
Mechanostat parameters
estimated from time-lapsed in
vivo micro-computed
tomography data of mechanically
driven bone adaptation are
logarithmically dependent on
loading frequency

Francisco C. Marques, Daniele Boaretti, Matthias Walle,
Ariane C. Scheuren, Friederike A. Schulte and Ralph Müller*

Institute for Biomechanics, ETH Zurich, Zurich, Switzerland

Mechanical loading is a key factor governing bone adaptation. Both preclinical and
clinical studies have demonstrated its effects on bone tissue, which were also
notably predicted in themechanostat theory. Indeed, existingmethods to quantify
bone mechanoregulation have successfully associated the frequency of
(re)modeling events with local mechanical signals, combining time-lapsed in
vivo micro-computed tomography (micro-CT) imaging and micro-finite
element (micro-FE) analysis. However, a correlation between the local surface
velocity of (re)modeling events and mechanical signals has not been shown.
As many degenerative bone diseases have also been linked to impaired bone
(re)modeling, this relationship could provide an advantage in detecting the effects
of such conditions and advance our understanding of the underlying mechanisms.
Therefore, in this study, we introduce a novel method to estimate (re)modeling
velocity curves from time-lapsed in vivomouse caudal vertebrae data under static and
cyclic mechanical loading. These curves can be fitted with piecewise linear functions
as proposed in the mechanostat theory. Accordingly, new (re)modeling parameters
can be derived from such data, including formation saturation levels, resorption
velocity moduli, and (re)modeling thresholds. Our results revealed that the norm of
the gradient of strain energy density yielded the highest accuracy in quantifying
mechanoregulation data using micro-finite element analysis with homogeneous
material properties, while effective strain was the best predictor for micro-finite
element analysis with heterogeneous material properties. Furthermore, (re)modeling
velocity curves could be accurately described with piecewise linear and hyperbola
functions (root mean square error below 0.2 µm/day for weekly analysis), and several
(re)modeling parameters determined from these curves followed a logarithmic
relationship with loading frequency. Crucially, (re)modeling velocity curves and
derived parameters could detect differences in mechanically driven bone
adaptation, which complemented previous results showing a logarithmic
relationship between loading frequency and net change in bone volume fraction
over 4 weeks. Together, we expect this data to support the calibration of in silico
models of bone adaptation and the characterization of the effects of mechanical
loading and pharmaceutical treatment interventions in vivo.
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Introduction

Bone is a dynamic organ capable of adapting to its mechanical
environment (Burr et al., 2002). Through a multiscale process, loads
are transferred from the organ to the cellular level, eliciting highly
coordinated biological responses that adapt its architecture (Wolff
et al., 1986; Lanyon, 1992; Turner, 1998). This process of continuous
bone formation and resorption comprises both bone modeling and
remodeling events, collectively referred to as (re)modeling (Huiskes
et al., 2000). Indeed, several studies have successfully shown the
influence of mechanical loading in bone adaptation, especially in
trabecular bone, highlighting how mechanical cues guide the bone
structure towards an optimal load transfer (Lanyon, 1992; Rubin
and McLeod, 1994; Huiskes et al., 2000; De Souza et al., 2005;
Lambers et al., 2011). From a mathematical modeling perspective,
the mechanostat theory (Frost, 1987) is a widely known proposal for
the regulatory mechanism driving tissue-level bone adaptation.
Mirroring the function of a thermostat, a system to maintain the
temperature within a predefined interval through heating and
cooling, Frost argued that bone physiology also embodies
processes to maintain bone mass within an adapted window for
optimal mechanical usage. Specifically, Frost postulated the
existence of key set-points or thresholds that bound this adapted
window such that bone would modulate states of disuse-remodeling,
i.e., when mechanical demands are lower than normal named
“disuse,” or bone modeling, i.e., when mechanical demands are
higher than normal termed “mild overload,” where bone mass is
predominantly added or removed, accordingly. This fine balance
would eventually normalize the mechanical demands perceived on
the structure to the adapted window. Additionally, Frost reflected on
the mechanostat theory in the context of disease states, such as
osteoporosis and osteogenesis imperfecta, space orbit, or in the
presence of circulating agents, like growth factors or medications,
and proposed how these would interfere with the physiological
mechanoregulation of the adapted window. Briefly, he associated
some disease states with a desensitization of response mechanisms,
which would raise bone modeling thresholds, hence reducing the
adaptive response when the mechanical usage increased, while high
mechanically demanding conditions would lower such thresholds,
making the system overreactive and triggering strong anabolic
reactions. Crucially, the mechanostat theory has been successfully
incorporated into in silico models of bone adaptation capable of
approximating the trends observed in vivo in response to various
interventions (Levchuk et al., 2014) and loading frequencies (Kameo
et al., 2011). Such models can leverage time-lapsed in vivo micro-
computed tomography (micro-CT) data, which has also enabled
tracking structural changes in response to externally applied
loading in preclinical animal studies, contributing to a
comprehensive description of both morphometric changes and
mechanoregulation information of bone adaptation (Schulte
et al., 2013; Birkhold et al., 2017; Albiol et al., 2020; San Cheong
et al., 2020a).

Notably, with aging and in specific disease contexts, this
(re)modeling process becomes unbalanced (Rubin et al., 1992;
Bassey et al., 1998), often leading to other degenerative
conditions such as osteoporosis, which precede an increased risk
of fractures and culminate in considerable health and economic
costs for society (Gabriel et al., 2002; Becker et al., 2010). In
agreement with Frost’s assumptions, impaired bone
mechanoregulation has been suggested as a possible cause of this
problem. Therefore, advancing our ability to retrieve
mechanoregulation information from time-lapsed in vivo micro-
CT data can help better understand the underlying mechanisms and,
with that, develop more effective treatments for these degenerative
conditions.

In this regard, preclinical models, such as the mouse caudal
vertebrae or tibia loading model, have been foundational to explore
bone adaptation processes by enabling controllable experimental
settings that can also mimic clinical pathological conditions (Rubin
and McLeod, 1994; Robling and Turner, 2002; Webster et al., 2008;
Vandamme, 2014; Razi et al., 2015; Roberts et al., 2019). As a result,
existing methods to investigate mechanoregulation have successfully
linked (re)modeling events with tissue strains obtained from micro-
finite element (micro-FE) analysis, showing strong associations
between formation/resorption and high/low tissue strains,
respectively (Schulte et al., 2013; Razi et al., 2015; Scheuren et al.,
2020), which were summarized in conditional probability curves
defined over a continuous range of tissue strains. To this end, several
mathematical quantities have been proposed to describe the local
mechanical signal: strain energy density (SED), effective strain
(Pistoia et al., 2002), and norm of the gradient of SED (∇SED).
Deformation can be quantified using SED or effective strain, a
derived quantity from SED that accounts for differences in tissue
Young’s modulus. Likewise, it is hypothesized that load-induced
bone adaptation arises from mechanical deformation perceived by
osteocytes, the mechanosensitive cells in bone (direct cell strain),
and interstitial fluid flow (shear stress) in the lacunar-canalicular
network (Klein-Nulend et al., 1995; Fritton and Weinbaum, 2009;
Weinbaum et al., 2011). Mathematically, ∇SED represents spatial
differences in tissue deformation, which are believed to induce fluid
flow (Huiskes, 2000). From this perspective, it is unclear which
mechanical signal shows the best association with bone
(re)modeling events.

Furthermore, conditional probability-based approaches lack
quantitative information describing the expected change in bone
material for a given strain value. This dependency has been
considered in silico (Adachi et al., 2001; Levchuk et al., 2014;
Goda et al., 2016; Louna et al., 2019) by defining the normal
surface velocity in response to the perceived mechanical signals
guiding (re)modeling events. This formulation based on surface
velocity deviates from the original mechanostat theory by Frost,
which focused on changes in bone mass with the mechanical signal.
Nonetheless, this shift was vital for the development of such high-
resolution in silico models based on micro-CT images driven by
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surface advection (Adachi et al., 2001; Levchuk et al., 2014), where
new bone material is added along the gradient of the surface.

