydrogel (CS), CS-BP revealed the generation of 1O2 after light
illumination (Figure 8E). Attributed to the interaction between the
negatively charged bacterial membrane and positively charged CS,
CS partially destructed the bacterial membrane. Furthermore, with
the additional photodynamic ability of BP, ROS production caused a
destructive impact on bacteria after PDT, distinctly increasing the
fatality of bacteria (Figure 8F) (Mao et al., 2018). The
aforementioned combination demonstrated a strong curative
effect for infectious injury with the help of PDT and the
outstanding biocompatibility of hydrogel and nanosheets, while
ROS did not show a noticeable slowing of wound healing.

As demonstrated in PTT, 2D materials with sharp edges caused
physical damage to bacterial membranes. For weakening the side
effects of ROS in PDT, such an antibacterial mechanism was fully
utilized to support infection treatments, which could reduce the
demand of ROS. An MXene-based antibacterial system was also
reported. After a combination of modified MXene and Ag
nanoparticles, the composite (M-HAS) at a low concentration
exhibited satisfactory germicidal efficiency after 606-nm laser
irradiation. The strong antibacterial effect benefitted from the
generation of ROS and its sterilizing effect, which was the result
of the destructive impact of Ag nanoparticles and the sharp edge of
MXene flake on bacteria that formed the synergistic antibacterial
therapy (Lv et al., 2022).

Another solution for the side effects of ROS is alleviating the
negative impact of ROS on tissues. A metabolic intermediate 4OI
was loaded onto BP nanosheets, which was further integrated with
gelatin methacryloyl (GelMA). ROS generated by BP after laser
irradiation distorted the bacterial structure, leading to exudation of
the bacterial matrix. Later release of 4OI with prominent anti-
inflammatory properties mitigated the damage of excessive ROS
and facilitated the healing of injured tissue (Ding et al., 2022).
Admittedly, 2D material-mediated PDT has exhibited high
efficiency of ROS generation, and antibacterial effects already
reached the requirements for most infections. As research in
terms of enhancing bacteria killing is relatively mature, further
investigation of PDT in bacterial infection tends to center on the
healing process revolving around ROS scavenging.

3.2 2D materials combined with PSs in PDT

Another characteristic of 2D materials to be used in
photodynamic treatment is being a nanocarrier loaded with
organic PSs on account of their specific structure and optical
property, which will increase the dispersibility and accumulation
of PSs in target sites (Chen et al., 2020).

3.2.1 2D materials combined with Ce6
As a commercial photosensitizer (PS), chlorin e6 (Ce6) has been

applied not only in fluorescence imaging but also commonly used in
photodynamic studies, parts of which include 2D materials (Sun J
et al., 2021; Huang et al., 2022; Wang W et al., 2022). Polyethylene
glycol (PEG)-modified BP nanosheet loaded with Ce6 was fabricated
for tumor inhibition. With the help of the transfer function of the BP
nanosheet, BP@PEG/Ce6 was absorbed into the cytoplasm and the
intracellular level of Ce6 was promoted, which individual Ce6 could
not reach. After laser irradiation, ROS would be generated inside the
cancer cell, and the content was apparently increased with additional
Ce6 loaded on BP. In addition, BP@PEG/Ce6 showed the slow
release of Ce6 that was applicable for tumor hypoxic environments
(Yang B et al., 2018). Such integration exploited the complementary
effect of 2D materials and PSs that the cellular uptake of nanosheets
and the strengthened photodynamic capacity of PSs multiplied the
production of intracellular ROS. A similar delivery system also
verified the prominent generation of intracellular ROS in the
aforementioned integration as MoS2-PEG combined with
Ce6 revealed the highest cancer cell killing efficiency after
photodynamic treatment in contrast to single MoS2-PEG and
single Ce6 (Liu et al., 2014).

