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Dimensionality reduction techniques have proven useful in simplifying complex
hand kinematics. They may allow for a low-dimensional kinematic or myoelectric
interface to be used to control a high-dimensional hand. Controlling a high-
dimensional hand, however, is difficult to learn since the relationship between the
low-dimensional controls and the high-dimensional system can be hard to
perceive. In this manuscript, we explore how training practices that make this
relationship more explicit can aid learning. We outline three studies that explore
different factors which affect learning of an autoencoder-based controller, in
which a user is able to operate a high-dimensional virtual hand via a low-
dimensional control space. We compare computer mouse and myoelectric
control as one factor contributing to learning difficulty. We also compare
training paradigms in which the dimensionality of the training task matched or
did notmatch the true dimensionality of the low-dimensional controller (both 2D).
The training paradigms were a) a full-dimensional task, in which the user was
unaware of the underlying controller dimensionality, b) an implicit 2D training,
which allowed the user to practice on a simple 2D reaching task before attempting
the full-dimensional one, without establishing an explicit connection between the
two, and c) an explicit 2D training, during which the user was able to observe the
relationship between their 2D movements and the higher-dimensional hand. We
found that operating a myoelectric interface did not pose a big challenge to
learning the low-dimensional controller and was not the main reason for the poor
performance. Implicit 2D training was found to be as good, but not better, as
training directly on the high-dimensional hand. What truly aided the user’s ability
to learn the controller was the 2D training that established an explicit connection
between the low-dimensional control space and the high-dimensional hand
movements.
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1 Introduction

With 27 degrees of freedom (DOFs) operated by 34 muscles,
human hands are complex in both their structure and control. As a
result, replacing the hand in cases of congenital or acquired
amputation can be a challenging task, especially when the
number of controlled joints is high (e.g., in very dexterous
prostheses) and the number of available control signals (e.g.,
muscles) is low (Iqbal and Subramaniam, 2018). Many research
groups have attempted to account for such dimensionality mismatch
with existing dimensionality-reduction (DR) methods.

The most commonly used DR technique in the field of
prosthetic control has been principal component analysis
(PCA), which creates a low-dimensional (latent) representation
of the data by finding the directions in the input space that explain
the most variance in the data (Pearson, 1901). In the past, several
groups have explored the efficacy of PCA in reducing
dimensionality of complex hand kinematics during object
grasping and manipulation (Santello et al., 1998; Todorov and
Ghahramani, 2004; Ingram et al., 2008; Rombokas et al., 2012).
These studies have inspired several research teams to develop a
PCA-based controller for operating a prosthetic hand with
multiple DOFs via a 2D (latent) space (Magenes et al., 2008;
Ciocarlie and Allen, 2009; Matrone et al., 2010; Matrone et al.,
2012; Segil, 2013; Segil and Controzzi, 2014; Segil, 2015).

However, PCA is purely linear in its nature, consequently only
accounting for linear relationship in the input data. As a result, the
nonlinear relationships that exist in hand kinematics data are
disregarded. To account for these relationships, there are a
variety of nonlinear DR methods. In our prior work, we have
explored the use of a nonlinear autoencoder (AE) to reduce the
dimensionality of hand kinematics during American Sign Language

(ASL) gesturing, object grasping, and Activities of Daily Living
(ADLs) (Portnova-Fahreeva et al., 2020). There, we found that
two latent AE dimensions can reconstruct over 90% of the input
hand kinematics data—significantly more than with PCA.

With such superior reconstruction performance, nonlinear AEs
may serve as a platform for more accurate and dexterous lower-
dimensional control of prosthetic hands. As a result of this work, our
team has developed a myoelectric interface, in which users were able
to control a virtual hand with 17 DOFs with only four
electromyographic (EMG) signals (Portnova-Fahreeva et al.,
2023 [manuscript in review]). Our preliminary work has shown
the potential of AEs to be used to alleviate the issue of dimensionality
mismatch in the control of dexterous prosthetic hands.

But is the dimensionality mismatch between device DOFs and
control signals the only issue when it comes to myoelectric
prosthetic control? Or is the problem at hand (figuratively and
actually) more complex?

We attempted to answer these questions with three studies in
which we trained the participants to perform hand gestures on a
virtual hand via the AE-based controller (Figure 1). The studies
assessed the following things:

a) to what degree is the difficulty of operating the AE-based
controller due to the complexity of operating myoelectric
interfaces,

b) whether an initial training on a 2D plane, which matches the
underlying dimensionality of the AE-based controller, without
explicitly establishing the connection between 2D reaches and
hand kinematics enhances learning, and

c) whether an initial training on a 2D plane, in which the user is
explicitly told about the connection between the 2D reaches and
full hand gestures, enhances learning.

FIGURE 1
Experimental setup. (A) Study I used amyoelectric interface and split the participants into two groups based on training paradigms: 17D and 2Dimplicit.
(B) Study II employed amouse computer interface and compared two groups: 17D and 2Dimplicit. (C) Study III incorporated explicit target-gesture training
(2Dexplicit) and a mouse-based interface.
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Study I employed a myoelectric interface in which the
participants controlled a virtual hand via the AE-based controller
with by flexing/extending and abducting/adducting their wrist
(Figure 1A). It explored how additional implicit training in the
form of 2D target reaching affected the performance of controlling
the 17D virtual hand.

Study II employed a computer mouse interface to control the
virtual hand and assessed how much of the difficulty of learning the
controller was from the challenge of operating an EMG-based
interface (Figure 1B). Like Study I, it also assessed the potential
of implicit 2D training to improve the performance of operating a
17D virtual hand.

Lastly, Study III explored how much of the difficulty in the
learning arose from the user’s inability to establish the connection
between the underlying 2D control and the actual 17D virtual hand
(Figure 1C). Like Study II, Study III employed a mouse-based
interface, but included a modified target-reaching session in 2D
to establish an explicit connection for the participants between the
dimensionalities of the underlying control and the presented task.