Besides, previous work has shown a dose-dependent effect of
this mechanical stimulus (Mosley and Lanyon, 1998; Sugiyama et al.,
2012; Scheuren et al., 2020; Walle et al., 2021), but an association of
surface velocity with mechanical signal has not been investigated at
the tissue level in vivo. On the one hand, it hinders more detailed
comparisons of degenerative conditions that may conserve the
mechanosensation ability of bone cells, associated with
mechanical signal thresholds that regulate (re)modeling events
but influence the magnitude of the response to the mechanical
stimuli and the overall bone turnover. On the other hand, from a
computational modeling perspective, retrieving such information
from in vivo data can provide valuable calibration data for the
mechanoregulation mechanisms implemented in such models to
achieve more realistic bone adaptation representations.

Therefore, the present study had two aims. First, we sought to
identify which mechanical signal showed the best association with
bone (re)modeling events using conditional probability curves and
quantified with the correct classification rate (CCR) (Tourolle né
Betts et al., 2020). Second, we aimed to propose a method to retrieve
mechanoregulation information from time-lapsed in vivomicro-CT
data that associates the surface (re)modeling velocity (RmV) with
the local mechanical signal. We express this relationship in RmV
curves from which several biologically meaningful parameters can
be derived, such as formation/resorption thresholds and saturation
levels. Notably, a consistent nomenclature of these parameters is
proposed and formalized in alignment with the current
understanding of the mechanostat theory. Furthermore, we
applied our novel method to an in vivo mouse caudal vertebrae
dataset (Scheuren et al., 2020) and quantified the local dynamic
response of trabecular bone adaptation to static and cyclic loading of
varying frequencies. We hypothesized that the effect of increased
loading frequencies could be measured with our new analysis and
compared through the parameters derived from these RmV curves.
Finally, we investigated if there was a relationship between these
parameters and loading frequency, analogous to the logarithmic
relationship observed between loading frequency and net change in
bone volume fraction over the 4-week observation period (Scheuren
et al., 2020).

Materials and methods

Time-lapsed in vivomicro-CT mouse caudal
vertebrae dataset

The experimental data used for this study was collected in a
previous longitudinal murine in vivo loading study (Scheuren et al.,
2020), supporting 3R principles. Briefly, 11-week-old female
C57BL/6J mice received surgery to allow mechanical loading of
the sixth caudal vertebrae (CV6) via stainless steel pins (Fine Science
Tools, Heidelberg, Germany) inserted into the fifth and seventh
vertebrae following the protocol by Webster et al. (2008). After
surgery and recovery, the 15-week-old mice were split into five
groups: sham loading (0 N, 8 mice), 8 N static (8 mice), or 8 N cyclic
loading with the frequencies of 2 Hz (7 mice), 5 Hz (5 mice), or
10 Hz (8 mice). The loading regime was performed for 5 min, three

times per week, over 4 weeks, as previously described by Lambers
et al. (2011). Cyclic loading aimed at recreating supraphysiological
loading conditions, that is, which surpass the loading perceived with
typical physiological activity of the mice (Frost, 2003). With the start
of loading, the animals were scanned weekly using in vivomicro-CT
(vivaCT 40, Scanco Medical AG, Switzerland), with an isotropic
voxel size of 10.5 μm. All mouse experiments described in the
present study were carried out in strict accordance with the
recommendations and regulations in the Welfare Ordinance
(TSchV 455.1) of the Swiss Federal Food Safety and Veterinary
Office (license number 262/2016).

Automated compartmental analysis of the
mouse caudal vertebrae

Consecutive time-points of the micro-CT scans were initially
registered to each other using the Image Processing Language (IPL
Version 5.04c; Scanco Medical AG, Switzerland). For the
identification of the trabecular and cortical compartments in the
structure, the images were filtered with a Gaussian filter (sigma: 1.2,
truncate: 1) as implemented in Scipy 1.7.3 (Virtanen et al., 2020),
binarized with a threshold of 580 mgHA/cm3 (Scheuren et al., 2020),
followed by automatic identification of the relevant compartments
following the protocol proposed by Lambers et al. (2011). This
approach was implemented in Python (version 3.9.9) and validated
against the existing pipeline in IPL (Supplementary Material S1;
Supplementary Figure S1).

Micro-finite element analysis

Micro-CT images were analyzed with micro-finite element
analysis (micro-FE) to estimate the local mechanical signal.
Image voxels were converted to 8-node hexahedral elements
(approximately 20 million elements in total), and bone was
assumed to behave within the linear elastic regime. The nodes at
the proximal end of the micro-FE mesh were constrained in all
directions, while the nodes at the distal end were displaced by 1% of
the length in the z-axis (longitudinal axis of the sample). Two sets of
simulations were performed for each sample: with homogeneous
and heterogeneous material properties based on the binary and
grayscale images of the samples. The former considered a Young’s
modulus value of 14.8 GPa for bone and 2 MPa for marrow (defined
as non-bone voxels in the trabecular region) and a Poisson’s ratio of
0.3 (Webster et al., 2008) (see Supplementary Figure S2 for a
sensitivity analysis of the effect of the Young’s modulus value
assigned to bone and marrow voxels on the ability to quantify
mechanoregulation information). Conversely, the latter applied a
linear relationship between bone mineral density and Young’s
modulus (Mulder et al., 2007) for all voxels within the outer
mask of the vertebrae (closed mask that contains all voxels
within the external surface of the vertebrae), also using a
Poisson’s ratio of 0.3. In this case, the minimum value allowed
for Young’s modulus was also 2 MPa. Two cylindrical discs were
added at the proximal and distal ends of the vertebra model
(Webster et al., 2008), mimicking the role of the intervertebral
discs. Disc settings were calibrated for micro-FE with homogeneous
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and heterogeneous material properties (Supplementary Material
S1). The simulations computed strain energy density (SED, in
MPa) in the vertebrae, from which all derived quantities were
determined after linear rescaling to match the forces applied in
vivo: 8 N for loaded groups and 4 N (physiological loading) for the
sham-loaded group (0 N) (Christen et al., 2012). The pipeline was
also implemented in Python, and the simulations ran on the Euler
cluster operated by Scientific IT Services at ETH Zurich, using the
micro-FE solver ParOSol (Flaig and Arbenz, 2011) on Intel Xeon
Gold 6150 processors (2.7–3.7 GHz).

Mechanoregulation analysis based on
conditional probability curves

The mechanoregulation analysis performed in this study
considered three mathematical quantities representing the local
mechanical signal: strain energy density (SED), effective strain
(Pistoia et al., 2002), and the norm of the gradient of SED
(∇SED). In this context, the gradient was computed using the
central difference scheme, and the norm was used as a proxy for
the fluid flow in each voxel. For SED and effective strain, the values
were collected on the voxels on the bone side of the surface interface
between bone and marrow, while the values for ∇SED were collected
on the marrow side. The latter was motivated by previous results
showing that fluid flow velocity surrounding osteocytes was most
influential close to the bone surfaces (Kameo et al., 2008) and,
similarly, that fluid flow affected the activity of osteoblasts and
mesenchymal stem cells (Riehl et al., 2015; Riehl et al., 2017), which
are also primarily found on the bone surfaces. The analysis only
considered the surface voxels and mechanical signal values inside
the trabecular compartment identified with the algorithm described
in a previous section.

The conditional probabilities of a (re)modeling event
(formation, quiescence, resorption) to occur at each value of
mechanical signal were calculated as described previously by
Schulte et al. (2013), for weekly intervals (e.g., weeks
1–2 considered the micro-CT images from weeks 1 and 2 and
the micro-FE from week 1) and the 4-week observation period
(using the micro-CT images from weeks 0 and 4 and micro-FE data
from week 0). Briefly, for each (re)modeling event, the values of the
mechanical signal at the surface voxels were collected and
normalized by the 99th percentile of all observed values, defining
a normalized mechanical signal (%). These values were binned at 1%
of the 99th percentile determined, and a normalization of the total
number of counts per (re)modeling event was applied to rule out any
dependence on the imbalance between these events before
calculating conditional probabilities. A conditional probability of
0.33 indicates an equal probability of any (re)modeling event
occurring.

