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Bioethanol is believed to be an influential revolutionary gift of biotechnology, owing to
its elevating global demand and massive production. Pakistan is home to a rich
diversity of halophytic flora, convertible into bounteous volumes of bioethanol. On
the other hand, the accessibility to the cellulosic part of biomass is amajor bottleneck
in the successful application of biorefinery processes. The most common pre-
treatment procedures existent include physicochemical and chemical approaches,
which are not environmentally benign. To overcome these problems, biological pre-
treatment has gained importance but the drawback is the low yield of the extracted
monosaccharides. The current research was aimed at exploring the best pre-
treatment method for the bioconversion of halophyte Atriplex crassifolia into
saccharides using three thermostable cellulases. Atriplex crassifolia was subjected
to acid, alkali and microwave pre-treatments, followed by compositional analysis of
the pre-treated substrates. Maximum delignification i.e. 56.6% was observed in the
substrate pre-treated using 3% HCl. Enzymatic saccharification using thermostable
cellulases also validated the results where the highest saccharification yield i.e. 39.5%
was observed for the sample pre-treated using same. Maximum enzymatic hydrolysis
of 52.7% was obtained for 0.40 g of the pre-treated halophyte Atriplex crassifolia
where Endo-1,4-β-glucanase (300U), Exo-1,4-β-glucanase (400U) and β-1,4-
glucosidase (1000U) were simultaneously added and incubated for 6 h at 75°C.
The reducing sugar slurry obtained after optimization of saccharification was
utilized as glucose in submerged fermentation for bioethanol production. The
fermentation medium was inoculated with Saccharomyces cerevisiae, incubated
at 30°C and 180 rpm for 96 h. Ethanol production was estimated using potassium
dichromate method. Maximum production of bioethanol i.e. 16.33% was noted at
72 h. It can be concluded from the study that Atriplex crassifolia owing to its high
cellulosic content after pre-treatment using dilute acid method, yields substantial
amount of reducing sugars and high saccharification rates when subjected to
enzymatic hydrolysis using thermostable cellulases, under optimized reaction
conditions. Hence, the halophyte Atriplex crassifolia is a beneficial substrate that
can be utilized to extract fermentable saccharides for bioethanol production.
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1 Introduction

Fossil-based fuels are not only non-renewable energy resources
having detrimental impact on the environment, but their limited
availability in depleting reservoirs is not sufficient to fulfill the global
energy needs (Li et al., 2020; Vu et al., 2020). Renewable energy
comes along sustainable development, energy security and economic
growth (Den et al., 2018). Biorefinery is based on the sustainable
conversion and efficient valorization of raw material (lignocellulosic
biomass, waste, etc.) into wide range of bio-based energy products
(Hingsamer and Jungmeier, 2019).

Bioethanol fuel is believed to be an influential revolutionary gift
of biotechnology, owing to its elevating global demand and massive
production. Biofuels, based on their source of biomass have been
categorized into four generations. First-generation biofuels are a
product of edible crops, for instance, wheat and corn (Nanda et al.,
2018). Second-generation biofuels are a product of non-edible crops;
this includes the waste of food crops, agricultural and forest residues,
chips of wood, and waste from cooking oil (Nanda et al., 2018). In
the modern world of today where overpopulation and poverty are
major concerns, employing first generation biofuels is not that
favorable, keeping in view the scarcity of available food, fresh
water, and arable land resources. Whereas, the second-generation
biofuel energy crops can be easily produced on degraded saline lands
using scarce water resources to minimize the competition with food
production (Moioli et al., 2018).

It is true that 70% of the earth is made of water; on the other
hand, a bulk amount of this percentage remains unsuitable for
irrigational purposes and does not support human intake, owing to
high salinity rates. Moreover, the limited availability of arable land is
also subject to increasing salinity, because of continuous irrigation,
(that adds to the existing salts); this remains a major challenge to
enhance agricultural practices (Flowers and Colmer, 2008). Precise
and recent estimates on the global extent of salinity-afflicted land is
unavailable, data is variable according to different information
sources (Shahid et al., 2018). However, a global figure of
952.2 million ha has been reported (Arora et al., 2016).
Evidently, the utilization of this massive chunk of space to grow
and harvest biofuel feedstocks, which can be subjected to irrigation
using seawater, can help eliminate the major barrier linked to
farming for biofuel production (Brown, 2019).