2 Methods

2.1 AE-based controller

Using the findings of our original study, in which a nonlinear AE
was determined to be superior to PCA in compressing and
reconstructing complex hand kinematics, we built an AE-based

myoelectric controller (Portnova-Fahreeva et al.,
2023 [manuscript in review]). A variational AE model was used
to first encode, or compress, high-dimensional (17D) kinematic

FIGURE 2
(A) Eight American Sign Language (ASL) gestures that the participants were trained to reproduce during the studies. (B) 17 degrees of a freedom
(DOFs) of the virtual hand. (C) Surface electrode placement on the participant’s forearm for the myoelectric interface.

FIGURE 3
Latent space derived by applying a variational autoencoder to
hand kinematics data of an individual performing American Sign
Language (ASL) gestures.
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signals recorded during ASL gestures (Figure 2A) into a low-
dimensional (2D) space, and then to decode, or reconstruct, back
into the original 17D, which corresponded to the joint angles of a
virtual hand (Figure 2B).

This AE-based controller practically allowed the user to recreate
ASL gestures in a high-dimensional hand simply by navigating along
a low-dimensional 2D plane (Figure 3). Each of the points on the
control space can be reconstructed into a 17D kinematic signal in a
virtual hand.

2.1.1 Virtual hand
The 17 DOFs of the virtual hand that were controlled were

flexions/extensions of the three joints (metacarpal, proximal
interphalangeal, distal interphalangeal) of the four fingers (pinky,
ring, middle, and index) and flexion/extension of two joints of the
thumb (metacarpal and interphalangeal) as well as the 3D rotation
of its carpometacarpal joint.

Due to the nature of the AE-based control plane, not all
recreated hand kinematics were within the natural ranges of
motion of a biological hand. To prevent the hand from
generating biologically unnatural gestures during the control, we
limited the possible ranges of motion of the virtual hand joints to the
ranges of motions of an actual hand. If the reconstruction output
yielded a number outside of the natural range of motion of a hand
joint, that joint did not change its angle in the virtual hand. For the
purposes of the studies, the hand was defined to be in a neutral
gesture when all of its fingers were fully extended (i.e., open hand).

2.1.2 Myoelectric interface
With the myoelectric AE-based controller, the user was able to

operate a 17-DOF virtual hand using only four muscle signals
(Figure 4A). Here is a general overview of the controller steps:

Step 1: four muscle signals were acquired from the user’s
forearm (placement shown in Figure 2C), using surface EMG
electrodes (Delsys Inc., MA, United States). Electrode 1 was
placed approximately 1/3 of the distance between the lateral
epicondyle of the elbow and the ulnar styloid process on the
anterior side of the forearm. Electrode 2 was placed on the
posterior side of the forearm, approximately 1/3 of the distance
between the lateral epicondyle of the elbow and the ulnar styloid
process, slightly more towards the ulnar side. Electrode 3 was placed
on the ulnar side of the forearm, approximately 3 cm to the right of
Electrode 1. Electrode 4 was placed on the anterior side of the
forearm, approximately ¼ of the way between the radial styloid
process and the cubital fossa. Signals from electrodes 1, 2, 3, and
4 were mainly associated with muscle activations during wrist
extension, flexion, abduction, and adduction, respectively. A
series of standard pre-processing techniques were applied to the
raw recordings to extract the EMG envelope (EMG Acquisition).

To calibrate the acquired EMG signals, we used EMG recorded
during 30s of rest (EMGrest) as well as structured movements
(EMGstruct). The structured movements consisted of seven
repetitions of each of the four wrist movements (flexion, extension,
abduction, adduction) at a comfortable for the participant level. For
each signal i, the EMG envelope was calibrated using the maximum

FIGURE 4
Setup of (A) myoelectric interface and (B) mouse interface. For the myoelectric interface, wrist movements generated EMG signals, which, in turn,
were combined using a Vector Summation Algorithm into a 2D vector (XEMG ,YEMG). For the mouse interface, the 2D vector (Xmouse; Ymouse) consisted of
the planar position of the mouse cursor. The vector (either EMG ormouse), in turn, controlled the position of a 2D cursor on the latent space. Every point
on the latent space (Xkinem; Ykinem) reconstructed into full 17D hand kinematics via the decoder part of the autoencoder network.
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value recorded during rest;max(EMGrest,i), and during the structured
movements; max(EMGstruct,i) (Pistohl et al., 2013) (Eq. 1). A scaling
value, scalei, was also applied to ensure the participants had full
coverage of the workspace without over-contracting their muscles.

EMGcalib,i � scalei
EMGi −max EMGrest,i( )

max EMGstruct,i( ) −max EMGrest,i( )
(1)

Step 2: four calibrated EMG signals were compressed into a
2D control signal such that wrist extension/flexion controlled
the vertical position (yEMG) and wrist abduction/adduction
controlled the horizontal position (xEMG) (Vector Summation
Algorithm). An offset was also added to both the x; y directions
in cases when the calibrated rest position did not appear to
match the center point of the workspace (Eqs 2, 3).

xEMG � EMGcalib,abduction − EMGcalib,adduction( ) − xoffset (2)
yEMG � EMGcalib,extension − EMGcalib,flexion( ) − yoffset (3)

Matching the resting EMG position with the center of the latent
space ensured that every trial started from the neutral gesture and
every movement was performed in the center-out reaching manner.
In the resting position, the corresponding virtual hand position was
with all five fingers completely open.

Step 3: the compressed 2D control signal was mapped to the 2D
control space—xkinem, ykinem, which corresponded to the cursor
position on a 2D plane (Eqs 4, 5). This was done in order to
account for the difference in the screen and latent space dimensions
by scaling the cursor position using screen max (i.e., the length of the
control plane in the local coordinate frame on the screen), and
latent max (i.e., the length of the control plane in the latent space)
(EMG-to-Kinematics Map).

xkinem � xEMG*
latent max

screen max
(4)

ykinem � yEMG*
latent max

screen max
(5)

Step 4: the point on the control space was reconstructed into
17D kinematics of the virtual hand (Kinematic Decoding).