The quantification of the amount of mechanoregulation
information recovered in the analysis relied on the CCR, using
an implementation proposed by Tourolle né Betts et al. (2020). This
metric summarizes in a single number the accuracy of this ternary
classification problem that categorizes (re)modeling events
(formation, quiescence, and resorption) within the range of
observed local mechanical signal values. In short, two thresholds
(tr and tf) define three intervals, one per (re)modeling event:

resorption (mechanical signal < tr), quiescence (tr < mechanical
signal < tf), and formation (tf < mechanical signal). A 3-by-
3 confusion matrix is filled with the sum of the conditional
probabilities of each event within the intervals: diagonal entries
(e.g., the sum of the conditional probability values of formation
within the formation interval) represent true positive entries, while
off-diagonal are false negatives and positives. The normalized trace
of the confusion matrix yields the CCR value (optimal thresholds are
found by sweeping the range of mechanical signal values until the
highest CCR is obtained). A value of 1 represents perfect accuracy,
and 0.33 describes the accuracy of a random classification, given the
presence of three classes. In this context, CCR values above
0.33 indicate that the mechanical signal descriptor considered
can predict (re)modeling events with better accuracy than a
random classifier.

Mechanostat (re)modeling velocity curve
and parameter derivation

Here, we introduce a novel method to estimate sample-specific
(re)modeling velocity curves and their corresponding mechanostat
parameters based on time-lapsed micro-CT data. The proposed
method considers the scans from two time-points: baseline and
follow-up images. Note that only the trabecular compartment is
considered for this analysis. First, the follow-up image is registered
to the baseline, revealing volumes of formed, quiescent, and resorbed
clusters. Next, these clusters are used to classify surface voxels of the
baseline image: formation surfaces consist of the overlap between
dilated formed clusters and the baseline surface (von Neumann
neighborhood), resorption surfaces refer to the overlap between
resorbed clusters and the baseline surface, and quiescent surfaces
contain the remaining surface voxels. A distance transform (DT)
algorithm (taxicab metric) is applied to the follow-up image and the
inverse of the follow-up image and masked with the formation and
resorption surfaces identified before, yielding the distance of each
surface voxel to the surface of the follow-up scan. It is assumed that
the distance transform of the follow-up reveals the amount of formed
bone, while the inverted follow-up identifies the depth of resorption
per surface voxel. The values assigned to formation surfaces are
obtained by gray-dilating (von Neumann neighborhood) the
distance transform values of the formed clusters into the
neighboring formation surface voxels identified. A gray-dilation
operation is needed since the remodeling distance values are no
longer binary (in comparison to the identification of remodeling
surfaces performed initially) and to ensure an accurate distance
calculation (e.g., if a 1-voxel thick is added on the surface, the
surface voxels underneath will contain a remodeling distance value
of 2, despite a single layer of voxels being added; with the gray dilation,
the value of distance one computed by the distance transform on the
added layer can be accurately projected to the surface voxels). Further,
these are linearly scaled in a cluster-specific fashion to match the
volume of the corresponding cluster (Supplementary Figure S3). Next,
the mechanical signal (ms) computed from the micro-FE analysis of
the baseline image is collected using the same (re)modeling surface
masks. For this application, the micro-FE analysis considered the
homogeneous material properties described previously. Furthermore,
we selected effective strain inmicrostrain (με) as themechanical signal
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descriptor, although an alternative signal would also be suitable (e.g.,
SED or ∇SED).

Given that each surface voxel contains information on the
amount of surface change and the estimated mechanical signal, a
2D histogram is computed, considering the mechanical signal on the
horizontal axis and the estimated distance on the vertical axis. The

mechanical signal is capped at the 99th percentile to eliminate very
high (unphysiological) values and binned at 1% of this value. In the
vertical axis, all values are considered and binned at 1% of the
maximum value observed. A weighted average of the distance values
is computed using the number of counts in the 2D histogram as
weights, providing a value for each mechanical signal bin and

FIGURE 1
Overview of the computational pipeline for high-throughput analysis of time-lapsed in vivo micro-CT mouse caudal vertebrae samples. (A)
Qualitative visualization of a representative sample highlighting the original bone structure, the identification of regional compartments (trabecular
compartment in blue and cortical compartment in orange), the local mechanical signal computed as strain energy density (SED) frommicro-FE analysis,
the (re)modeling map obtained from time-lapsed micro-CT images and the (re)modeling distance associated with surface voxels (Scale bar:
500 µm). (B)Diagram of the workflow included in the computational pipeline, from pre-processingmicro-CT images to post-processing steps, featuring
mechanoregulation analysis. (C) Illustration of the workflow for mechanoregulation analysis and estimation of mechanostat parameters: the baseline,
follow-up, and inverted follow-up images are considered; for each surface voxel, (re)modeling events are identified by overlapping consecutive time-
points, themechanical signal in the structure is computedwithmicro-FE and the (re)modeling distance is determinedwith a distance transformoperation
(see Materials and Methods). The data is used to compute conditional probability curves for each (re)modeling event (dashed line represents a random
probability of occurrence) and a (re)modeling velocity curve (dashed line represents zero (re)modeling velocity), which can be fitted with a piecewise
linear function or a continuous hyperbola function to retrieve biologically meaningful parameters. Parameter legend (see Materials and Methods for an
extended description): A-Resorption saturation level (RSL), B-Resorption velocity modulus (RVM), C-Resorption threshold (RT), D-Formation threshold
(FT), E-Formation velocity modulus (FVM), F-Formation saturation level (FSL), G-(Re)modeling threshold (RmT), H-(Re)modeling velocity modulus
(RmVM).
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considering a value of 0 for the quiescent surface voxels. The last step
converts the estimated distance to a (re)modeling velocity
magnitude by multiplying and dividing by the voxel size of the
images and the interval between the time-points analyzed,
respectively. For consistency with other dynamic morphometry
quantities (such as mineral apposition and resorption rates), we
chose to express (re)modeling velocity in µm/day. In this context,
(re)modeling velocity aims to describe the surface movement along
the normal surface direction (Adachi et al., 2001; Levchuk et al.,
2014; Goda et al., 2016; Louna et al., 2019).

Finally, mathematical functions are fitted to the curves obtained,
yielding their quantitative parametric description, namely: piecewise
linear (Eq. 1), as proposed in the original mechanostat theory, and a
continuous hyperbola function (Eq. 2), both illustrated in Figure 1,
and which enable quantifying new (re)modeling parameters in vivo.
The piecewise linear function is defined by formation and resorption
saturation levels (FSL and RSL, µm/day), which determine the
maximum and minimum (re)modeling velocities observed,
formation and resorption thresholds (FT and RT, με) which
determine the minimum and maximum mechanical signal value
from which formation and resorption events are observed, and
formation and resorption velocity moduli (FVM and RVM, µm/day/
με) which determine the change in (re)modeling velocity resulting
from a change in mechanical signal, defined between FSL, RSL and
FT, RT, respectively. Specifically, we highlight the proposal to define
FVM and RVM as a modulus because the values are also
proportional to mechanical strain. Comparably, the hyperbola
function comprises similar FSL and RSL parameters, a
(re)modeling threshold (RmT, µm/day) corresponding to the

mechanical signal value at which the RmV curve is zero and
a (re)modeling velocity modulus (RmVM, µm/day x με), which
is defined as the scale factor determining the rate of change in
(re)modeling velocity resulting from a change in mechanical signal.
A summary of these parameters is also presented in Table 1.

Piecewise linear:

RmV ms( ) �

RSL,ms<RT + RSL
RVM

−RT × RVM + RVM × ms,RT + RSL
RVM

<ms<RT

0,RT<ms< FT

−FT × FVM + FVM × ms, FT<ms< FT + FSL
FVM

FSL, FT + FSL
FVM

<ms

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
Hyperbola function:

RmV ms( ) � FSL − RmVM
RmT +ms

(2)

Note that for the hyperbola function, RSL is defined as the value
of the RmV function at the minimum mechanical signal value
observed.

The quality of the fits was assessed using the root mean squared
error (RMSE) between the fitted curve and the corresponding
velocity value at each mechanical signal value. The curve fitting
was done with Scipy 1.7.3 (Virtanen et al., 2020) and Curve-fit

TABLE 1 Mechanostat parameters derived from the piecewise linear and hyperbola functions fitted to the (re)modeling velocity curves.