Halophytes, which are capable of growth in salinity-afflicted
soils are inexpensive sources of lignocellulosic biomass (Joshi et al.,
2020). Halophytes produce oilseeds and lignocellulosic biomass;
both the products can be exploited for biofuel production. Among
the topmost promising genera exist Salicornia (glasswort), Suaeda
(sea-blite), Atriplex (saltbush), Distichlis (saltgrass) and Batis
(saltwort) (Abideen et al., 2011). Cultivation of halophytes in
saline-afflicted regions will spare fresh water resources and arable
agricultural soils for food, and provide lignocellulosic feedstock of
desirable quality for conversion into biofuel (Yuan et al., 2011).

The genus Atriplex belongs to the family Amaranthaceae and is
home to approximately 300 saltbush species. Saltbush species are
resistant towards adaptation; majority of them have their habitats in
semi-arid and arid areas globally (Paneque, 2018). Species named
Atriplex crassifolia, a wild, annual halophyte native to semi-arid and
arid areas of Punjab, was the subject of study in this research.

Pre-treatment of lignocellulosic biomass is a basic prerequisite
for effective enzymatic hydrolysis of biomass. Pre-treatment ensures
disruption of the complicated network of lignocellulose and ensures
sustainable production of valuable products by enhancing the
surface area of biomass, so that the cellulases can easily act upon
the cellulosic content (Meng et al., 2020; Padilla-Rascón et al., 2020).
The most common pre-treatment procedures existent include
physicochemical and chemical approaches, which are not
environmentally benign. To overcome these problems, biological
pre-treatment has gained importance but the drawback is the low
yield of the extracted monosaccharides (Rezania et al., 2020).
Furthermore, different green processes have evolved for the pre-
treatment of biomass (Lyu et al., 2019). Although, these techniques
offer promising benefits, their wide-scale applicability at industrial
level demands high capital cost (Bhatia et al., 2020; Shen et al., 2020).
Therefore, extensive research is a requirement to develop the most
applicable technique for pre-treatment that ensures ease of
applicability along with affordability.

Alkaline solutions have been long used for the pre-treatment of
lignocellulosic biomass. The complex structure of lignin composed
of alkyl-aryl linkages are subjected to disruption utilizing alkalis
such as ammonium hydroxide, sodium hydroxide, calcium
hydroxide and lime (Chen et al., 2013). The use of acids for pre-
treatment is another chemical pre-treatment technique used to
degrade the lignocellulosic biomass, as it cleaves the glycosidic
bonds present within the biomass structure (Sahoo et al., 2018).
Nitric acid, phosphoric acid, sulfuric acid and hydrochloric acid are
various examples of the acids that have been analyzed for their
capability to pre-treat lignocellulosic biomass, even at industrial
levels (Solarte-Toro et al., 2019).

Pre-treatment using microwave is another technique to disrupt
the construction of lignocellulosic biomass. Irradiation of the
microwave causes acceleration of chemical reactions within the
biomass. The vibrations created by the heat of microwave,
generate hot spots within the structure of biomass (Hassan et al.,
2018). Microwave irradiation for pre-treatment of biomass is a
favorable method in the domain of biomass biorefinery, owing to
the heat that not affects the surface of biomass but also elevates the
temperature inside the structure of biomass, being more energetic
and effective compared to conventional heating techniques (Pellera
and Gidarakos, 2017).

