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Nicotinamide riboside kinase (NRK) plays an important role in the synthesis of β
-nicotinamide nucleotide (NMN). NMN is a key intermediate of NAD+ synthesis,
and it actually contribute to thewell-being of our health. In this study, genemining
technology was used to clone nicotinamide nucleoside kinase gene fragments
from S. cerevisiae, and the ScNRK1 was achieved a high level of soluble expression
in E. coli BL21. Then, the reScNRK1 was immobilized by metal affinity label to
optimize the enzyme performance. The results showed that the enzyme activity in
the fermentation broth was 14.75 IU/mL, and the specific enzyme activity after
purification was 2252.59 IU/mg. After immobilization, the optimum temperature
of the immobilized enzyme was increased by 10°C compared with the free
enzyme, and the temperature stability was improved with little change in pH.
Moreover, the activity of the immobilized enzyme remained above 80% after four
cycles of immobilized reScNRK1, which makes the enzymemore advantageous in
the enzymatic synthesis of NMN.
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Introduction

In NAD+ biosynthesis, β-nicotinamide mononucleotide (NMN) is a bioactive nucleotide
formed by the reaction between phosphate groups and nucleoside-containing ribose and
nicotinamide (NAMs) (Hong et al., 2020). NMN is a key intermediate of nicotinamide
adenine dinucleotide (NAD+), an essential coenzyme for cellular redox reactions (Liu et al.,
2021). Generally speaking, It has two forms, alpha and beta of which only beta is active with a
molecular weight of 334.221 g/mol. NAD+ plays a crucial role in redox cellular balance,
catabolism, and energy production and the NAD+ molecule acts as an electron carrier in all
three realms of life (Hachisuka et al., 2018; Kalia, Shi Lee et al., 2019). In addition, NAD is a
cosubstrate for enzymes that create signaling metabolites or posttranslationally modify
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proteins (Frederick et al., 2016). There have been many studies
shown that NAD+ levels decline with age, in a wide range of species
(Harrison et al., 2021). NMN needs to be transformed into NAD+ in
vivo to perform its physiological function (Wang et al., 2016).
Recently clinical studies have found that NMN administration
reduces the risk of age-related diseases Alzheimer’s disease and
type 2 diabetes (Longo and Kennedy, 2006;Wang et al., 2016). NMN
has been called the “elixir” and some studies have shown that oral
administration of NMN in the mouse model will lead to the recovery
of NAD+, which can resist aging and prolong life (Das et al., 2019;
Poddar et al., 2019).

NMN is a research hotspot in health products, food and cosmetics,
and more and more attentions were paid to its synthesis. NAD+ is
synthesized in mammalian cells through three different pathways: 1)
synthesis of new tryptophan, 2) synthesis of nicotinamide or nicotinic
acid, or 3) conversion of nicotinamide ribose nicotinamide ribose (NR)
(Belenky et al., 2007). In some mammals, the rescue synthesis pathway
takes NR as the substrate and phosphorylates to produce NMN under
the action of nicotinamide nucleoside kinase (Yoshino et al., 2018). The
synthesis of NMN begins with chemical synthesis. The most effective
chemical synthesismethod at present is the two-stepmethod used in the
2017 Zhang’s group report: the β-isomer was eventually obtained in
85% yield after deprotection of the ester in methanolic ammonia
(Zhang and Sauve, 2017). Owing to the chemical production of
NMN is time-consuming and laborious, the biosynthesis of NMN
has become a hot spot (Huang et al., 2022). Compared with traditional
chemical catalysis, it has unique advantages such as mild conditions,
low equipment requirements and strong stereoselectivity. According to
the reported biotechnological methods of producing NMN in
Escherichia coli, the highest NMN yield can reach 15.42 mg/L
bacterial culture (or 17.26 mg/g protein) (Marinescu et al., 2018). It
is reported that some people use whole cell catalysis to produce NMN.
Extracellular production of 6.79 g/L NMN with glucose and NAM as
substrates. The reaction selectivity from NAM to NMN is 86% (Shoji
et al., 2021). Zhou Jingwen of Jiangnan University and others
transformed E. coli into nicotinamide and glucose, creating a record
high yield of NMN. The NMN titer reached 16.2 g/L, and the
nicotinamide conversion rate was 97.0% (Huang et al., 2022).
According to the current report, both were the highest. Compared

with whole cell catalysis, fed batch fermentation with direct addition of
nicotinamide is more conducive to the industrial production of NMN
(Huang et al., 2022). Chemical synthesis using nicotinamide nucleoside
(NR) as substrate depends on excessive phosphorus oxychloride and
requires strict temperature operation which is not suitable for industrial
(Qian et al., 2022). A new nicotinamide nucleoside kinase (Klm-NRK)
from Kluyveromyces martensii and purified it. The specific activity of
Klm-NRK was 7.9 U mg−1 protein, which was in the forefront of the
reported NRK (Qian et al., 2022). Therefore, optimizing the enzymatic
properties of nicotinamide nucleoside kinase plays an important role in
the synthesis of NMN.