Function Parameter Abbreviation Unit Description

Piecewise
linear

Resorption Saturation
Level

RSL µm/day Minimum (re)modeling velocity observed

Resorption Velocity
Modulus

RVM (µm/day)/mech.
signal units

Change in (re)modeling velocity resulting from a change in mechanical signal,
defined between RSL and RT

Resorption Threshold RT Mech. signal units Maximum mechanical signal value from which resorption events are observed

Formation Threshold FT Mech. signal units Minimum mechanical signal value from which formation events are observed

Formation Velocity
Modulus

FVM (µm/day)/mech.
signal units

Change in (re)modeling velocity resulting from a change in mechanical signal,
defined between FSL and FT

Formation Saturation
Level

FSL µm/day Maximum (re)modeling velocity observed

Hyperbola Resorption Saturation
Level

RSL µm/day Minimum (re)modeling velocity observed

(Re)modeling Threshold RmT Mech. signal units Mechanical signal value at which the curve intercepts the zero-(re)modeling
velocity

(Re)modeling Velocity
Modulus

RmVM (µm/day) x mech.
signal units

Scale factor determining the rate of change in (re)modeling velocity resulting
from a change in mechanical signal

Formation Saturation
Level

FSL µm/day Maximum (re)modeling velocity observed

(Re)modeling velocity (vertical axis) RmV µm/day Average velocity of the surface per day, leading to formation and resorption
(re)modeling events

Mechanical signal (horizontal axis) ms Mech. signal units Quantity selected for mechanical signal such as Strain Energy Density (SED),
effective strain or ∇SED
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annealing (Reinhardt, 2019). Similar to the mechanoregulation
analysis using conditional probabilities, the mechanostat
(re)modeling velocity curves and associated parameters were
estimated for weekly intervals and the 4-week observation period.

We implemented a balanced bootstrapping approach (Davison
et al., 1986) to characterize the distribution of the parameters
estimated from the mathematical functions fitted to the
(re)modeling velocity curves. Samples were randomly resampled
2500 times per group to generate a synthetic group of the same size,
and the corresponding (re)modeling velocity curves were
determined and fitted with the piecewise linear and hyperbola
functions, yielding the estimations of the mechanostat parameters.

Frequency dependency of estimated
mechanostat parameters

The logarithmic function used previously by Scheuren et al.
(2020) was considered here to evaluate the dependency of
mechanostat parameters with cyclic loading frequency.
Specifically, the median values of the parameter distributions
generated with the balanced bootstrapping approach were plotted
for each loading frequency and fitted with a logarithmic regression
curve (Eq. 3). The quality of the fit was assessed with the Pseudo-R2

(Schabenberger and Pierce, 2001), which enables comparing the
quality of fitted relationships for parameters with different
magnitudes.

y � y0 + a × ln f( ), f represents the loading frequency (3)

Statistical analysis

Statistical analysis was performed with Python 3.10.5, using the
packages SciPy 1.7.3 (Virtanen et al., 2020) and Scikit_posthocs 0.7.0
(Terpilowski, 2019), and in R (R Core Team, 2022). Longitudinal
measurements of bone structural parameters were also analyzed
through repeated measurements ANOVA (Scheuren et al., 2020),
implemented as a linear mixed model from the lmerTEST package
(Kuznetsova et al., 2017) after inspection of linear regression
diagnostics plots. As described by Scheuren et al. (2020), the
between-subjects effect was allocated to the groups, while within-
subjects effects were allocated to time and time-group interactions.
Random effects were allocated to the animal to account for the
natural differences in bone morphometry in different mice. In
instances where a significant interaction effect (groupptime) was
found, a Tukey post-hoc multiple comparisons test was performed.
All other parameters were first checked for normality using the
Shapiro-Wilk test. Non-normally distributed parameters (CCR
values) were presented with their median and inter-quartile range
(IQR). Estimated mechanostat parameters were presented with the
value of the fitted curve for each case and the IQR of the parameter
distribution estimated with the balanced bootstrapping approach.
Subsequently, non-parametric tests (Mann-Whitney U-test;
Kruskal-Wallis followed by Conover-Iman test for multiple
comparisons, corrected by Bonferroni-Holm method) were
chosen based on the result of the normality test and indicated
accordingly for each comparison in the corresponding figure or table

caption. Differences between the conditional probability curves were
assessed with Mann-Whitney U-test, for normalized mechanical
signal values above 95%. Correlation between (re)modeling velocity
curves from different groups was assessed with Pearson Correlation
Coefficient. Correlations of static and dynamic morphometry
parameters obtained with the IPL and Python compartmental
analysis methods (Supplementary Figure S1) and between
estimated and ground truth (re)modeling clusters’ volume
estimation (Supplementary Figure S3) were determined with
Spearman’s correlation coefficient. Significance was set at p <
0.05 in all experiments; otherwise, significance levels are reported.

Results

Performance comparison of mechanical
signal descriptors for mechanoregulation
analysis

First, we extended previous results (Scheuren et al., 2020) by
comparing SED, effective strain, and ∇SED and their ability to
quantify mechanoregulation information from time-lapsed in vivo
micro-CT data. Figure 2A illustrates the conditional probability
curves for each combination of mechanical signal and group
between weeks 0–4. This qualitative evaluation highlighted that,
for all mechanical signal descriptors, resorption was confined within
a small interval of low mechanical signal values (normalized
mechanical signal < 10% for SED and ∇SED and normalized
mechanical signal < 29% for effective strain), where it was
associated with a higher conditional probability of occurrence.
Furthermore, for higher magnitudes of the mechanical signal, the
conditional probability curves displayed a more stochastic pattern
oscillating around the random probability of 0.33 for SED and ∇SED
and stabilizing below this value for effective strain. ∇SED provided
the best discriminative ability for formation and quiescence events
for all groups, supported by statistically significant differences when
comparing the difference between the conditional probability
associated with formation and quiescence between the
mechanical signal descriptors (p < 0.001 for ∇SED-SED, ∇SED-
effective strain, and SED-effective strain). For completeness, these
comparisons focused on normalized mechanical signal values above
95%, which comprised a median (IQR) number of voxels per
normalized mechanical signal value of 26 (21, 32) formation
voxels, 2 (1, 3) quiescence voxels and 11 (8, 16) resorption voxels
for SED; 57 (46, 69) formation voxels, 5 (3, 7) quiescence voxels and
25 (17, 5) resorption voxels for effective strain; 27 (22, 32) formation
voxels, 1 (0, 2) quiescence voxels, and 15 (10, 19) resorption voxels
for ∇SED. These results were also substantiated by the increasing
separation between both curves with increased mechanical signal
magnitude (Figure 2A). The 10 Hz group achieved the widest
difference between these events with 38% for ∇SED, in
comparison to 33% for SED and 20% for effective strain,
respectively, while the sham-loaded group showed a maximum
difference of 33%, 24%, and 12% for ∇SED, SED, and effective
strain, respectively. Conversely, effective strain showed the best
association with resorption events based on the sharp increase in
the conditional probability for this event within the interval of low
mechanical signal values (normalized mechanical signal < 29%),
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reaching its maximum conditional probability value between 64%
(2 Hz group) and 80% (static and 5 Hz groups), contrasting with
values ranging between 47% (sham-loaded group) and 52% (5 Hz
group) for ∇SED.

CCR was computed from the conditional probability curves
as a proxy of the amount of mechanoregulation information

retrieved, quantifying the number of (re)modeling events
correctly classified. Our analysis showed that ∇SED
consistently achieved the best performance for the micro-FE
analysis with homogeneous material properties, followed by
effective strain and SED (Figure 2B). Across all groups and all
time-points, CCR values for ∇SED were significantly higher than

FIGURE 2
Quantification of mechanoregulation information from time-lapsed in vivomicro-CT image data. (A) Conditional probability curves connecting the
mechanical environment with (re)modeling events, computed for all groups and mechanical signal descriptors considered (SED, effective strain, and
∇SED), using homogeneous material properties. The plots show the mean probability line per group after applying a LOWESS operation for the interval
0–4 weeks and its corresponding 95% confidence interval. The dashed line at 0.33 identifies the probability of a random event for a ternary
classification case. (B) Comparison of correct classification rate (CCR) values obtained by SED, effective strain, and ∇SED as local mechanical signal
descriptors computed frommicro-FE with homogeneous or heterogeneousmaterial properties. Higher CCR values indicate higher sensitivity to retrieve
mechanoregulation information. Similar to (A), the analysis also considers the interval of 0–4 weeks. Statistical significance was determined by the
Conover-Iman test, corrected for multiple comparisons by the Holm-Bonferroni method. Statistical significance legend: *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001.
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those of SED (Figure 2B). A similar result was observed for ∇SED
and effective strain, although no statistical differences were found
for the groups with loading frequencies of 5 and 10 Hz after week
2 (Figure 2B). For the interval of 0–4 weeks, CCR values for ∇SED
were also significantly higher than those from SED (p < 0.001)
and effective strain (p < 0.05) for all groups except for the 10 Hz
group (Table 2). The effect of increasing loading frequencies was
also noticeable in the corresponding increase in CCR values in
the same period (Table 2). Conversely, for the micro-FE analysis
with heterogeneous material properties, effective strain showed
the best association with (re)modeling events, followed by SED
and ∇SED, albeit the accuracy was lower than what was observed
for micro-FE with homogeneous material properties, both in
the weekly analysis (Figure 2B) and between 0 and 4 weeks
(Table 2). Furthermore, there was a weaker increasing trend of
CCR values with increasing loading frequencies (Table 2) in
comparison to the micro-FE analysis with homogeneous
material properties.