Saccharification is the process where complex carbohydrates are
broken down into simple sugars. Following the pre-treatment of
lignocellulosic biomass, saccharification is the next significant step
in the bioconversion of cellulosic content into monosaccharides
(Kucharska et al., 2020). Enzymatic saccharification is generally
conducted employing cellulases and hemicellulases (Kumar and
Sharma, 2017). Cellulase is not a term used to define a single
enzyme, infact it is a complex of multiple enzymes (Thapa et al.,
2020). Generally, the term cellulases is used to denote three glycoside
hydrolases i.e., (endocellulases, exocellulases and β-glucosidases),
which play role in the bioconversion of cellulosic content within
biomass to reducing sugars (Champreda et al., 2019). Hydrolysis
efficiency depends upon different physicochemical parameters
which include incubation pH, time, temperature, agitation speed,
particle size, enzyme/substrate ratio, etc. (Chavan and Gaikwad,
2021; Faizal et al., 2021).
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Fermentation is an important step in bioethanol production,
which can be conducted either separately or in combination with
saccharification. In this research, separate hydrolysis and
fermentation (SHF) has been conducted, as it is the most
favorable technique concerning bioethanol production. It
facilitates self-regulating optimization of saccharification for
maximizing sugar extraction and that of fermentation for ethanol
production (Moodley and Kana, 2019).

Pakistan is home to a rich diversity of halophytic flora,
convertible into bounteous volumes of bioethanol. The current
research, utilizing halophytes, aimed to provide promising results
in developing sustainable bioethanol fuel for the citizens, which is
also a foremost need of the country, keeping in view the ever-
increasing hike in petroleum prices, climatic vulnerability,
decreasing arable land, high salinity, scarce fresh water resources,
food insecurity, overpopulation, energy demand and poverty.

2 Materials and methods

2.1 Chemicals

All chemicals used in the present study were of analytical grade
and purchased from authentic suppliers of Sigma, Daejung, Acros
Organics and Merck Ltd.

2.1.1 Thermophilic cellulases
The genetically engineered thermophilic cellulases were

obtained from the project entitled “Production of bioenergy from
plant biomass” at Institute of Industrial Biotechnology, GC
University Lahore, Pakistan.

2.1.2 Substrate
The halophyte Atriplex crassifolia was collected in early January

2021 from the fields of KSK campus, GCU Lahore, Punjab Pakistan.
The biomass was grinded into fine powder and dried in hot air oven
at 105°C for 2 h. The dried biomass was sieved and stored in labelled
zip-lock bags at room temperature for further use.

2.2 Reagent preparation and pre-treatment

2.2.1 Alkali pre-treatment
Alkali pre-treatment of Atriplex crassifolia was out using

different concentrations of NaOH (1%, 2%, 3%, 4% and 5%) as
the pre-treatment reagents. Oven dried substrates were taken in an
amount of 5 g and mixed in 50 mL of NaOH solution with varying
concentrations, using 100 mL air tight reagent bottles. The screw
capped reagent bottles were subjected to a temperature of 121°C for a
time period of 60 min in an autoclave. Pre-treated substrates were
filtered and washed by distilled water twice to eliminate attached
alkali and other components produced during the pre-treatment.
The substrates were air-dried. The dried substrates were put in
sterilized polythene zipper bags for further use (Binod et al., 2011).

2.2.2 Acid pre-treatment
Acid pre-treatment of Atriplex crassifolia was carried out using

different concentrations of HCl (1%, 2%, 3%, 4% and 5%) as the pre-

treatment reagents. Oven dried substrates were taken in an amount
of 5 g and mixed in 50 mL of HCl solution with varying
concentrations, using 100 mL airtight reagent bottles. The screw
capped reagent bottles were subjected to a temperature of 121°C for
60 min in an autoclave. Following pre-treatment, the substrates were
filtered and washed twice using distilled water to remove any acidic
content or other byproducts formed during pre-treatment. The
substrates were allowed to air dry. The dried substrates were
stored in sterilized polythene zipper bags for further use (Binod
et al., 2011).

2.2.3 Microwave pre-treatment
Microwave pre-treatment of Atriplex crassifolia was carried out

by varying residence times. Substrates (1 g) were weighed and placed
in five different airtight reagent bottles of 50 mL capacity, having
10 mL of distilled water each. The respective airtight bottles were
subjected to microwave irradiation for residence time of 1 min,
2 min, 3 min, 4 min and 5 min, respectively. Following pre-
treatment, the substrates were filtered. Air dried substrates were
stored in sterilized zipper bags for further use (Binod et al., 2011).