Concerning antibacterial application, the research was focused
on PDT with tissue selectivity. While ROS was generated in
infectious tissues, PSs would also produce ROS in surrounding
normal tissues, which is undesirable. In this regard, the selective
release of PSs may be an option to improve matters. The MoS2
nanosheet carried with hyaluronic acid (HA)–Ce6 was investigated.
With the presence of HA, Ce6 was kept nearby the MoS2 nanosheet
in a normal physiological environment, which restricted the release
of Ce6, making Ce6 ineffective under PDT. Upon reaching the
infectious condition of MRSA filled with secretory hyaluronidase
(HAase), HA would be degraded, resulting in a large release of Ce6,
that further led to a higher generation of singlet oxygen under PDT.
The HAase-responsive system tactfully avoids the harm caused by
an ROS to normal cells, which may provide information for
optimizing photodynamic therapy with accurate targets (Yuwen
et al., 2021).

3.2.2 2D materials combined with aggregation-
induced emission PSs

Although Ce6 has been extensively applied in PDT with
satisfactory results, a number of studies are still in progress
aimed at finding alternatives for Ce6 and other organic PSs due
to their common drawback, which is the aggregation-caused
quenching effect that may hinder their biomedical application (Li
L et al., 2021). Aggregation-induced emission (AIE) PSs are
emerging to surmount the existing disadvantages of PSs over the
past years. Contrary to the quenching effect in traditional PSs, AIE
PSs reveal enhanced fluorescence under aggregate situations due to
the limitation of intramolecular motion, which may expand the
application of PSs (Chen K et al., 2021).

An AIE PS NH2-PEG-TTPy was used as a coating covering the
BP nanosheet. Owing to the higher efficiency of intersystem
crossing, BP@NH2-PEG-TTPy exhibited better yields of singlet
oxygen than single Ce6. Through combination with PTT, ROS
induced by white light stimuli and cellular uptake enhanced by
NIR laser stimuli resulted in the prominent generation of
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intracellular ROS. In addition, on account of the EPR effect of BP@
NH2-PEG-TTPy and the peculiarity of AIE that aggregates would
induce intense emission, the obvious fluorescence signal of AIE was
concentrated around the tumor, beneficial for fluorescence imaging
(FLI) in cancer diagnosis (Huang H et al., 2020). Similarly, under
laser irradiation, Ti3C2 loaded with AIE PS TBFT manifested
significant ROS generation and strong tumor inhibition,
synchronously revealing an overwhelming and sustainable
fluorescence signal in the tumor site compared to the relatively
weak and transient signal of conventional fluorochrome (Wang Y
et al., 2022). In addition to combining the function of PSs for ROS
production and fluorescent molecules for imaging, AIE PSs loaded
on nanosheets also possess continuous fluorescence at target sites,
which is crucial for long-term FLI navigation. It is undeniable that
the combination of novel AIE PSs and 2D materials provided
conducive insight into exploiting multimodal theranostic systems
for cancer in which PDT is integrated with image guiding via
novel PSs.

3.3 Improvements of PDT in the tumor
microenvironment (TME)

Numerous studies have identified the significant prospects of
PDT. However, several issues regarding the TME remain to be
solved. Since the TME shows hypoxic conditions, the efficiency of
PDT would be reduced as ROS generation relies on sufficient O2. In
addition, overexpression of glutathione (GSH) in the TME serves as
a scavenger of intracellular ROS and considerably restricts PDT in
cancer treatments (Sun Y et al., 2021; Wang X et al., 2021).

3.3.1 Manganese oxide
Noticeably, the manganese oxide (MnO2) nanosheet is currently

under research to reverse hypoxia TME with excessive GSH. When
reaching the acid environment at the tumor site, MnO2 would be
reduced into Mn2+ and generate O2 through catalyzing a high
content of H2O2, upgrading the oxygen level for PDT. In addition,
GSH was consumed during the degradation of MnO2, which is in
favor of sustaining ROS (Yang C et al., 2020; Xu Q et al., 2021).