Quantification of (re)modeling velocity
curves and mechanostat parameters

Next, we investigated bone mechanoregulation from time-
lapsed in vivo micro-CT data by deriving (re)modeling velocity
curves and fitting piecewise linear and hyperbola functions to
estimate the corresponding mechanostat parameters, namely,
formation and resorption saturation levels (FSL and RSL),
velocity moduli (FVM and RVM) and thresholds (FT and RT)
for the piecewise linear function and FSL and RSL, (re)modeling
velocity modulus (RmVM) and (re)modeling thresholds (RmT) for
the hyperbola function, respectively. We analyzed consecutive pairs
of scans (Figure 3; Supplementary Table S1) 1 week apart and
summarized the group differences over the 4-week period of the
study (Table 3).

The raw net response curves shown in Figure 3 resemble the shape
of the mechanostat schematic proposed by Frost (1987) from the
disuse to the adapted and mild overload windows, providing a
qualitative validation of the output, which evaluated
supraphysiological cyclic loads applied to the mouse vertebrae.
Furthermore, increasing loading frequency led to a linear
translation of the derived curves towards higher RmV values, with
formation events starting from lower mechanical signal threshold
values (Figure 3). Quantitatively, the parameters derived from the
fitted curves showed a significant increase in the FSL and decreased
RT and RmT values with increasing loading frequency for both the
weekly and the 0–4 weeks analysis (Table 3; Supplementary Table S1).
Conversely, the RSL values decreased significantly for increasing
loading frequencies (Supplementary Table S1), especially for weeks
3–4. Reinforcing the effects of different loading frequencies on bone
adaptation, statistically significant differences were observed between
estimated parameters between groups and time-points
(Supplementary Figures S3–S6).

The RmV curves also allowed characterizing time-lapsed bone
adaptation for each group, where the range of RmV values decreased
weekly (Figure 3) and converged towards comparable values between
groups. Overall, this result indicated that the magnitude of the
mechanical signal in weeks 3 and 4 no longer induced the same
strong (re)modeling responses observed in the first 2 weeks. FSL
values followed a similar pattern for each group over the 4 weeks
(Supplementary Table S1). In the first week, the RmV curves
highlighted the acute response to supraphysiological loading since
most loaded groups did not reach a plateau at their FSL value, which
only occurred in subsequent time-points. This progression was visible
in the raw net response curves and the fitted mathematical functions
(Figure 3). Concurrently, RVM and FVM values (Supplementary
Table S1) increased significantly over time such that, at weeks 0–1,
only regions of either high or low effective strain could elicit the
strongest response associated with the estimated formation and
resorption saturation levels, respectively. Over time, as the bone

TABLE 2 Correct classification rate (CCR) for all groups, mechanical signal descriptors, and material properties analyzed for weeks 0–4. Data presented as
“median (IQR).”

Material properties Group Mechanical signal p-value

SED Effective strain ∇SED

Homogeneous Sham 0.378 (0.374, 0.391) 0.400 (0.392, 0.404) 0.421 (0.413, 0.440) *a, **b, ****c

Static 0.389 (0.375, 0.395) 0.405 (0.403, 0.410) 0.434 (0.427, 0.448) *b, ***c

2 Hz 0.402 (0.387, 0.404) 0.411 (0.407, 0.417) 0.450 (0.430, 0.451) *b, ***c

5 Hz 0.396 (0.387, 0.397) 0.404 (0.399, 0.422) 0.446 (0.439, 0.454) *a, *b, ***c

10 Hz 0.417 (0.382, 0.443) 0.418 (0.395, 0.428) 0.461 (0.431, 0.489) ns

Heterogeneous Sham 0.381 (0.373, 0.387) 0.423 (0.410, 0.432) 0.371 (0.366, 0.374) *b, **c

Static 0.386 (0.379, 0.392) 0.423 (0.416, 0.434) 0.377 (0.364, 0.381) *b, **c

2 Hz 0.387 (0.387, 0.397) 0.430 (0.399, 0.434) 0.382 (0.375, 0.391) *b, **c

5 Hz 0.394 (0.387, 0.398) 0.420 (0.412, 0.431) 0.380 (0.372, 0.391) ns

10 Hz 0.397 (0.387, 0.435) 0.427 (0.414, 0.447) 0.395 (0.365, 0.408) ns

Statistical significance legend: a–“SED–Effective strain,” b–“Effective strain–∇SED,” c–“SED–∇SED”; ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Statistical significance

was determined with Conover’s test corrected for multiple comparisons with a step-down method using Bonferroni-Holm adjustments.
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structure adapted to supraphysiological loading, the extent of regions
of either high or low effective strain decreased, also visible in the
decrease in the range ofmechanical signal values (except for the sham-
loaded group), and FSL were reached for lower mechanical signal
values (Figure 3; Supplementary Table S1; Supplementary Figures
S3–S6). The RmV curves showed that even groups loaded with higher
frequencies (5 and 10 Hz) evolved from a state of predominant
formation in the first 2 weeks towards physiological (re)modeling
conditions, where resorption was tightly regulated within an interval
of low mechanical signals and in agreement with the conditional
probability curves shown previously (Figure 2). These observations
were also corroborated by increased Pearson correlation coefficients
between (re)modeling velocity curves of 5 Hz and 10 Hz loaded
groups and the sham-loaded group. Specifically, these increased
from 0.828 and 0.822 (p < 0.0001) for weeks 0–1 to 0.908 and
0.883 (p < 0.0001) in weeks 3–4, for the 5 and 10 Hz groups,
respectively, supporting comparable bone (re)modeling responses
between these groups except for their mechanosensitivity, as seen
in the differences between FT and RT values. Comparably, the RmV
curves between loaded groups also evolved towards a more uniform
bone (re)modeling response based on the increase in the Pearson
correlation coefficients between the 2 Hz and 10 Hz groups and the
5 Hz and 10 Hz, from 0.872 and 0.874 to 0.899 and 0.925, respectively.

Regarding the effects of static and dynamic loads, we observed
that static loading still induced an anabolic response in the first
week, characterized by a higher FSL than the sham-loaded group
(Figure 3). However, in weeks 1–2 and 2–3, the static group already
matched the FSL values of the sham-loaded group suggesting a
return to a physiological (re)modeling condition, and eventually
reached a lower FSL in weeks 3–4. RT and FT were significantly
higher in the static group than in the sham-loaded group across all
weeks, indicating that this loading condition still produced high
strains in the structure. Likewise, RmV curves also reflected net bone
volume changes by integrating them with respect to time and the
mechanical signal. While the sham and static groups showed a
negative volume change over 4 weeks, cyclically loaded groups
showed increasing net positive changes with increasing loading
frequency for the same interval.

Comparing the piecewise linear and hyperbola functions, the
RMSE of the fitted curves indicated that these could be determined
reliably and accurately, with an average RMSE of 0.357 and
0.314 µm/day for the former and latter, respectively, over the 4-
week interval (Table 3) and yielding even lower RMSE values for the
weekly analysis (Supplementary Table S1), partially given the lower
magnitude of (re)modeling velocities observed. Additionally, lower
RMSE values coupled with a wider range of (re)modeling velocities

FIGURE 3
Estimation of the mechanostat (re)modeling velocity (RmV) curve from time-lapsed in vivomicro-CT imaging data, illustrated with the average raw
net response (top row) per group, the fitted piecewise linear functions (middle row), as described in the mechanostat theory and continuous hyperbola
functions (bottom row). Data points are filtered such that at least three mice are averaged for each mechanical signal value. Mechanical signal values
obtained from micro-FE analysis using homogeneous material properties.
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obtained with the fitting of the hyperbola function suggested more
accurate curve fits than with the piecewise linear function, which is
especially crucial for the quantification of (re)modeling thresholds in
the region where the (re)modeling velocity is zero (Figure 4A;
Supplementary Table S1).