2.3 Biomass compositional analysis

The untreated and pretreated biomass was analysed for
lignocellulosic content using Technical Association of Pulp and
Paper Industry (TAPPI) standards.

2.4 Enzymatic saccharification of pre-
treated Atriplex crassifolia biomass

The enzymatic saccharification of pre-treated biomass Atriplex
crassifolia was carried out by adding 0.25 g of pre-treated substrate
in a screw-capped reagent bottle. For enzymatic hydrolysis, Endo-
1,4-β-glucanase (200 U) was added to both experimental and control
(without substrate) reagent bottles. Both the reagent bottles were
incubated at 75°C in a shaking water bath with rpm set at 50 for a
period of 2 h. Next, Exo-1,4-β-glucanase (400 U) was added to the
same reagent bottles and after incubating the mixture for another
2 h, β-1,4-glucosidase (1000 U) was added to both the reagent
bottles. The samples (1 mL) were withdrawn after regular
intervals of 1 h to note the release of reducing sugars via DNS
method, using straight line equation obtained from the standard
curve. The percentage saccharification was determined by using
Vallander and Eriksson (1987) proposed equation;

% Saccharif ication � R.S × V × F1
M × F2

× 100

2.5 Optimization of physicochemical
parameters to enhance enzymatic
saccharification

The physicochemical parameters i.e., incubation time,
incubation temperature, substrate concentration, concentration of
endo-1,4-β-glucanase, exo-1,4-β-glucanase and β-glucosidase
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affecting the rate of enzymatic hydrolysis were subjected to
optimization studies. One variable at a time experimental design
was chosen for the optimization of saccharification parameters.

2.5.1 Sequential addition of cellulases
In sequential addition of cellulases, beginning with the addition

of Endo-1,4-β-glucanase (200 U) to the screw-capped reagent bottle
enclosing the pre-treated substrate i.e., halophyte Atriplex crassifolia
(0.25 g), the reaction was carried out in a shaking water bath set at
75°C and 50 rpm. After 2 h of incubation time, Exo-1,4-β-glucanase
(400 U) was added to the same reagent bottle for another 2 h. Next,
the cellulase i.e., β-1,4-glucosidase was added to the same reagent
bottle and incubated for a period of 2 h. In this way, in sequential
addition of cellulases, each cellulase was added one after the other
and each was incubated for a period of 2 h.

2.5.2 Simultaneous addition of cellulases
Whereas, in simultaneous addition of cellulases, all the three

cellulases i.e., Endo-1,4-β-glucanase (200 U), Exo-1,4-
β-glucanase (400 U) and β-1,4-glucosidase (1000 U) were
added altogether to the screw-capped reagent bottle enclosing
the pre-treated substrate i.e., halophyte Atriplex crassifolia
(0.25 g). The saccharification mixture containing cellulases and
the substrate was incubated for a period of 6 h, in a shaking water
bath set at 75°C and 50 rpm.

2.6 Ethanol fermentation

The saccharified slurry was subjected to ethanol fermentation
following the method of Nawaz et al. (2022).

2.7 Statistical analysis

All the experiment were run in triplicates and subjected to
statistical analysis using SPSS version 16.00. Error bars in the

figures of results section depicted standard deviation (± SD)
among the replicates run, varying significantly at p < 0.05.