More on each of these components can be found in our other
work (Portnova-Fahreeva et al., 2023 [manuscript in review]).

Relaxing the forearmmuscles returned the control position back
to the center of the 2D plane, which, in turn, corresponded to the
neutral gesture in the virtual hand.

2.1.3 Computer mouse interface
In the computer mouse interface, the user was able to

operate the virtual hand by clicking and holding the left
button and dragging their computer mouse (Figure 4B).
Dragging the mouse across the screen, in turn, controlled the
position of the controller. Here are the steps of the mouse
interface:
Step 1movement from the computer mouse on a 2D plane was
obtained in the following format—xmouse, ymouse (Mouse
Movement).

Step 2. the 2D mouse cursor position was directly mapped to the
point on the control space –xkinem, ykinem (Mouse-to-
Kinematics Map).

Step 3. the point on the control space was reconstructed into a 17D
gesture of the virtual hand (Kinematic Decoding).

White Gaussian noise (μ � 0, σ � 0.02) was added to the
position of the controller to recreate the additive component
of the neuromuscular noise of the myoelectric interface. An
additional low-pass filter of 1Hz was applied to the cursor
position to recreate the pre-processing delay experienced in
the myoelectric interface.

Releasing the mouse button returned the control position back
to the center of the 2D plane, which, in turn, corresponded to the
neutral gesture in the virtual hand.

Throughout the studies, in which the mouse interface was
employed, the participants did not have any visual feedback of
the location of their mouse cursor. This was done in order to
closely mimic the conditions of the myoelectric interface.

2.2 Overall protocol

For the three studies, right-handed unimpaired participants
were recruited to learn to control a virtual hand on the screen
via the AE-based controller. All participants were naïve to the
controller. Participant recruitment and data collection conformed
with the University ofWashington’s Institution Review Board (IRB).
Informed written consent was obtained from each participant prior
to the experiment.

No physical constraints were imposed on the participants
throughout the experiment as they were free to move their right
arm while performing the experiment objectives.

During each study, the participants were seated in an upright
position in front of a computer screen, at approximately 1.5m
away at eye level. Over the span of 1 hour (for Study III) and
2 hours (for Studies I and II), they engaged in different training
and test sessions to learn to recreate gestures in a virtual 17D
hand via the myoelectric or mouse interface.

The gestures that they learned to recreate were eight ASL
gestures (Figure 2A). Each study was divided into Training and
Test phases.

2.3 Training phase

The training phase was divided into two sessions, referred to as
Train1 and Train2. The only difference between the learning groups
occurred during Train1 session of the studies.

2.3.1 17D task
During the 17D task, the participants were presented with only

two virtual hands (Figure 5A) and had no visual feedback about the
location of the controller on the 2D latent space. The hand on the left
was the hand the participants needed to match. The hand on the
right was the hand controlled either via a myoelectric or a mouse
interface.

Each trial always started from a neutral gesture. At the beginning
of a new trial, the matching hand would form a new gesture and the
participants had 60s to match and hold it with the controlled hand
within its acceptable range. The acceptable range in the 17D task was
determined by the 2D control space. That is, if the 2D cursor related
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to the current hand gesture was close enough to the 2D target
representing the gesture of the matching hand, then the controlled
hand was within the acceptable range. The acceptable range was
equivalent to 0.5 units from the center of the target on the latent
space (or 0.25″ on the screen). Once within the acceptable range,
both hands turned yellow.

The participants were required to maintain the gesture for 0.75s
for the trial to be counted as successful. Upon successful completion
of each trial, both hands turned green.

At the end of each trial, successful or not, the participants heard
a sound cue asking them to either relax their muscles (myoelectric
interface) or release the button (mouse interface), which, in turn,
returned the controlled hand back to the neutral gesture. Once the
participant was completely relaxed for 1.5s (myoelectric interface) or
released the button, a new matching gesture was presented, and a
sound cue was given to start the next trial.

2.3.2 2Dimplicit task
During the 2Dimplicit task, the participants engaged in a

center-out target-reaching task. They were presented with
visual feedback of the cursor that they controlled (either
via a myoelectric or a mouse interface) and different targets
that they needed to reach on a 2D plane (Figure 5B). The
targets and the cursor were represented with circles of the
same size (approximately 0.25″radius). Target locations were
placed at various distances from the center cursor, which
effectively were the locations of the eight ASL gestures on
the latent space.

Grey and white hands were placed over both the control
cursor and the target, respectively. Both hands showed the
reconstructed gestures related to the current position of the

cursor and the target on the latent space. The grey hand was
slightly smaller in size than the white one for ease of
differentiation once the two hands overlayed each other.

Each trial always started from a neutral gesture and the
controlled cursor in the center of the plane. The participants
were given 60s to reach the targets. If the cursor was within the
acceptable range from the target, both the hands and the target
turned yellow for visual feedback. The acceptable range was
equivalent to 0.5 units from the center of the target on the latent
space (or 0.25″ on the screen). Once within the acceptable range,
both hands and the target turned yellow.

The target was successfully reached if the cursor stayed within
the acceptable range for 0.75s. Upon successful completion of
each trial, the hands and the target turned green.

At the end of each trial, successful or not, the participants
heard a sound cue asking them to either relax their muscles
(myoelectric interface) or release the button (mouse interface),
which, in turn, returned the controlled hand back to the
neutral gesture. Once the participant was completely relaxed
for 1.5s (myoelectric interface) or released the button, a new
target was presented, and a sound cue was given to start the
next trial.