Finally, our analysis also investigated the trend followed by the
mechanostat parameters derived from the fitted (re)modeling
velocity curves with loading frequency. A logarithmic function
was suitable for several parameters estimated from the piecewise
linear and hyperbolic fits (Figure 4B; Supplementary Table S2). For
the piecewise linear function, FSL was accurately modeled by a
logarithmic function across all time-points (Supplementary Table
S2; Figure 4B for the interval 1–2), especially from week 1 onwards
and for the analysis over the 4-week observational period (weeks
0–4). FT values also followed the same trend for weeks 0–1 and 1–2,

while RT showed the same behavior for all weekly time-points
between weeks 1 and 4 (Supplementary Table S2). Similarly, for the
hyperbola function, FSL was also accurately modeled by a
logarithmic function across all weekly time-points and between
weeks 0–4 (Supplementary Table S2; Figure 4B for the interval
1–2). Besides, RmT followed a logarithmic relationship until week 2,
analogous to the FT estimated with the piecewise linear function.

Discussion

The present study evaluated mechanoregulation in trabecular
bone adaptation and quantitatively characterized the effects of
loading frequencies on bone adaptation using a novel method to
estimate (re)modeling velocity curves and their mechanostat

TABLE 3 Parameters of the mathematical functions fitted to the estimated mechanostat group average (re)modeling velocity curves for the interval weeks 0–4.
Data presented as “parameter (IQR),” where the IQR was estimated using the balanced bootstrapping approach described in the methods (see section
“Mechanostat (re)modeling velocity curve and parameter derivation”) to provide an estimate for the variability of each parameter. Root mean squared error
(RMSE) was used to characterize the quality of the fit. The row “Effective strain range” indicates the range of mechanical signal values from which the fit of the
mathematical functions was derived. Mechanical signal values obtained from micro-FE analysis using homogeneous material properties. Parameter legend (see
Materials andMethods and Table 1 for an extended description): Resorption saturation level (RSL), Resorption velocity modulus (RVM), Resorption threshold (RT),
Formation threshold (FT), Formation velocity modulus (FVM), Formation saturation level (FSL), (Re)modeling threshold (RmT), (Re)modeling velocity modulus
(RmVM).

Function Parameter Unit Group p-value

Sham Static 2 Hz 5 Hz 10 Hz

Piecewise
linear

RSL µm/day −4.305
(−4.928, −3.439)

−3.062
(−3.602, −3.028)

−1.729
(−2.394, −1.578)

−2.570
(−3.040, −2.003)

−4.112
(−5.029,
−3.239)

****a, b, c, d, e, f,
g, h, i, j

RVM (x10−3) (µm/
day)/με

29.748
(19.169, 39.118)

5.737
(5.546, 8.235)

8.802
(8.520, 12.628)

16.245
(15.509, 20.288)

45.003
(44.090,
78.179)

****a, b, c, d, e, f,
g, h, i, j

RT με 145 (125, 184) 544 (430, 565) 246 (202, 265) 187 (160, 197) 101 (74, 102) ****a, b, c, d, e, f,
g, h, i, j

FT με 440 (400, 470) 1511 (840, 1661) 270 (230, 300) 190 (190, 240) 110 (100, 170) ****a, b, c, d, e, f,
g, h, i, j

FVM (x10−3) (µm/
day)/με

1.676
(1.114, 1.912)

1.919
(0.584, 2.895)

2.435
(1.747, 2.286)

2.330
(2.147, 3.923)

2.481
(2.560, 3.235)

****a, b, c, d, e, f,
g, h, i; ns: j

FSL µm/day 0.180
(0.156, 0.304)

0.891
(0.450, 0.931)

1.274
(1.266, 1.380)

1.640
(1.347, 1.737)

1.954
(1.719, 1.964)

****a, b, c, d, e, f,
g, h, i, j

RMSE µm/day 0.381
(0.346, 0.474)

0.382
(0.364, 0.424)

0.227
(0.183, 0.222)

0.407
(0.229, 0.289)

0.388
(0.301, 0.366)

Hyperbola RSL µm/day −5.776 (−6.540,
−4.761)

−4.115 (−5.301,
−4.423)

−2.390 (−2.822,
−1.917)

−3.208 (−3.676,
1.154)

−4.180
(−4.549, 1.457)

****a, b, c, d, e, f,
g, h, j; ***i

RmVM (µm/
day) x µε

236 (216, 276) 1037 (626, 921) 843 (791, 1212) 769 (646, 1.745e5) 507 (538,
2.037e5)

****a, b, c, d, e, f,
g, h, i, j

RmT με 482 (390, 520) 899 (778, 1212) 268 (247, 315) 228 (−5.49e6, 255) 158
(−1.56e7, 148)

****a, b, c, d, e, f,
g, h, i, j

FSL µm/day 0.274
(0.192, 0.360)

0.522
(0.186, 0.530)

1.468
(1.421, 1.580)

1.836
(1.390, 1.711)

2.051
(1.375, 1.708)

****a, b, c, d, e, f,
g, h, i; *j

RMSE µm/day 0.259
(0.192, 0.308)

0.347
(0.261, 0.345)

0.226
(0.171, 0.215)

0.372
(0.209, 0.763)

0.350
(0.383, 0.962)

Effective strain range με 10–1280 10–2240 10–2060 10–2520 10–2650

Statistical significance legend: a–“Sham–Static”, b–“Sham–2 Hz”, c–“Sham–5 Hz”, d–“Sham–10 Hz”, e–“Static–2 Hz”, f–“Static–5 Hz”, g–“Static–10 Hz”, h–“2 Hz–5 Hz”, i–“2 Hz–10 Hz”,

j–“5 Hz–10 Hz”; ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Statistical significance was determined with Conover’s test corrected for multiple comparisons with a step-

down method using Bonferroni-Holm adjustments.
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parameters from time-lapsed in vivo mouse vertebrae micro-CT
data. Crucially, we showed that such RmV curves could be
accurately determined and that several parameters obtained from
them followed a logarithmic relationship with loading frequency,
further supporting the trend observed previously for the change in
bone volume fraction over the 4-week observation period (Scheuren
et al., 2020).

First, we consolidated key factors that yield the best association
between mechanical stimuli and local bone (re)modeling using
existing methods for mechanoregulation analysis. Our results
revealed that micro-FE analysis with homogeneous material
properties achieved the best performance in recovering
mechanoregulation information. These homogeneous material
properties were determined from in vivo experiments using strain
gauges attached to the cortical walls of the murine vertebrae, such
that the strains computed with micro-FE would correlate best with
the in vivo measurements (Webster et al., 2008). Conversely, the
mathematical relationship relating bone mineral density and
Young’s modulus for the micro-FE analysis with heterogeneous
material properties was derived from nanoindentation experiments
on the mandibular condyles of pigs (Mulder et al., 2007). Given the
differences in animal models and anatomical sites, it is plausible that
this relationship could influence the accuracy of the Young’s
modulus conversion and, ultimately, the strain distribution
obtained from micro-FE with heterogeneous material properties.
Indeed, we observed that this relationship led to a higher average
Young’s modulus value than the value used for homogeneous
material properties (Supplementary Material S1). In alignment
with our results, previous work on the murine tibia (Oliviero
et al., 2021) has shown that micro-FE analysis with homogeneous

material properties achieved the highest correlation between
experimental and estimated material properties, while micro-FE
with heterogeneous material properties of the lumbar vertebra
L6 did not improve the prediction of failure force in comparison
to homogeneous material properties (Harris et al., 2020). In any
case, other applications where more significant changes in bone
mineralization are expected, such as during fracture healing of
cortical bone in the mouse femur (Tourolle né Betts et al., 2020),
were more accurately modeled with heterogeneous material
properties. Still, in the context of load-induced trabecular bone
adaptation as explored in this work, the micro-CT images did not
show large dynamic ranges in bone mineralization and changes in
bone volume (Lambers et al., 2011; Oliviero et al., 2021), suggesting
that the use of homogeneous material properties in micro-FE
analysis is appropriate to model mechanically driven bone
adaptation.