3 Results and Discussions

3.1 Biomass compositional analysis

The results of compositional analysis of halophyte Atriplex
crassifolia after subjecting it to three different pre-treatment
techniques revealed that the maximum rate of delignification
(56.6%; p < 0.05), the maximum cellulosic content (57.7%; p <
0.05) and the maximum degradation of hemicellulose was shown by
the halophyte pre-treated using 3% hydrochloric acid as the pre-
treatment reagent, as shown in Figure 1. Acids when used as pre-
treatment reagents are quite competent. Although, they work
excellent for the degradation of hemicellulosic content of the
biomass, but also contribute well in the removal of lignin, hence
enhancing the ease of availability of cellulose for the enzymes, in
turn maximizing the release of fermentable saccharides (Sahoo et al.,
2018). Few important considerations regarding the associated
parameters ensure the appropriate applicability of this method;
this includes residence time, pre-treatment temperature, substrate
concentration and acid strength. The use of acids maximize the
cleaving of the bonds within recalcitrant lignocellulosic structure
and ensure effective conversion of the cellulosic material into
reducing sugars (Solarte-Toro et al., 2019).

3.2 Enzymatic saccharification of pre-
treated Atriplex crassifolia biomass

Comparison of the overall saccharification yields of the
halophyte Atriplex crassifolia pre-treated using different
methods revealed that the maximum saccharification rate
(39.5%; p < 0.05) as well as the maximum yield of reducing
sugars was shown by the halophyte pre-treated using 3%

FIGURE 1
Compositional analysis of halophyte Atriplex crassifolia before and after pre-treatment with different methods.
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hydrochloric acid as the pre-treatment reagent, as shown in
Figure 2. The results of enzymatic saccharification were
parallel to the results of compositional analysis. Therefore, the
halophyte Atriplex crassifolia pre-treated using 3% hydrochloric
acid was chosen for further experiments. The results were in line
with those found by Kumar et al. (2020), who worked on varied
pre-treatment methods to efficiently convert Lantana camara
stem into reducing sugars. Of all the pre-treatment methods used,
the substrate subjected to pre-treatment using acid in an
autoclave, was found to give maximum yield of reducing sugar
upon enzymatic hydrolysis. The results were also consistent with
Ansari et al. (2021), who screened different halophytes for
enzymatic hydrolysis. Results of saccharification revealed that
acid pre-treated P. karka yielded maximum monosaccharides.
Selection of the best pre-treatment method is the key to successful
enzymatic hydrolysis, owing to the fact that saccharification of
pre-treated substrate is greatly increased when the accessibility
and ease of cellulases to the cellulosic fibers is ensured (López-
Linares et al., 2015). To carry out pre-treatment of lignocellulosic
feedstock, dilute acid method is most frequently studied and is
believed to be an economical process for industrial scale
production of bioethanol utilizing lignocellulosic biomass
(Ruiz et al., 2013).

3.3 Optimization of physicochemical
parameters affecting saccharification

3.3.1 Effect of cellulases addition method on
saccharification

Saccharification was conducted using both, sequential addition
of cellulases and by simultaneous addition of cellulases, in order to
evaluate the best method of cellulases addition to achieve maximum
rate of enzymatic saccharification. Overall, simultaneously adding

the cellulases resulted in improved hydrolysis (42.4%; p < 0.05) of
the substrate i.e., pre-treated halophyteAtriplex crassifolia compared
to sequential addition of cellulases (39.1%; p < 0.05), as shown in
Figures 3, 4, respectively. This might be due to the increased activity
of cellulases when they act together synergistically, rather than
individually. These results were found consistent with Mcintosh
and Vancov (2011), who also simultaneously added three enzymes
i.e., cellulase, β-glucosidase and xylanase in combination to conduct
saccharification of wheat straw, and found favorable results. The
synergistic action of enzymes by simultaneous addition of cellulases
was found to increase the total sugar release and it was also found to
reduce the enzyme loadings 3-fold, making the process economical.
Hence, the next optimization reactions of saccharification were
conducted using simultaneous method of cellulases addition.