2.3.3 2Dexplicit task
During their 2Dexplicit task, the participants were always

presented with both hands (the matching and the controlled
ones). In addition, there was a 2D plane placed between the two
virtual hands. The plane was a visual representation of the
underlying control space. On the plane, there were eight red
targets presented at all times, which corresponded to the 2D
position of the eight gestures the participants were required to

FIGURE 5
(A) 17D task setup. The hand on the left was the target hand that the participants needed to match. The hand on the right was the controlled hand
that the participants controlled either via the myoelectric or mouse interface. (B) 2Dimplicit task setup. The participants performed simple 2D reaches by
controlling a hand with a blue cursor over it. The hand with the red target over it was the hand they needed to match. (C) 2Dexplicit task setup. The
participants controlled the blue cursor on the 2D plane, which in turn controlled the 17-DOF hand on the right. The hand on the left was the hand
whose gesture they needed tomatch. The participants were required to learn which of the eight red targets represented the 2D location of the matching
gesture.
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learn to recreate during training. A blue cursor corresponded to
the 2D location of their controller, which, in turn, mapped into
the 17D hand that the participants observed on the right
(Figure 5C).

Each trial always started from a neutral gesture in the
controlled hand and the blue cursor in the center of the
plane. After hearing a sound cue, the hand on the left showed
a new gesture, and the participants had 60s to determine which
of the eight red targets produced the desired gesture in the hand
on the right. Once the two hands were within an acceptable
range (as described in the 2Dimplicit task), they both turned
yellow. Holding the controller within the acceptable range for
0.75s led to a successful gesture-matching, turning both hands
green.

Neither the blue cursor nor the red targets provided any visual
feedback on the correctness of the gesture-matching. Only the target
and the controlled hands provided visual feedback by turning yellow
(within the acceptable range) or green (successful) through the
session. This, in turn, forced the participants to pay attention to
the hand gestures as well as cursor/target location on the 2D plane,
thus creating a more explicit connection between the 2D planar task
and the 17D virtual hand gesture.

At the end of each trial, successful or not, the participants
heard a sound cue asking them to either relax their muscles
(myoelectric interface) or release the button (mouse interface),
which, in turn, returned the controlled hand back to the neutral
gesture. Once the participant was completely relaxed for 1.5s
(myoelectric interface) or released the button, a new target and a
matching gesture was presented, and a sound cue was given to
start the next trial.

2.4 Test phase

As for the training, the test phase was also divided into two
sessions, Test1 and Test2. The goal of the test sessions was to
determine whether the participants were able to transfer the skills
acquired during training to conditions where they needed to recreate
slightly different gestures. There, the participants were asked to
match the hand gesture, similar to the 17D task during training
either via the myoelectric or the mouse interface. No visual feedback
about the location of the controller or the target gesture on the 2D
plane was given during test.

After hearing a sound cue, the participants had 6s to
successfully match the gesture on the left with the hand on
the right, with a 0 .75s of holding time within the acceptable
range (as defined in the 2Dimplicit task section). The gestures that
they were required to match during test sessions were slight
modifications of the gestures they got trained on. They were
created by reconstructing a point that was 75% along the path to
the gesture on the latent space (Figure 6).

As during training, both hands would turn yellow if the
participant was within the acceptable range and green if they
successfully matched the gesture. Each trial ended with the same
cue to either relax the muscles for 1.5s (myoelectric interface) or
release the button (mouse interface).

2.5 Participant groups

The participants in each study were split into three groups,
which differed in the tasks they had to perform during Train1.

FIGURE 6
Sampling of modified gestures from the latent space. Modified gestures were sampled from 75% of the nominal path between the neutral position
and the complete gesture on the latent space.
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2.5.1 Absence of 2D training (17D group)
For this group, the dimensionality of the visual feedback of the

task during training did not match that of the underlying control
interface. This means that the participants only performed the 17D
task during Train1.

2.5.2 Implicit 2D training (2Dimplicit group)
For this group, Train1 was split into the 2Dimplicit task and the 17D

task. During the 2Dimplicit task, the dimensionality of the visual feedback
of a training task matched that of the underlying control interface for
part of the training. We call it implicit 2D training because no explicit
explanationwas given to the participants on how the target-reaching task
related to the 17D task they were later presented with.

2.5.3 Explicit 2D training
Similar to the 2Dimplicit group, the 2Dexplicit group had an initial

training on the 2D control space prior to the 17D task. However, the
nature of the training task (2Dexplicit task) as well as the instructions
given to the participants in this group were such that they could observe
the relationship between the cursormovements on the 2Dplane and the
kinematics of the presented hand. In other words, this group was
explicitly instructed on the connection between the underlying
dimensionality of the controller and the generated hand gestures.

2.6 Studies

2.6.1 Study I
For this study, we recruited 14 unimpaired right-handed

individuals (four males, ten females, 25.6 ± 5.9 years old). The
participants were randomly split into two groups based on
different training paradigms (17D and 2Dimplicit).

The main difference between the two participant groups was
in Train1. The 2Dimplicit group practiced the 2Dimplicit task for the
first half of Train1 (64 trials, i.e., eight gestures presented eight
times in a pseudo-random order) and switched to the 17D task

for the second half of the session (64 trials) (Figure 7). The 17D
group performed the 17D task for the entirety of the session
(128 trials, i.e., eight gestures repeated 16 times in a pseudo-
random order). The participants were given 1 minute to rest after
every 32 trials.

During Train2, both groups performed the 17D task, where the
eight ASL gestures were repeated 10 times in a pseudorandom order,
for a total of 80 trials per session. One minute break was given to the
participants after 40 trials.

During Test1 and Test2, the participants were tested for a total of
40 trials during each session (i.e., five modifications of eight original
ASL gestures).

2.6.2 Study II
A new group of 22 unimpaired right-handed participants was

recruited (12 males, 10 females, 27.4 ± 5.8 years old). All of them
were naïve to the controller. As with Study I, the participants were
split into two training groups: 2Dimplicit (11 participants) and 17D
(11 participants). The rest of the protocol was as in Study I.