From a mathematical modeling perspective, the mechanostat
theory (Frost, 1987) is an established paradigm to describe bone
adaptation in response to mechanical loading that has also been
successfully applied in preclinical in silico models (Levchuk et al.,
2014; Pereira et al., 2015; San Cheong et al., 2020a; San Cheong et al.,
2020b). The analysis proposed in this work enables a direct
estimation of such a relationship from time-lapsed in vivo micro-
CT data and can be applied in a sample-specific or group-wise
fashion and for an arbitrary time interval between the input images.
We also proposed a nomenclature of mechanostat parameters,
unifying the descriptions used in previous studies. For instance,
the change in bone material in response to mechanical loading was
originally named bone turnover and bone growth by Frost (1987) and
later adapted to growth velocity using a detailed mathematical

FIGURE 4
(A) Root mean squared errors (RMSE) associated with the piecewise linear (top row) and hyperbola (bottom row) fitted functions for the analysis of
weeks 1–2 are shown, highlighting that the hyperbola function consistently achieved lower errors than the piecewise linear function. (B) Logarithmic
relationships fitted to the bootstrapped distributions of mechanostat parameters estimated from the piecewise linear (top row) and hyperbola (bottom
row) functions fitted to the (re)modeling velocity curves for the weeks 1–2. Formation saturation levels (FSL), formation, and (re)modeling
thresholds (FT and RmT) were among the parameters that followed a logarithmic trend throughout the 4 weeks of the study. (C)Qualitative visualization
linking (re)modeling distance measurements with the mechanical environment determined from micro-FE analysis as SED.
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framework in silico (Levchuk et al., 2014; Goda et al., 2016; Louna
et al., 2019). In agreement with these studies and with potential
relevance for future in silico models, we chose to also focus our
analysis on velocity rather than change in bone mass, spatially
resolving the displacement of surface voxels between time-points.
In fact, recent advances in the context of in silico single-cell
mechanomics (Boaretti et al., 2023) have associated positive and
negative velocities with the activity of osteoblasts and osteoclasts,
respectively. Still, converting the output to other units of interest,
including a change in bone volume as originally proposed, is
equally possible. Furthermore, we opted for (re)modeling velocity
as it fits the context of bone adaptation where there can be negative
and positive growth (Hadjidakis and Androulakis, 2006). Conversely,
formation/resorption thresholds and saturation levels were
consistent with previous approaches (Levchuk et al., 2014; San
Cheong et al., 2020a). Regarding the change of RmV with
mechanical signal, it was appropriate to align this term with the
naming structure of the remaining parameters and provide an
intuitive, succinct description integrating a modulus terminology:
formation/resorption/(re)modeling velocity modulus. In this way,
we aimed to strengthen the association of these terms with the
mechanical signals, as modulus is inherently linked with other
mechanical terms that relate a change in a quantity with a change
in mechanical strain, such as Young’s modulus, describing the
relationship between stress and strain for a given material.

Focusing on the effects of mechanical loading, we observed
statistically different FT, RT, and RmT per group. These
observations align with the original predictions by Frost (1987),
who argued that disease states (leading to long periods of physical
inactivity) or increasedmechanical demands could increase or decrease
these parameters, respectively. In our approach, at the micrometer
scale, these thresholds reflect the transition between an interval of
lower strains where resorption is predominantly observed and an
interval of higher strains where formation is, on average,more frequent
and with higher magnitude. As cyclic loading groups with increasing
frequency showed more formation events, (re)modeling velocity
curves were shifted towards higher velocity values, yielding
progressively lower thresholds. Conversely, sham and static groups
showed a slight bone loss in the observation period, concordant with
higher thresholds. Focusing on mild-overload examples, Rubin and
Lanyon (1985) had already noted that the thresholds for bone
formation would vary depending on the loading characteristics.
Although Frost (1987) could only anticipate the existence of such
thresholds, technological advances have enabled identifying possible
biological agents that realize them at the cellular level. For instance, the
absence of Connexin 43 (Cx43) membrane protein in osteocytes
enhanced the responsiveness to mechanical force in mice (Bivi
et al., 2013). Similarly, the activation of the Wnt/β-catenin pathway
increased the sensitivity of osteoblasts and osteocytes to mechanical
loading (Gerbaix et al., 2015; Gerbaix et al., 2021). Conversely, high-
magnitude mechanical stress was observed to inhibit canonical Wnt
signaling-induced osteoblastic differentiation (Song et al., 2017). These
examples highlight adjustable responses to externalmechanical loading
events by cells implicated in bone (re)modeling events.

On a similar note, Skerry (2006) stated that different loading
conditions, such as those induced in vivo through varying loading
frequencies, produce deviations from the habitual strain stimuli of
the structure. Furthermore, he argued that different anatomical sites

have specific “customary strain stimulus (CSS)” values to which the
structure adapts. Our results align with these beliefs, where different
loading frequencies produced significantly different responses
(Scheuren et al., 2020), and the RmV curves evolved towards a
state where (re)modeling thresholds were very close, suggesting a
return to the habitual mechanostat rule and its local CSS value. For
this reason, it is understandable that FT and RmT were no longer
logarithmic dependent on loading frequency at week 4. Conversely,
RT conserved a logarithmic trend with loading frequency for all
weeks, which aligns with the tight regulation of resorption events
observed in conditional probability and RmV curves. Crucially, an
accurate derivation of the mechanostat curve required calibrating
the volume estimated for each (re)modeling cluster (Supplementary
Figure S3A). For instance, the volume of smaller clusters with a high
surface-to-volume ratio was expectedly overestimated by the
distance transform operation. This artifact is particularly
noticeable for formation clusters where the identification of the
neighboring surface from which they emerged required a
morphological dilation operation, leading to an increase in the
number of surface voxels related to this event. While previous
studies (Schulte et al., 2013; Razi et al., 2015; Scheuren et al.,
2020) assessing bone mechanoregulation focused exclusively on
conditional probabilities, which only consider the frequency of
mechanical signal values per (re)modeling event, this volume
correction becomes of significant importance in our proposed
method, where a new axis focusing on the (re)modeling velocity
at each voxel is considered. Ultimately, this observation sustains two
key aspects. First, in agreement with previous studies (Lanyon and
Rubin, 1984; Turner et al., 1995; Robling et al., 2001) that showed
that dynamic but not static loads induce an adaptive response, also
our estimated RmV curves conserve this hallmark previously
observed in the dataset analyzed here (Scheuren et al., 2020).
Second, an accurate volume estimation enables the identification
of critical setpoints, such as formation and resorption thresholds,
where the RmV curve approaches zero. Notably, the interval defined
by these thresholds is typically described as a lazy zone, i.e., a range
of strains where bone formation and resorption balance each other,
analogous to the adapted window proposed by Frost (1987).

In this regard, and in agreement with previous findings in
preclinical mouse (Sugiyama et al., 2012; Schulte et al., 2013; Razi
et al., 2015; San Cheong et al., 2020a) and clinical (Christen et al.,
2014) data, our results provided no evidence of the existence of a lazy
zone. This was further supported by the lower RMSE values
associated with the fitted hyperbola mathematical functions
which, by definition, cannot accommodate such an interval.
Regardless, the estimated (re)modeling velocity curves agree with
previous publications (Schulte et al., 2013; Razi et al., 2015), where
resorption seems to be more tightly regulated than formation, based
on the width of the interval of mechanical signal values allocated to
each (re)modeling event, consistent for all groups and loading
frequencies. Furthermore, the estimated (re)modeling rates,
ranging between 0 and 3 µm/day, agree with the corresponding
mineral apposition and resorption rates previously reported for this
dataset (Scheuren et al., 2020) at around 2 µm/day, averaged across
all (re)modeling clusters identified. Besides, the decreasing RSL
values for increasing loading frequencies observed
(Supplementary Table S1), especially for weeks 3–4, also align
with previous work on the mouse tibia that showed an increase
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in the depth of resorption cavities with loading (Birkhold et al.,
2017). Given the correction in the curve estimation that ensures
accurate volumes, established dynamic morphometry indices
characterizing bone formation and resorption rates in a single
value can now be expanded into a range of mechanical signals.