3.3.2 Effect of incubation time on saccharification
Different incubation times of 1, 2, 3, 4, 5, 6, 7 and 8 h were

analyzed for the bioconversion of substrate i.e., halophyte Atriplex
crassifolia into saccharides. Maximum bioconversion of (42.5%; p <
0.05) was detected after 6 h of incubating the reaction mixture that
contained the cellulases and the pre-treated substrate i.e., Atriplex
crassifolia, as depicted in Figure 5. Increasing the time resulted in a
decrease in the yield of saccharification, as evident from Figure 5. It
might be because of the reason that with additional rise in
incubation time, either the process of product inhibition comes
into action due to accretion of glucose and cellobiose, or due to less
availability of free cellulose with the passage of time. Results of this
research are in accordance with those of Aftab et al. (2017) that
highest saccharification of sugarcane bagasse was observed after 6 h
of incubation using thermophilic cellulases. These alike results can
be attributed to the reason that thermophilic cellulases act more
energetically and that when an amalgam of enzymes is employed for
saccharification, the overall reaction time for hydrolysis is lessened
(Shokrkar and Ebrahimi, 2018).

FIGURE 2
Saccharification studies using halophyte Atriplex crassifolia pre-treated with different methods.
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3.3.3 Effect of incubation temperature on
saccharification

Different incubation temperatures i.e. 70, 75, 80, 85°C and 90°C
were analyzed for the bioconversion of substrate i.e., Atriplex
crassifolia into saccharides. Maximum bioconversion of 42.7%
(p < 0.05) was observed at 75°C after 6 h of incubating the
reaction mixture that contained the cellulases and the pre-treated
substrate i.e., Atriplex crassifolia, as shown in Figure 6. Increasing
the temperature began to decrease the yield of saccharification, as
shown in Figure 6. Hence, temperature of 75°C was optimized for the
saccharification of pre-treated halophyte Atriplex crassifolia. Next
saccharification experiments for the optimization of the remaining
physicochemical parameters were conducted at temperature 75°C

for a period of 6 h. This might be because enzymes work best at their
optimum temperature. As the enzymes used in this study were
cloned using thermophilic microorganisms, the maximum activity
was exhibited at a high temperature. Further increase in temperature
resulted in decreased saccharification, which might be due to
enzyme denaturation (Saha et al., 2005). A temperature higher or
lower compared to the optimum results in reduced transport across
cell wall or enzyme denaturation (Dutt and Kumar 2014). Increasing
both, the incubation time as well as temperature increases the
saccharification rates, but upto a certain optimum point after
which, the enzymes tend to lose their stability and activity, and
the saccharification yields tend to decrease (Mondal et al., 2021).
Majority of the hyperthermophilic microorganisms reported in

FIGURE 3
Saccharification of pre-treated halophyte Atriplex crassifolia using sequential addition of cellulases.

FIGURE 4
Saccharification of pre-treated halophyte Atriplex crassifolia using simultaneous addition of cellulases.
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literature do not efficiently cleave crystalline cellulose at
temperatures <75 °C, because of the lack of carbohydrate-binding
modules (Blumer-Schuette et al., 2008; Maki et al., 2009; Graham
et al., 2011).

3.3.4 Effect of substrate concentration on
saccharification

The concentration of substrate i.e., Atriplex crassifolia was
varied i.e. 0.20, 0.25, 0.30, 0.35, 0.40, 0.45 and 0.50 g in order to
achieve maximum saccharification. On comparing the
saccharification yields achieved using the abovementioned
concentrations of substrate, the highest saccharification yield
of 48.8% (p < 0.05) was observed using 0.40 g of substrate at

75°C after 6 h of incubating the reaction mixture containing the
cellulases and the pre-treated substrate i.e., Atriplex crassifolia, as
depicted in Figure 7. Increasing the concentration of substrate
while keeping other parameters constant, resulted in no
additional increase in the yield of saccharification, as evident
from Figure 7. Hence, substrate i.e., pre-treated halophyte
Atriplex crassifolia concentration of 0.40 g was found optimum
for maximum saccharification. Next saccharification experiments
for the optimization of the remaining physicochemical
parameters were conducted using 0.40 g of substrate i.e., pre-
treated halophyte Atriplex crassifolia at temperature 75°C for a
period of 6 h. One of the possibilities could be that all the pre-
available enzymes ended up as enzyme-substrate complexes, and

FIGURE 5
Effect of incubation time on saccharification of pre-treated halophyte Atriplex crassifolia.