MnO2 nanosheets were loaded with DNA-stabilized silver
nanoclusters (AgNCs) and porphyrin (P) PS to construct the
nanoplatforms (P-AgNCs-MnO2) with photodynamic activity.
While under the TME, MnO2 would decompose due to the acid
condition, promoting the release of P, whichmay ensure the effect of
PS. Through degradation of MnO2, H2O2 would be converted into
O2, and the increased oxygen content could achieve a larger
production of 1O2 under PDT, in which energy resonance
transfer of remaining intact MnO2 also contributed. Meanwhile,
the reaction between GSH and MnO2 lowered the GSH level, which
protected 1O2 from being consumed by GSH, leading to a higher
cancer cell fatality rate. In addition, Zn2+ released from AgNCs and
degradation product Mn2+ could act as imaging agents for guiding
therapy (Yao et al., 2019). The same result was demonstrated when
the PS semiconducting polymer nanoparticle (SPN) was coated with
MnO2. Under a hyperoxic environment induced by MnO2, the
enhanced generation of ROS led to increased cancer cell necrosis,
which further caused a significant suppressive effect on transplanted
tumors (Zhu et al., 2018).

Showing degradation in a specific environment, MnO2 can serve
as a switch in response to the TME, controlling the activation of
PDT. Wrapped with MnO2, PS-modified gold nanoclusters
(AuNCs@mSiO2) were concealed from light stimuli. In a normal
physiological environment, the MnO2 shell blocked the reaction
between internal PS and external stimuli, and PDT was turned off.
While in the TME, MnO2 was degraded, turning on the switch of
PDT and, in the meantime, producing enough O2 for ROS
generation (Yin et al., 2021). The MnO2 nanosheet has been
favored for its TEM-responsive capacity, which mediates O2

generation and GSH downregulation, easily reversing hypoxia in
PDT for cancer. MnO2 may thus be a promising alternative
nanocarrier to current PS-loaded 2D materials limited in tumor
therapies. The toxicity and biocompatibility of MnO2 need to be
further studied as the liberation of metal ions (Mn2+) remains a
substantial concern (Huo et al., 2020).

3.3.2 Photosynthesis
Photosynthesis is another solution for the TME by upregulating

oxygen levels. Since there is abundant water in the human tissue,
water is becoming the potential raw material for generating oxygen
in a hypoxic environment. Compared to previous strategies for
yielding oxygen, water emerges with nearly unlimited production of
O2 and higher biosafety. Based on the splitting of water, several
plants, bacteria, and nanomaterials have been exploited as
photosynthesis agents in PDT to produce oxygen. Nevertheless,
more research has yet to be carried out in combining photosynthesis
with 2D materials in PDT (Huo et al., 2020; Li W et al., 2020; Cheng
et al., 2021; Liu G et al., 2021).

Cyanobacterium S. elongatus was combined with BP nanosheets
to reverse the hypoxia of the TME innovatively. Under 606-nm laser
irradiation, water was converted into oxygen through
photosynthesis induced by bacterial cells. Meanwhile, the
transportation of oxygen outside the bacterial cells took place.
Increased oxygen content reversed the hypoxia condition,
distinctly enhancing the generation of 1O2 in cancer cells after
irradiation. In the presence of cyanobacteria, BP-mediated PDT
revealed a strengthened ability of tumor inhibition. Furthermore,
bacteria showed no adverse effect on the organisms, illustrating the
significant validity and biosecurity of bacteria-mediated
photosynthesis in PDT for tumor eradication (Qi et al., 2021).
Except for the listed method for confronting the TME, certain
catalase-like agents have also been applied combined with
nanocarriers to overcome hypoxia conditions (Jannesari et al.,
2020; Ran et al., 2021). However, no standard strategy for the
TME has been achieved at present, still having a long way to go
before optimizing PDT in the TME.