2.6.3 Study III
We recruited a total of seven participants (5 females, 2 males,

27.6 ± 6.9 years old), who were naïve to the controller. They were all
assigned to the 2Dexplicit group operating the controller via the
mouse interface (Figure 1C). There, they learned the 2Dexplicit task
for the first half of Train1 (64 trials) and completed the 17D task for
the second half of Train1 (64 trials; Figure 7). For analysis purposes,
their results were compared to 11 participants from the 2Dimplicit

group in Study II. The rest of the protocol of the protocol was as in
Study I.

2.7 Outcome measures

Performance between and within the three groups in each study
was assessed with the following metrics:

FIGURE 7
Sequence of training and test session in each study. The only difference between the groups is in Train1 session, where the 17D group only
experiences the 17D task while the 2Dimplicit/explicit groups have the session split in half: 2Dimplicit/explicit task and 17D task.
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2.7.1 Adjusted reach time (ART)
Adjusted reach time was defined as the time taken to

complete a hand gesture match (in the 17D task) or target
reach (in the 2D task). For every missed trial, the ART of the
trial was set to the timeout value (60s). ART was only calculated
for training trials. We computed it for each training trial and then
averaged the values of eight consecutive trials, which we called
repetition.

2.7.2 Adjusted path efficiency (APE)
Adjusted path efficiency was a measure of straightness of the

path taken to either reach the 2D target or match the 17D gesture.
It was calculated using Eq. 6, where dtravel was the length of the
path covered by the cursor to reach the target/gesture and dideal
was the nominal distance between the central and the final target/
gesture.

PE � dideal

dtravel
*100 (6)

Similar to ART, for everymissed trial, the APE of the trial was set
to the lowest possible value of 0%.

2.7.3 Success rate
Success rate measured the percentage of successful trials

performed in a single session. This was calculated only for the
test sessions.

2.8 Statistical analysis

For statistical analysis, we used MATLAB Statistics Toolbox
functions (MathWorks, Natick, MA, United States). Anderson-
Darling Test was used to determine the normality of the data
(Anderson and Darling, 1954). Since all data were determined to
be non-Gaussian, we used non-parametric tests for statistical
analysis.

We evaluated differences within and across groups on the average
ART andAPE for the first or last repetition of the 2Dimplicit/explicit or 17D
tasks.We also calculated differenceswithin and across compared groups
for the success rate between Test1 and Test2 in each study. Differences
across the groups were determined by applying Wilcoxon Rank Sum
Test while differences within the groups were tested using Wilcoxon
Sign Rank Test (Wilcoxon, 1945). In all our analyses, the threshold for
significance was set to 0.05.

3 Results

3.1 Study I

Participants across both groups were able to significantly
improve their performance by the end of training (lower adjusted
reach time), but no significant differences were observed across the
groups in terms of final performance.

3.1.1 Adjusted reach time
The 2Dimplicit group significantly improved the ART during the

2D task—from an average of 8.6s to 5.7s (p � 0.031; Figure 8A, first

column, green). It also had a significant improvement in reach time
for the 17D task—ART decreased from an average of 28.4s to an
average of 18.6s by the end of training (p � 0.016).

The 17D group also significantly decreased the ART from an
average of 39.7s to an average of 21.6s by the end of training
(p � 0.016; Figure 8A, first column, magenta).

The difference between the two groups at the end of the training
was not statistically significant (p � 0.79).

3.1.2 Adjusted path efficiency
The 2Dimplicit group increased the APE from 26.5% to 33.5%

during the 2D task (Figure 8B, first column, green). The
improvement is not statistically significant (p � 0.11). When
switching to the 17D task, the group completed the first
repetition of target with an average APE of 10.5% and increased
the APE to an average of 16.0% by the end of the training. Once
again, the increase was not statistically significant (p � 0.08).

On the contrary, the 17D group was able to significantly increase
its APE over the course of the 17D task training—from an average of
4.4% to 12.9% (p � 0.016; Figure 8B, first column, magenta). No
differences across the groups were observed at the end of training.

3.1.3 Success rate
The success rates of the 2Dimplicit group during Test1 and Test2

were an average of 33.6% and 42.9%, respectively (Figure 9, first
column, green). For the 17D group, the success rates for both
sessions were an average of 33.6% (Figure 9, first column,
magenta). Neither of the groups exhibited a statistically
significant increase in the success rates during test sessions. No
statistical difference was observed across the two groups.

3.2 Study II

Both groups were able to significantly improve their
performance by the end of training (lower adjusted reach time),
but no significant differences were observed across the groups in
terms of final performance.

3.2.1 Adjusted reach time
The participants in the 2Dimplicit group were able to significantly

improve their average ART from the first to the last repetition in the
2Dimplicit task (from 5.3s to 2.9s, respectively) (p< 0.01; Figure 8A,
second column, green). The group was able to significantly improve
its ART for the 17D task as well—from 23 .6s for the first repetition
and 15.1s for the last repetition during training (p< 0.01).

Similarly, the 17D group had a significant improvement in its
average ART value—from 30 .7s to 16.0s (p< 0.01; Figure 8A,
second column, magenta).

The difference between the two groups at the end of the training
was not statistically significant (p � 0.79).

3.2.2 Adjusted path efficiency
The increase of the APE values for the 2Dimplicit group during the

2Dimplicit task was not statistically significant (p � 0.37): from 74.3%
to 82.7% (Figure 8B, green). Similarly, the increase in the APE
during the 17D task was from 30.7% to 40.0% and not statistically
significant (p � 0.10).
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As in Study I, only the 17D group significantly increased its
average APE value over the course of the training repetitions—from
20.7% to 37.5% (p � 0.024; Figure 8B, magenta). Similar to Study I,
no differences across the groups were observed at the end of training.

3.2.3 Success rate
During test sessions, the 2Dimplicit group successfully completed

46.1% of Test1 and 54.1% of Test2 (Figure 9, second column, green).
The difference between the test session was statistically significant
(p � 0.037). For the 17D group, Test1 and Test2 were successfully
completed at a rate of 43.6% and 48.0%, respectively (Figure 9,
second column, magenta), although the improvement was not
statistically significant (p � 0.38). No statistical difference was
observed across the two groups in neither of the test sessions.