FIGURE 6
Effect of incubation temperature on saccharification of pre-treated halophyte Atriplex crassifolia.
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no additional free enzymes must be available to bind with the rest
of the substrate, so as a result, exceeding the substrate
concentration brings no change (Levine et al., 2011). Increased
substrate concentration might also result in improper mixture
ratio leading to lower yields because of improper interaction of
enzymes with substrates. Besides that, substrate in a less quantity
may become the limiting factor and prevent the bioconversion of
substrate. The results were observed to be different compared to
Bhagwat et al. (2016), who found 2 g of substrate to give best
results for the bioconversion of Parthenium hysterophorus, by
using a mixture of two enzymes i.e., cellulase and β-glucosidase.
This is due to the reason that the optimum concentration of
substrate differs depending on the substrate type and the enzymes
in use.

3.3.5 Effect of endo-1,4-β-glucanase, exo-1,4-
β-glucanase and β-1,4-glucosidase concentration
on saccharification

The concentration of Endo-1,4-β-glucanase was varied in a
range of 50–400 U with an increment of 50 U in order to
achieve maximum saccharification of the halophyte Atriplex
crassifolia. On comparing the saccharification yields achieved
using the abovementioned concentrations of Endo-1,4-
β-glucanase, the highest saccharification yield of 52.4% (p < 0.05)
was obtained with Endo-1,4-β-glucanase concentration of 300 U,
using 0.40 g of substrate at 75°C after 6 h of incubation, as depicted
in Figure 8. Increasing the concentration of Endo-1,4-β-glucanase
while keeping other parameters constant, resulted in no additional
increase in the yield of saccharification.

FIGURE 7
Effect of substrate i.e., pre-treated halophyte Atriplex crassifolia concentration on saccharification.

FIGURE 8
Effect of Endo-1,4-β-glucanase concentration on saccharification of pre-treated halophyte Atriplex crassifolia.
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The concentration of Exo-1,4-β-glucanase was varied in a
range of 200–500 U with an increment of 50 U in order to achieve
maximum saccharification of the halophyte Atriplex crassifolia.
On comparing the saccharification yields achieved using the
abovementioned concentrations of Exo-1,4-β-glucanase, the
highest saccharification yield i.e. 52.6% (p < 0.05) was
obtained with Exo-1,4-β-glucanase concentration of 400 U,
along with Endo-1,4-β-glucanase concentration of 300 U,
using 0.40 g of substrate at 75°C after 6 h of incubation, as
depicted in Figure 9. Increasing the concentration of Exo-1,4-
β-glucanase while keeping other parameters constant, resulted in
no additional increase in the yield of saccharification, as evident
from Figure 9. Hence, Exo-1,4-β-glucanase concentration of
400 U was found optimum for maximum saccharification of
the halophyte Atriplex crassifolia.

The concentration of β-1,4-glucosidase was varied in a range of
800–1100 U with an increment of 50 U in order to achieve
maximum saccharification of the halophyte Atriplex crassifolia.
The highest saccharification yield of 52.7% (p < 0.05) was
obtained with β-1,4-glucosidase concentration of 1000 U, along
with Endo-1,4-β-glucanase concentration of 300 U, and Exo-1,4-
β-glucanase concentration of 400 U, using 0.40 g of substrate at 75°C
after 6 h of incubation, as depicted in Figure 10. Increasing the
concentration of β-1,4-glucosidase while keeping other parameters
constant, resulted in no additional increase in saccharification yield,
as evident from Figure 10. Hence, Exo-1,4-β-glucanase
concentration of 1000 U was found optimum for maximum
saccharification of the halophyte Atriplex crassifolia.

Maximum saccharification of halophyte Atriplex crassifolia i.e.
52.7% was obtained with Endo-1,4-β-glucanase concentration of

FIGURE 9
Effect of Exo-1,4-β-glucanase concentration on saccharification of pre-treated halophyte Atriplex crassifolia.