3.4 2D material-based PDT-chemodynamic
therapy

Despite the gratifying curative effect and negligible side
effects of PDT, the inability of entire tumor eradication
through a single PDT provides the possibility of further
research in multimodal therapy based on ROS.
Chemodynamic therapy (CDT) in which endogenous H2O2

could be converted into ·OH through Fenton or Fenton-like
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reactions induced by metal-based agents may be a potential
measurement to enhance ROS production combined with PDT
(Li L et al., 2020; Zhu et al., 2022). As mentioned in PTT,
chemodynamic agents have been applied loaded on
nanosheets. Early research demonstrated the enhanced ROS
generation of PDT–CDT synergistic therapy that
chemodynamic agent FePt nanoparticles loaded on BP could
spontaneously produce additional ROS during the treatment

(Yao et al., 2020). Different from carrying chemodynamic
agents in the previous studies, 2D materials being
chemodynamic agents themselves are recently gaining attention.

In this context, FeWOX–PEG was fabricated for tumor
inhibition after the modification of amphiphilic polymer on iron
tungsten oxide nanosheets through organic-phase synthesis. Under
the acid situation of the TME, Fe2+ and Fe3+ are easily released owing
to the distinct structure of the nanosheet, which makes iron atoms

TABLE 2 Summary of different therapeutic strategies of PDT based on 2D materials.

Biomedical
applications

Therapeutic agents 2D
substrates

Functionalized
materials

Therapeutic benefits In vivo models Ref

Cancer therapy Single 2D materials BP (Xene) BP-DOX Synergistic PDT/PTT/
chemotherapy enhancing

treatment efficiency

4T1 tumor-bearing
BALB/c mice

Chen Y
et al. (2017)

Ti3C2 (MXene) Ti3C2-DOX Synergistic PDT/PTT/
chemotherapy (single-

wavelength laser activation)
enhancing treatment

efficiency

HCT-116 tumor-
bearing athymic nude

mice

Liu et al.
(2017)

MoSe2 (TMDs) MoSe2/Bi2Se3 Heterostructure
enhancing PDT

U14 tumor-bearing
KM mice

Wang Y
et al. (2019)

FeWOx
(TMOs)

FeWOx-PEG Synergistic PDT/PTT/CDT/
immunotherapy enhancing

treatment efficiency

4T1 tumor-bearing
BALB/c nude mice

Xiang et al.
(2022)

2D materials combined
with Ce6

BP (Xene) BP@PEG/Ce6 Synergetic action of PSs and
nanosheets enhancing PDT

HeLa tumor-bearing
nude mice

Yang B
et al. (2018)

MoS2 (TMDs) MoS2-PEG/Ce6 Synergetic action of PSs and
nanosheets enhancing PDT

4T1 tumor-bearing
BALB/c mice

Liu et al.
(2014)

FeMn-LDH
(LDHs)

UCSP-LDH Synergistic PDT/PTT/CDT
enhancing treatment

efficiency

U14 tumor-bearing
KM mice

Jia et al.
(2020)

2D materials combined
with AIE PSs

BP (Xene) BP@NH2-PEG-TTPy Fluorescence imaging for
guiding treatment

4T1 tumor-bearing
BALB/c nude mice

Huang H
et al. (2020)

Ti3C2 (MXene) TBFT, UCNP@DSPE-
PEG@ Ti3C2

Continuous and strong
fluorescence signal for
guiding treatment

4T1 tumor-bearing
BALB/c mice

Wang L
et al. (2020)

2D materials combined
with porphyrin

MnO2 (TMOs) P-AgNCs-MnO2 Reversing the TME
enhancing PDT

MCF-7 tumor-bearing
nude mice

Yao et al.
(2019)

2D materials combined
with SPN

MnO2 (TMOs) SPN-Ms Reversing the TME
enhancing PDT

4T1 tumor-bearing
BALB/c mice

Zhu et al.
(2018)

2D materials combined
with AuNCs

MnO2 (TMOs) AuNCs@mSiO2MnO2@ Intelligent PDT/reversing the
TME enhancing PDT

MDA-MB-435 tumor-
bearing Nu/nu mice

Yin et al.
(2021)