3.3 Study III

In the sections below, we compare the performance of the
2Dimplicit group from Study II and the 2Dexplicit group, whose
data were collected during Study III. In addition to significantly
improving their performance over the entire training, participants in
the 2Dexplicit group significant outperformed the 2Dimplicit group in
terms of reach time and path efficiency.

3.3.1 Adjusted reach time
The participants in the 2Dexplicit group significantly decreased their

average ART during the 2Dexplicit task—from 9.7s to 4.4s (p � 0.047;
Figure 8A, third column, teal). Once the visual presentation of the
targets, cursor, and the 2D plane was switched off, the participants
completed the first repetition of the 17D task within 12.0s on average
and were able to significantly reduce the ART to at an average of 6.4s by
the end of the training (p � 0.031).

During the 2Dimplicit/explicit tasks alone, the 2Dimplicit group
reached targets significantly faster than the 2Dexplicit group at the
beginning (p � 0.01) and the end of the 2D task trials (p< 0.01).

However, the 2Dexplicit group began the 17D task at a
significantly lower ART value (12.0s) than the 2Dimplicit group
(23.7s) (p � 0.02). At the end of the training, the 2Dexplicit group
was also successfully matching gestures at a significantly faster ART
(6.4s) than the 2Dimplicit group (15.1s) (p< 0.01).

3.3.2 Adjusted path efficiency
The 2Dexplicit group significantly improved its APE during both

the 2Dexplicit and the 17D tasks (Figure 8B, third column, teal).
During the 2Dexplicit task, the improvement was from an average of
38.1% to 62.9% (p � 0.03). During the 17D task, the improvement
was from an average of 43.9% to 67.9% (p � 0.02). In addition, the
final APE of the 2Dexplicit group at the end of the 17D task (67.9%)

FIGURE 8
(A) Adjusted reach times (ARTs) and (B) adjusted path efficiencies (APEs) of Studies I, II, and III. Green colors represent the 2Dimplicit group. Magenta
colors represent the 17D group. Teal colors represent the 2Dexlicit group. Error bars represent standard errors. Magenta asterisks (*) represent statistical
differences within the 17D group. Green asterisks (*) represent statistical differences within the 2Dimplicit group. Teal asterisks (*) represent statistical
differences within the 2Dexplicit group. Black asterisks (*) signify statistical differences between groups. The shaded area of each plot represents
Train2 session. Note that for the third column (Study III), we are showing the result of the green group obtained in Study II for ease of comparison.
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was similar to the level that the group was able to achieve by the end
of the 2Dexplicit task (62.9%) (p � 0.38).

When considering the 2Dexplicit/implicit tasks, the 2Dexcplit group
had consistently lower APE values than the 2Dimplicit group. When
switching to the 17D task, the difference of average APE values
between the 2Dexplicit (43.9%) and 2Dimplicit (30.7%) groups was not
statistically significant (p � 0.13). However, by the end of the
training, the 2Dexplicit group was able to perform significantly
more efficient reaches (67.9%) than the 2Dimplicit group
(40.0%) (p � 0.01).

3.3.3 Success rate
The success rate of the 2Dexplicit group between the test sessions

improved from an average of 65% to an average of 77.5% (Figure 9,
third column), although not significantly (p � 0.078). In addition,
when comparing the two groups, the average success rate during
Test2 was significantly higher for 2Dexplicit group (77.5%) than the
2Dimplicit one (54.1%) (p � 0.02).

4 Discussion

The set of studies presented in this paper allowed us to answer
the three questions proposed in the beginning of the paper:

a) To what degree is the difficulty of operating the AE-based controller
due to the complexity of operating myoelectric interfaces?

The complexity of the myoelectric interface did not have an
effect on the final performance in terms of reach times achieved by

either of the tested groups—the participants were able to perform
gesture matches as fast as their counterparts who used the mouse
interface. The only difference was observed in terms of path
efficiency—the participants using the mouse interface were able
to perform straighter reaches than the participants using the
myoelectric interface.

b) Does an initial training on a 2D plane, which matches the
underlying dimensionality of the AE-based controller without
explicitly establishing the connection between 2D reaches and
hand kinematics, enhances learning?

Without an explicit connection between the 2D reaches and
virtual hand kinematics, the participants practicing the 2Dimplicit

task did as well, but not better than their counterparts who practiced
only the 17D task.

c) Does an initial training on a 2D plane, in which the user is
explicitly told about the connection between the 2D reaches and
full hand gestures, enhances learning?

Providing an explicit connection between the underlying low-
dimensional control space and the presented high-dimensional task
significantly improved the participant’s performance in terms of
reach times and path efficiencies.

4.1 Difficulty of myoelectric control

The findings in Studies I and II suggest that the myoelectric
interface itself was not the main reason for poor performances across
Study I participants and highlighted the need to look further into
more optimal ways of teaching the users about the controller itself to
improve their overall performance.

The notion that the users can learn any mappings for
human-computer interfaces that you provide them with
(intuitive or not) has been supported by a multitude of
studies (Liu and Scheidt, 2008; Radhakrishnan et al., 2008;
Ison and Artemiadis, 2015; Zhou et al., 2019; Dyson et al.,
2020). However, we hypothesized that learning the control
map may be more difficult in cases when a developed
controller is operated via input signals in an unnatural way.
What we mean by that is, for example, in case of our myoelectric
interface, the forearm muscle contractions (i.e., wrist
movements) did not yield the same physiological kinematic
results in the virtual hand. As a result, there was a clear
mismatch between the natural way of creating the gestures
the users saw on the screen (i.e., finger flexions and
extensions) and the alternative way they were required to
learn to use their wrist to recreate these gestures. For
comparative purposes, we utilized a computer mouse
interface, which, we hypothesized, would allow the users to
learn the mapping significantly faster, given than it is more
familiar and used every day.