FIGURE 10
Effect of β-1,4-glucosidase concentration on saccharification of pre-treated halophyte Atriplex crassifolia.
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300 U (Figure 8), Exo-1,4-β-glucanase concentration of 400 U
(Figure 9) and with β-1,4-glucosidase concentration of 1000 U
(Figure 10), when added simultaneously to conduct enzymatic
hydrolysis, keeping other parameters as optimized above.
Increasing the concentration of enzymes further resulted in
constant saccharification yield, might be due to the onset of
saturation point. As the time passes, the substrate would be
converted into product, using up the enzymes’ active sites (Yang
andWyman, 2004). Hence, an optimum amount of each of the three
enzymes is a pre-requisite to increase percentage saccharification.
Enzyme loading is directly linked to the yield of reducing sugars,
where higher enzyme loading yields greater quantities of reducing
sugars, but upto a certain extent (Mota et al., 2021). Yu and Li (2015)
obtained slightly different results, who utilized 200 U of an enzyme
mixture sourced from Gracilibacillus sp. SK1, exhibiting a collective
activity of endoglucanase, exoglucanase and β-glucosidase, for the
saccharification of lignocellulosic biomas. The difference in the
enzyme concentration might be because the optimum ratio of
enzymes required to carry out hydrolysis may vary with each
substrate and the source of enzymes being used (Chandel et al.,
2010).

3.4 Bioethanol production

The slurry containing reducing sugars obtained after
optimization of physicochemical parameters for
saccharification was utilized in submerged fermentation, in
replacement to glucose, for bioethanol production. The
submerged fermentation for ethanol production was done in
fermentation medium by making use of the reducing sugar
slurry. The fermentation medium was inoculated with 2.5% of
seed inoculum of Saccharomyces cerevisiae, under aseptic
conditions. The inoculated reagent bottles were incubated at
30°C and 180 rpm for 96 h. The samples were harvested after
regular intervals to estimate the ethanol content during
fermentation. Maximum bioethanol production percentage

observed was 16.33% at 72 h, as shown in Figure 11.
Exceeding the incubation time further did not exceed the rate
of bioethanol production, as evident in Figure 11. This might be
because of the unavailability of enough reducing sugar to produce
more bioethanol. Cotana et al. (2015) obtained comparable
results for bioethanol production using Phragmites australis
(common reed) as the feedstock, the highest yield of ethanol
noted was 16.56 g ethanol/100 g of sample.

4 Conclusion and future
recommendations

It can be concluded from the study that the halophyte Atriplex
crassifolia owing to its high cellulosic content after pre-treatment
using dilute acid method, yields substantial amount of reducing
sugars and high saccharification rates when subjected to enzymatic
hydrolysis using thermophilic cellulases, under optimized reaction
conditions. Hence, the halophyte Atriplex crassifolia is a beneficial
substrate that can be utilized to extract fermentable saccharides for
bioethanol production.

As a means to enhance the overall yield and the techno-
economic feasibility of the process, certain aspects must be taken
into consideration:

1. Every component of the halophyte Atriplex crassifolia
encompasses the ability to produce industrially important
products. It will require additional research to discover its full
potential.

2. The plantation of suitable species of halophytes with low lignin
contents will enable easy enzymatic action on the main cellulosic
structure, and result in improved saccharification yields, hence
add to the techno-economic feasibility of the overall
bioconversion process.

3. Research on more competent enzyme cocktails is needed with
more powerful and compatible enzymes to enhance the efficiency
of the bioconversion process.

FIGURE 11
Production of bioethanol using the reducing sugar slurry obtained after optimization of physicochemical parameters for saccharification.
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4. Metabolic engineering can be applied to produce the enzymes
required for pre-treatment, saccharification and fermentation
from a single microorganism. This could reduce the process
time; hence add to the cost-effectiveness of the process and ease
of application.

5. Moreover, the most common pre-treatment procedures existent
are not environmentally benign. Although different green
processes have evolved for the pre-treatment of biomass that
offer promising benefits, however, their wide-scale applicability
at industrial level demands high capital cost. Therefore, extensive
research is a requirement to develop the most applicable
techniques for pre-treatment that ensure ease of applicability
along with affordability.
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