Immobilization technology is a mature and commonly used
method in the development of enzymes. The main motivation of
enzyme immobilization has always been to improve the performance
of the enzyme. This can be achieved by improving the activity,
stereoselectivity or stability of the enzyme. The enzyme exists in
an appropriate physical form so that it can be recycled and reused at
the end of biotransformation (Federsel et al., 2021). In this study, we
plan to use gene mining technology to clone nicotinamide nucleoside
kinase gene fragments from Saccharomyces cerevisiae, and then use
pET28a plasmid to achieve a high level of soluble expression in E. coli
BL21, and analyze its free enzymology characteristics, and then the
nicotinamide nucleoside kinase was immobilized by metal affinity
labeling to optimize the enzyme performance. The metal affinity label
is hexahistidine (6 × His), which can gently bind to the C or N
terminal of the enzymemolecule, and then specifically bind to Ni2+ on
the carrier, so as to achieve the directional immobilization of the
enzyme on the carrier (Wu and Filutowicz, 1999). The temperature
stability of immobilized enzyme was improved, and the enzyme could
be reused, simplifying the experimental process, which can effectively
synthesize NMN.

Materials and methods

Reagents and kits

NR, NMN and Adenosine triphosphate (ATP) were purchased
from Macklin (Shanghai, China). Commonly molecular biology
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reagents and kits, mainly including restriction enzymes, DL
2,000 DNA Marker and PrimeSTAR® HS DNA Polymerase and
so on, were purchased as previously reported (Wang et al., 2021).
Methanolwere purchased from Komiou (Tianjin, China).

Strains, plasmids, and culture media

Carrying prokaryotic expression plasmid E. coli BL21 (DE3)/
pET28a, S. cerevisiae strains were preserved by our research
group. The culture of E. coli uses LB medium, and YPD medium
is used for the culture of Saccharomyces cerevisiae (Tang et al., 2020a).

Web server and soft wares

National Center for Biotechnology Information (NCBI) was
appled for searching nicotinamide nucleoside kinase sequence
and structure. ProtParam tool was accustomed to predict
theoretically physical and chemical parameters of target enzyme.
DNAMAN was used for sequence analysis. TMHMM −2.0 was used
to predict transmembrane region of the target enzyme. Origin
9.0 was used for data analysis.

Cloning and expression of nicotinamide
nucleoside kinase gene

With S. cerevisiae and nicotinamide nucleoside kinase as key
words, the potential nicotinamide nucleoside kinase of S. cerevisiae
was searched in NCBI. Based on the reported sequence, the primers
ScNRK1-F and ScNRK1-R used to amplify nicotinamide nucleoside
kinase1 (NRK1) gene sequence. According to this method (Tang et al.,

2020b), Take the total RNA of S. cerevisiae as the template, and use
PrimeScript™ II 1st Strand cDNA Synthesis Kit is used to synthesize
the first strand of cDNA, and then ScNRK1-F and ScNRK1-R primer
PCR are used to amplify the coding gene of nicotinamide nucleoside
kinase. The restriction endonucleases Nde Ⅰ and Xho Ⅰ are used to
double digest the target gene and pET28a plasmid respectively, and
then linked and transformed into E. coli BL21 (DE3) competent cells,
obtained E. Coli BL21 (DE3)/pET28a ScNRK1 recombinant strain.

Expression and purification of nicotinamide
nucleoside kinase1

The E. coli BL21 (DE3)/pET28a and recombinant E. coli strains
containing nicotinamide nucleoside kinase encoding genes were
picked and induced as described previously (Tang et al., 2019).
Recombinant E. coli was induced by the reported method (Tang
et al., 2018a). Then, we collected the induced recombinant cells
through cryogenic centrifuge centrifugation, and The
APV2000 high-pressure homogenizer (Gatesville, New York,
United States) splits the cell lysate through high-pressure
homogenization, centrifuges and purifies the collected cell lysate
(Ma et al., 2009; Tang et al., 2018b; Hong et al., 2020). The protein
concentration and sodium dodecyl sulfate-polyacrylamide gel
electrophoresis of the nicotinamide nucleoside kinase1 were
performed using reported previously method (Laemmli et al., 1970).