Despite our hypothesis, we found that by the end of the
training, there was no significant difference in the reach times
between the participants in Studies I and II (p � 0.43 for
2Dimplicit; p � 0.25 for 17D; Figure 10A). The only main

FIGURE 9
Average success rates for Test1 and Test2 sessions across all
participants in each group in Studies I, II, and III. Green color
represents the 2Dimplicit group. Magenta color represents the 17D
group. Teal color represents the 2Dexplicit group. Error bars
represent standard errors. Black asterisks (*) signify statistical
differences between the groups in each study. Green asterisks (*)
represent statistical differences within the 2Dimplicit group.
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significant difference between Studies I and II was that by the end
of the training, the participants who used a computer mouse
were able to match gestures in a significantly more efficient way
(higher adjusted path efficiency) than the participants who
operated the myoelectric interface (p � 0.01 for 2Dimplicit; p �
0.01 for 17D; Figure 10B). This observation appears to be self-
evident—people perform straighter reaches by moving the
mouse with their hand rather than trying to activate their
muscles. In addition, it is important to note that myoelectric
signals are noisier than the ones produced by moving a mouse,
hence straighter trajectories with the mouse interface are
expected. Lastly, we can observe that following Train2, both
groups in the mouse interface completed Test2 session at
significantly higher success rates than their myoelectric
counterparts (p � for 2Dimplicit; p � for 17D; Figure 9),
suggesting that the myoelectric controller presented
additional challenges that slowed down learning.

It is also important to note that control gains across the two
interfaces were potentially not the same, thus, making a direct
comparison between Studies I and II in terms of reach times
difficult. In the case of a myoelectric interface, control gains were
individualized to each participant to ensure that they could access
each point on the 2D control plane with comfortable muscle
contraction levels (i.e., without over-contracting). On the
contrary, in the mouse interface case, the participants had
fixed control gains. It is possible to assume that the difference
in the initial reach times during Train1 in the 17D group between
the myoelectric and mouse interfaces was due to the control gains
for the mouse controller being larger. However, when observing
the final reach times in Train2, participants across both Study I
and Study II plateaued to comparable reach times for both
interface types, suggesting that control gains were potentially
comparable.

4.2 Effects of implicit and explicit training

In Study III, we found that guiding the user to learn the explicit
connection between the underlying dimensionality of the controller
and the high-dimensional hand postures was critical for learning.

4.2.1 2Dimplicit training
Here, the relationship between the underlying dimensionality of

the controller and the gesture-matching task that followed the target
reaching was not explicitly made. Presentations of a single target at a
time along with smaller avatars of the controlled and matching
hands, most likely, encouraged the participants to focus on the 2D
target location rather than the generated 17D gesture. This
observation is supported by the fact that the 2Dimplicit group did
not outperform the 17D group during gesture-matching at the end
of Train2 (Studies I and II).

It is also important to note that after the first eight repetitions of
either the 17D or 2Dimplicit task, both groups completed gesture
matching at comparable adjusted reach times (Figure 8A). This
points to the fact that the initial training in 2D worked as well, but
not better, as having the initial training on the 17D task. The same
effect is observed when looking at path efficiency during Studies I
and II—the participants across both groups performed similarly
(Figure 8B).

4.2.2 2Dexplicit training
When designing Study III, we hypothesized that learning that

took place during the 2D task did not provide the 2Dimplicit group
with a full understanding of the underlying dimensionality of the
control space. Instead, it only trained them to perform abstract (as
they appeared to the participants) movements on a 2D plane. As a
result of this observation, in Study III we explicitly informed the
participants about the relationship between the cursor position in

FIGURE 10
(A) Adjusted reach time and (B) adjusted path efficiency for the final training repetition across the 2Dimplicit (green), 17D (magenta), and 2Dexplicit (teal)
groups in Studies I, II, and III. Green asterisks (*) represent statistical differences between the 2Dimplicit groups in Studies I and II. Magenta asterisks (*)
represent statistical differences between the 17D groups in Studies I and II.
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2D and the corresponding (i.e., reconstructed) hand gesture in 17D.
We hypothesized that once this relationship was understood, it
would become a pure memorization problem of the gesture
locations on the 2D plane.

The presentation of all eight targets without error feedback
directly on the targets themselves forced the participants to pay
attention not only to the target locations but at the desired hand
gestures. In addition, the participants clearly observed how their
movements on the 2D plane corelated to the generated gestures as
the hands were now more visually accentuated and significantly
larger than those presented in Studies I and II.

4.3 Linear vs. nonlinear postural controllers

We hypothesize that the explicit understanding of the
controller-task relationship would be essential when teaching
nonlinear-based controllers developed; however, such
understanding might not be relevant in cases where PCA (a
linear method) has been used. The reason for that would be that
the latent space created by PCA follows the superposition principle.
This means that new gestures could be superimposed from other
gestures on the 2D plane. A good example of that would be if one
dimension of the latent space solely controls the opening and closing
of the thumb, while the other one flexes and extends the other four
fingers, gestures generated within the space would be linear
combinations of these two dimensions.

The superposition principle does not hold in latent spaces
generated by nonlinear systems such as nonlinear AEs. And
while gestures that are similar kinematically, appear closer to
each other on the latent space encoded by a nonlinear AE
(Portnova-Fahreeva et al., 2020), nonlinear maps might be harder
for users to interpolate from. And while the differences in learning
linear and nonlinear maps have not been explored in this paper, we
suggest that this might be an interesting route to investigate in future
experiments.

One of the major outcomes of the studies described in this paper
was the application of nonlinear DR methods, such as AEs, for the
development of a nonlinear postural controller, in which complex
kinematics of a virtual hand with 17DOFs were extracted from the
position on the 2D plane. In the past, linear controllers have been
developed, in which the dimensionality of hand kinematics during
grasping was reduced using PCA (Magenes et al., 2008; Matrone
et al., 2010; Matrone et al., 2012; Belter et al., 2013; Segil, 2013; Segil
and Controzzi, 2014; Segil, 2015).