On a different note, previous studies (Rubin and Lanyon, 1985;
Turner et al., 1994) identified a strain threshold of around 1000 µε
from which formation events were observed. This estimate seemingly
contradicts the conditional probabilities and (re)modeling velocity
curves presented (Figure 2A), where formation had a non-zero
probability of being observed over the entire range of mechanical
signals and positive velocity values started from 200 µε, respectively.
However, those studies focused primarily on the effects of the
supraphysiological loading applied to the animal models, offsetting
effects resulting from physiological activity (e.g., by subtracting
reference measurements from the control leg to the loaded leg and
defining relative measures). Conversely, our analysis considered all
(re)modeling events observed, that is, from both modeling and
remodeling processes occurring concurrently. In agreement with
previous studies (Burr, 2002) describing other non-deterministic
processes driving formation and resorption events, it is reasonable
that these can occur in locations that a purely mechanically driven
system would not favor (Figure 4C). Indeed, Lanyon et al. (1982) had
already observed bone formation in a sheep model in regions with
“functional strains lower than normal values”. Furthermore,
previously reported values refer to peak strains determined on the
external cortical wall of each bone, while our analysis considers local
effective strain inside the trabecular compartment, making a direct
comparison of magnitudes challenging. Still, notably, Webster et al.
(2008) originally reported peak strainsmeasured with strain gauges on
the external cortical wall of caudal vertebrae of the samemouse model
considered in our work within the same range as those obtained in
previous studies.

Nonetheless, there are some limitations to consider in this study.
First, although the estimation of RmV curves can be determined in a
sample-specific fashion, we observed that the analysis of group average
curves was more reliable. These naturally contained more data points
which were also filtered such that at least three samples were
considered per mechanical signal value. Eventually, these factors
were vital to producing relatively smooth RmV curves and enabling
consistent and plausible piecewise linear, and hyperbola fits. In any
case, as previous work has focused on group average results both in
vivo (Schulte et al., 2013; Razi et al., 2015; San Cheong et al., 2020a) and
in silico (Levchuk et al., 2014; San Cheong et al., 2020a; Boaretti et al.,
2023), our analysis still aligns with such standard practices.
Second, contrasting with conditional probability-based approaches,
(re)modeling events are no longer characterized separately since our
approach yields a single curve representing the average RmV
describing the net effect of (re)modeling events for a given
mechanical signal. Effectively, this feature prevents our method
from capturing more subtle trends observed in the conditional
probability curves (e.g., the slight increase in the conditional
probability of resorption for higher mechanical signal values).
Nonetheless, our goal was to derive a relationship in alignment
with the mechanostat theory which, by definition, also does not
describe (re)modeling events independently. Although conditional
probability curves showed that these events could occur across the
entire range of mechanical signals and highlight the interrelated effect

of mechanical and biological cues governing targeted and non-targeted
bone (re)modeling (Burr, 2002; Parfitt, 2002; Schulte et al., 2013), we
consider our approach complementary to this probability-based
method. Still, as different mechanical signal quantities performed
differently for formation and resorption events (Figure 2A), future
approaches can attempt to combine both methods and derive separate
RmV curves for formation and resorption using the mechanical signal
that best associates with each event.

Likewise, our approach was not designed to investigate the
spatial and temporal links between surface (re)modeling events
(i.e., analysis of the spatial/temporal distribution of formation,
quiescent and resorption regions), analogous to previously
proposed methods (Birkhold et al., 2015). Indeed, in the mouse
bone and with the resolution of the micro-CT used here, one cannot
distinguish between pure remodeling and modeling events, which
we collectively refer to as (re)modeling (Huiskes et al., 2000; Schulte
et al., 2013). Therefore, it is expected that physiological (re)modeling
also took place during the 4-week observation period. One can argue
that such events are continuously happening and would not be as
mechanically driven, yielding flatter (re)modeling velocity curves.
Accordingly, our observations of the sham group, where
(re)modeling events should be most noticeable, feature lower
FSL, FVM, and RmVM values while conserving a tighter
regulation of resorption events. With potential applications for
clinical data focusing on disease states, this observation would be
particularly impactful as current in vivo clinical imaging modalities
are still affected by noise and motion artifacts, such that reliably
identifying (re)modeling events is challenging (Christen et al., 2018).
Eventually, longer intervals between scans would be required to
produce time-lapsed data with sufficient changes that could yield
RmV curves depicting a more explicit relationship with mechanical
signals computed from micro-FE.

It should be noted that the current micro-CT image resolution also
challenges an accurate identification of sub-voxel phenomena. Indeed,
such information would help to elucidate the assumption considered in
our (re)modeling velocity estimation that the (re)modeling distance
measured for each voxel surrounding a (re)modeling cluster can be
linearly scaled to match the calculated volume of the cluster. For the
same reason, this factor also implies that the proposed method cannot
recover single-cell behavior. Nonetheless, loading frequency was
positively correlated with the number of osteocytes recruited in
response to an increase in applied strain (Lewis et al., 2017), with a
particular focus on bone formation in a murine metatarsal model.
Additionally, in a rat tibia model, increasing loading frequency was
associated with a decrease in the estimated peak microstrain triggering
periosteal bone formation and an increase in the rate of bone formation
per microstrain (Hsieh and Turner, 2001). Combined, these results
would emerge as an increase in FVM and a decrease in FT values with
increasing frequency, which is what our RmV curves show until week 3.
Furthermore, the decreased anabolic response observed in the RmV
curves for high strains may also be linked to a decrease in
mechanosensitivity resulting from increased cell stiffness, as
previously reported for such high strain values (Nawaz et al., 2012).
Therefore, the trends estimated with the mechanostat (re)modeling
velocity curves could be leveraged by in silico simulations that also rely
on time-lapsed in vivo micro-CT data as input, such as novel agent-
based models that simulate individual cell populations in 3D (Tourolle,
2019; Boaretti et al., 2023) and, with that, improve the accuracy of their
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predictions with respect to in vivo data. For this reason, we chose to
express RmV curves using effective strain, as this signal has already been
implemented successfully in such in silico models. Still, our approach
is compatible with any voxel-based mechanical signal
descriptor, including ∇SED which showed the best association with
(re)modeling events (Figure 2) or other signals implemented in silico
models of trabecular bone remodeling. Furthermore, our results
demonstrating that several parameters estimated from the
mechanostat also follow a logarithmic relationship with loading
frequency can help to calibrate such models and investigate loading
frequency-dependent responses in silico. With the advent of more
powerful imaging methods, cell populations may soon be efficiently
measured from in vivo samples and compared with the results of these
in silico models. Additionally, our approach can support preclinical in
vivo studies focusing on bone mechanoregulation. Previous work
exploring the effects of aging and degenerative conditions described
changes in conditional probabilities between young and aged groups
(Razi et al., 2015), while studies focusing on pharmaceutical
interventions characterized changes in global morphometry indices
and micro-FE properties (San Cheong et al., 2020b), and also reported
synergistic effects between specific treatments and mechanical loading
in a mouse model of osteoporosis (Levchuk et al., 2014). Therefore, as
Frost (1987) had already anticipated the effects of medications on the
thresholds bounding the adapted window, our approach provides a
quantitative framework to support this analysis. Interventions leading to
changes in (re)modeling thresholds (FT, RT, RmT) could suggest
changes in the sensitivity to loading while varying (re)modeling
moduli (FVM, RVM, RmVM) would relate to changes in the
magnitude of the response. Ultimately, it could be possible to
identify which intervention would help to counter such disruptions
in bone mechanoregulation that follow degenerative conditions.

In conclusion, we have presented a novel method to estimate
(re)modeling velocity curves and their parameters from time-lapsed
in vivo micro-CT data. Furthermore, we applied this approach to
evaluate the effects of different loading frequencies on time-lapsed
changes in bone microarchitecture by quantifying critical
parameters describing bone mechanoregulation, such as
formation saturation levels and (re)modeling thresholds.
Crucially, we reinforced previous results that revealed a
logarithmic relationship of bone volume change with loading
frequency by showing that mechanostat parameters estimated
from RmV curves, such as (re)modeling thresholds and
formation and resorption saturation levels, are also
logarithmically dependent on loading frequency. Altogether, we
expect these results to support future in silico and in vivo studies
comparing the effects of mechanical loading and pharmaceutical
treatment interventions on bone mechanoregulation and bone
adaptation and, ultimately, identify more effective treatment
plans that can be translated into clinical settings.
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