2D materials combined
with cyanobacterium

BP (Xene) Cyan@BPNSs Reversing the TME
enhancing PDT

4T1 tumor-bearing
BALB/c mice

Qi et al.
(2021)

Bacterial infection
therapy

Single 2D materials BP (Xene) CS-BP Prominent biocompatibility
promoting wound healing

Wistar rats (back S.
aureus infected

wound)

Mao et al.
(2018)

Ti3C2 (MXene) M-HAS Dual antibacterial mode
enhancing treatment

efficiency

- Lv et al.
(2022)

BP (Xene) 4OI-BP@Gel Anti-inflammatory action
promoting wound healing

SD rats (back infected
wound)

Ding et al.
(2022)

2D materials combined
with Ce6

MoS2 (TMDs) MoS2@HA-Ce6 Intelligent PDT/PTT
enhancing treatment

efficiency

BALB/c mice (thigh
MRSA infected

wound)

Yuwen
et al. (2021)
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disperse throughout the surface. Extra Fe2+ was formed within the
reaction between Fe3+ and GSH after cell uptake into the lysosome.
Later, H2O2 was reduced to ·OH consuming Fe2+ through the Fenton
reaction in which ·OH would further destroy the lysosome, leading
to the escape of FeWOX–PEG to the cytoplasm. PDT was then
performed under 1060-nm laser irradiation, causing the generation
of intracellular 1O2. Moreover, while combining PDT with CDT,
marked improvement in ROS production ultimately enhanced
tumor inhibition (Xiang et al., 2022). LDHs nanosheets in
another study exhibited a similar role as FeMn–LDH could
function as a chemodynamic agent through releasing Fe3+ and
Mn2+. With the assistance of loading Ce6 and up-conversion of
nanoparticles, the PDT effect of FeMn–LDH was enhanced,
resulting in a nearly complete eradication of the tumor after
PDT/CDT synergistic treatment (Jia et al., 2020).

Although PDT/CDT synergistic therapy is common in various
studies, mediating PDT and CDT through a single agent is relatively
new in tumor therapy. The investigations significantly expand the
application range of 2Dmaterials, whichmay pave the path for study
toward a fresh strategy of multimodal tumor therapy. Nevertheless,
the biocompatibility of released metal ions needs to be tested with
additional research. In addition, combining photothermal and
photodynamic capacity to form synergistic phototherapy is also
common in various research studies on anticancer and antibacterial
therapy that 2D materials are regarded as desired agents for
phototherapy. Different therapeutic strategies of PDT based on
2D materials are summarized in Table 2.

4 Summary and outlook

This review offered a comprehensive analysis of many unique
2D materials used in standard phototherapy. The use of 2D
materials in anticancer and antibacterial therapies under both
NIR-I and NIR-II stimuli is of tremendous academic interest due
to their excellent light absorption in broad bio-windows and high
photothermal conversion efficiency. Additionally, a particular
composition and nanosheet structure are being investigated in
combination with PTT to create a nanoplatform that can be used
for loading drugs and therapeutic agents, immunotherapy, bone
regeneration, neuronal modulation, shape transformation, cellular
uptake, and cell detection. The dual characteristics of 2D materials
used in PDT are illustrated, along with strategies for boosting PDT
effectiveness under the TME. Due to their 2D structure and superior
optical properties, 2D materials are specifically used as PS carriers
and prospective organic PS substitutes. They are also proven to
increase ROS formation during CDT and reverse the TME during
PDT by utilizing certain chemical components.