In the studies where linear postural controller was validated via a
myoelectric interface (Matrone et al., 2012; Segil and Controzzi,
2014; Segil, 2015), the average movement times (time to successfully
reach but not hold the hand in a correct grasp) were between 3s and
5s. The results are comparable to those produced in our Study III;
however, they differ in the interface used to perform the movement
(our Study III employed the mouse interface). When compared to
the results of our myoelectric interface study (Study I), movement
times using the PCA-based controller were significantly lower than
those using the AE-based controller.

Explanations for the discrepancies in the results could be due to
the major differences in the controller schemes and protocols. First
of all, the output system with a PCA-based controller had 5 − 6

DOFs, in contrast to the 17 DOFs controlled in our studies, resulting
in a more intricate but, most likely, complex control. In addition, in
one of the aforementioned studies (Matrone et al., 2012), the
participants were only required to learn to create three grasps in
comparison to learning eight unique ASL gestures in our studies.
Another study (Segil, 2015) implemented potential fields that
“snapped” the virtual hand in correct postures when the control
cursor was close enough to the target posture on the 2D plane. That
allowed for simpler control and alleviated the challenges
experienced during myoelectric control due to the noisy nature
of EMGs.

Despite potential differences across the linear- and nonlinear-
based controllers, the nonlinear counterpart yielded a major
advantage in its superiority in reconstructing higher variance of
the input signal with a smaller number of latent dimensions
(Portnova-Fahreeva et al., 2020). What this means is that a
nonlinear-based controller with just two latent dimensions would
result in a reconstructed hand that was closest in appearance (i.e.,
kinematically) to the original input signals whereas the PCA-based
controller would be unable to reconstruct some of the gestures.

Following the results of Study III, in which we discovered a more
effective form of training of the AE-based controller via the mouse
interface, we hypothesize that a higher performance than what was
observed in Study I could be achieved with a nonlinear postural
controller via a myoelectric interface. As a result, we suggest that
nonlinear postural controllers could still be a viable option for
complex prosthetic control allowing for more precise
dimensionality-reduction of intricate hand kinematics than what
could be achieved by PCA.

4.4 Limitations

One of the major limitations of our studies was the design of the
test sessions with very short window to perform reaches.
Considering that the average ART during training sessions in
Studies I and II was significantly higher than the time allowed
for a successful reach during test, the participants were set up for
failure, which explains the low success rates during test. In Study III,
the average ART at the end of the training sessions was similar to the
time allowed for a successful gesture-matching during test, which
explains a significantly higher success rates during test sessions for
the 2Dexplicit group.

As discussed in Section 4.1, given the experimental design, the
control gains between the mouse and myoelectric interfaces across
the studies are not directly comparable. To allow the participants in
Study I to be able to reach every point on the 2D control plane
without over-contracting their muscles, we tuned the controller
gains for each individual. The control gains in the mouse interface
studies (Studies II and III), on the contrary, were kept constant for all
participants. As a result, this design decision might have had an
impact on the comparability of the results across myoelectric and
mouse-controlled studies. In addition, this makes it difficult to
assume that the 2Dexplicit group results from Study III (in terms
of faster reach times) would translate entirely to a setup with the
myoelectric interface. However, given that adjusted reach times
plateaued around similar values for the groups training with the
mouse interface in Study II as the groups training with the
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myoelectric interface in Study I (Figure 8A), it is possible that a
2Dexplicit group would get to similar reach times by the end of
training using the myoelectric interface as the same group did using
the mouse interface in Study III.

At the surface level, myoelectric noise can be modeled as
Gaussian noise with both additive and multiplicative components
(Clancy et al., 2001). Since the level of muscle activation required to
reach the entire workspace in Study I was kept at comfortable (non-
over-contracting) levels by design, we assumed that the
multiplicative component would likely be similar to its additive
counterpart, thus resulting in the design only incorporating the
additive component. However, this assumption, if false, might have
resulted in the mouse interface not being as noisy as the myoelectric
interface, thus making direct comparisons between the path
efficiency results between Studies I and II more difficult.

Lastly, the fastest reach times presented by the 2Dexplicit

group by the end of training in Study III (an average of 6.4s) are
still long for any action, especially for prosthetic control. While
this work only investigated various aspects that improve or
inhibit learning of the novel nonlinear AE-based controller,
other solutions can be explored that improve reach times. For
example, control gains could be increased if a stable
performance was achieved or “potential fields” such as those
implemented by Segil and others (Segil, 2015) to allow for the
controller to “snap” into specific gestures once the user is near it
on the 2D control plane.

4.5 Applicability for prosthetic users

When designing these studies, the end-user group that we
considered were upper-limb amputees that utilize prosthetic
hands in their daily living. Although the studies were performed
on unimpaired individuals, they highlighted the possibility of
using nonlinear controllers for the purpose of manipulating a
myoelectric hand prosthesis. The myoelectric interface that we
designed for Study I employed wrist muscle signals to operate on
the 2D latent space. And although an upper-limb amputee
might not have those wrist muscles, other more proximal
locations can be chosen to obtain clean signals to control a
location of a 2D cursor, which, in turn, would operate the hand.
The main advantage of our controller is that it does not require a
large number of signals (only enough to operate the cursor on
the 2D plane) to control a hand with a large number of DOFs.
One does not even need to limit themselves to the EMG system.
One suggestion would be to obtain a 2D control signal from a
simpler interface based on Internal Measurement Units (IMUs).
For example, IMUs can be placed on the user’s shoulders,
consequently, controlling the posture of the prosthetic hand.
In the past, IMUs have been widely used to operate a low-
dimensional controller (Thorp et al., 2015; Seáñez-González
et al., 2016; Abdollahi et al., 2017; Pierella et al., 2017; Rizzoglio
et al., 2020). Thus, nonlinear AE-based controllers, such as the
one we developed for our studies, can be a versatile and modular
solution for controlling complex upper-limb prosthetic devices
via low-dimensional interfaces.
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