It is noteworthy that compared to other nanomaterials, 2D
materials possess specific advantages conducive to various
biomedical applications. 1) 2D structure provides nanosheets
with a large surface-to-volume ratio, which endows them with an
excellent functionalization ability for enhancing dispersity and
stability in a physiological environment. Meanwhile, abundant
active sites on the large surface enable the easy anchoring of
versatile therapeutic agents on nanosheets. 2) The optical
property of nanosheets is highly controllable via the adjustment
of the thickness of nanosheets, which is beneficial to enhancing

photothermal and photodynamic abilities. The unique properties
contribute to the broad application of 2D materials. In addition to
the mentioned therapeutic strategies, image guiding for
phototherapy also shows fascinating prospects in applying 2D
materials. The development of 2D materials as contract agents to
improve bioimaging performance, namely, for computed
tomography (CT), fluorescence imaging, photoacoustic imaging,
and magnetic resonance imaging, is due to their better
photoelectric properties (Soleymaniha et al., 2019). In addition,
ascribed to the large-area immobilization of sensing targets and
the fast electron transfer fluorescence-quenching effect, 2D
materials have been employed as prominent alternatives to
traditional nano-biosensors for detecting biomacromolecules and
biological processes (Lin et al., 2018; Lam et al., 2021). The novel
biosensing system may provide the platform for tracing therapeutic
effects in clinics with high selectivity and efficiency. In this respect,
the contrast-enhanced image and biosensors based on 2D materials
can further facilitate the diagnostic image guidance and monitor
phototherapy and corresponding body response, forming a
multifunctional theragnostic platform for various diseases.

Despite the significant advancements in 2D materials that have
been made, several problems and difficulties that impede clinical
translation still need to be resolved. One of them is that top–down
approaches and bottom–up methods both have their flaws, making
it difficult to strike a balance between yield, size, shape, and purity,
which determine the property of 2D materials. Another significant
limitation is long-term chronic biosafety, which makes it difficult to
assess a material’s biocompatibility due to the variability in synthetic
environments, modifications, and experimental conditions.
Furthermore, even under mild hyperthermia, side effects caused
by generated heat and ROS are unavoidable, which may delay the
treatment. Though 2D materials have progressed in precise
treatment, subcellular localization still needs to be optimized.
Additionally, penetration depth also restricts their development.
Currently, NIR-I still dominates in the phototherapy of 2D
materials, lacking deep tissue penetration capacity. In addition, a
study in NIR-II is limited to 1064-nm laser irradiation, while light
with other wavelengths is not widely exploited yet. To compare
various kinds of 2D materials, the existing study is limited to the
effect of constituent elements in tissue engineering. The elemental
influence on other properties of 2D materials related to
phototherapy for cancer, bacterial infection, and other diseases
has not been investigated, and further study is needed for
detecting therapeutic actions of distinct nanosheets in different
diseases.

In terms of the phototherapy mediated by nanoagents, 2D
materials have shown distinct advantages as large surface areas
form the drug delivery system, sharp edges enhance antibacterial
function, unique components and mechanical flexibility promote
tissue regeneration, and more, which strengthen the effect of
phototherapy for various diseases. However, the investigation of
phototherapy is not confined to 2D materials. Recently, plasmonic
nanoparticles have demonstrated extraordinary performance in
phototherapy. Except for the excellent photoelectric property
comparable to that of 2D materials, nanoparticles with tunable
size and shape and abundant surface-active sites can provide
approaches to more modifications that are highly regioselective
and stereoselective, beneficial to the adjustment and
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improvement of photoelectric properties. In addition, the tiny size in
three dimensions and outstanding optical properties can further
enhance the spatiotemporal control of phototherapy and the
accuracy of image guidance (Tyagi et al., 2020; Chang et al.,
2021; Yin et al., 2023). Hence, further study is required to
combine 2D materials with other nanomaterials to fully utilize
the advantages and compensate for the shortages of each
nanomaterial.

In conclusion, 2D materials have generated much attention in
the biomedical sector recently, with phototherapy showing the most
promise for future research. Although it is challenging to create a
single 2D material appropriate for all forms of phototherapy, it is
anticipated that several 2D materials will be chosen, and their
features will be tuned to meet certain clinical needs in later
research. However, we are optimistic that the evaluation will be
very helpful and improve future research on 2D materials in
phototherapy.
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