Immobilized nicotinamide riboside kinase1

The cells collected by induction centrifugation were sonicated
and then centrifuged to collect the supernatant, to which 2 mM
MgCl2 and 1% NaCl were added to increase the binding amount of

FIGURE 1
The agarose gel electrophoresis analysis for PCR products of ScNRK1. and double enzyme digestion verification of recombinant E. coli BL21 (DE3)/
pET28a -ScNRK1. (A) PCR detection. LaneM, DNAmarker; lane 1-5, PCR products from different strains of E. coli BL21 (DE3)/pET28a-ScNRK1; (B)Double
digestion detection. Lane M, DNA marker; lane 1, Double digestion products of E. coli BL21 (DE3)/pET28a-ScNRK1 by Nde Ⅰ and Xho Ⅰ.
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enzyme and agarose-Ni2+ column. The new column was equilibrated
by washing with 5 times the column volume of binding solution, and
the collected supernatant was added to the agarose-Ni2+ column and
repeatedly suspended four times to increase the amount of enzyme
binding, and finally the proteins were washed with deionized water
(Jia et al., 2021). The agarose-Ni2+ columnmedia was then aspirated,
freeze-dried, and the drying was completed in a four-degree
refrigerator for subsequent use.

Enzyme activity and protein assays

NRK1 enzyme activity analysis: nicotinamide ribose (NR) was
used as substrate, and NMN production was used as standard to
calculate the enzyme activity. The determination of nicotinamide
nucleoside kinase1 activity was slightly modified based on the
reported method (Liu et al., 2021). The reaction system of free
enzyme is 20 mmol/L pH5.8 Tris-HCL buffer, 10mmol/LMgCl2,
2 mmol/L ATP, 10 mmol/L NR, 0.1 mL diluted enzyme. The
reaction system of immobilized enzyme is 20 mmol/L
pH5.8 Tris-HCL buffer, 10 mmol/LMgCl2, 2 mmol/L ATP,
10 mmol/L NR, 0.03 g immobilized enzyme. Both were reacted at
40°C for 10 min, and the free enzyme was heated in boiling water for
5 min to terminate the reaction, and the reaction solution to be
measured was filtered through a 0.22 μm filter membrane after the
reaction was terminated. The immobilization reaction was
terminated by centrifugation at 4°C and 12,000 rpm for 2 min.

After centrifugation, the enzyme and liquid were separated. The
supernatant was aspirated with a 1 mL syringe, the supernatant was
filtered through a 0.22 μm filter membrane, and the precipitated
immobilized enzyme was placed in −20°C for next use.
Chromatographic conditions: Thermo Hypersil BDS C
18 column (250 mm × 4.6 mm, 5 µm), detection wavelength:
260 nm; injection volume: 10 μL. mobile phase: V (methanol): V
(phosphate buffer) = 5:95 buffer; flow rate: 1 mL min−1. The amount
of enzyme required to generate 1 μmol of NMN per minute under
assay conditions was defined as 1 unit of enzyme activity. Then, use
quantity one to estimate the apparent molecular weight of NRK1
(Tang et al., 2016).

Temperature characteristics of the
recombinant enzyme

According to the reported method, the temperature and
pH characteristics of the determination of recombinant
nicotinamide ribokinase1 were slightly modified (Hong et al.,
2020). The optimum temperature of the free and immobilization
recombinant nicotinamide nucleoside kinases1 was determined
under the above standard determination conditions, except
temperature ranging from 25 to 55°C. To estimate the
thermostability, the free and immobilization recombinant
nicotinamide nucleoside kinases1 were incubated at pH 5.8 and
various temperatures (25–55°C) for 1.0 h, and then, the residual
enzyme activity was measured under the optimal reaction pH and
temperature.

pH characteristics of the recombinant
enzyme

The optimum pH of the free and immobilization recombinant
nicotinamide nucleoside kinases1 was determined under the above
standard determination conditions, except pH ranging from 3.4 to
8.8. To estimate the pH stability, the free and immobilization
recombinant nicotinamide nucleoside kinases1 were incubated at
various pH (3.4–8.8) for 1.0 h, and then, the residual enzyme activity
was measured under the optimal reaction temperatures and pH.

Kinetic parameters for the recombinant
enzyme

The kinetic parameters of recombinant nicotinamide riboside
kinase1 were determined with slight modifications according to the
reported method (Tempel et al., 2007). To determine the specificity
of NR substrates, the concentration of ATP in the immobilization
system was 1 mmol/L. The catalytic activity of the recombinant
enzyme was measured at optimal reaction condition with varied
nicotinamide riboside concentrations from 0.01 to 0.03 mg. Each
measurement was executed three times. Similarly, the specificity of
ATP substrate was determined. The concentration of immobilized
NR was 1 mmol/L, and the ATP concentration was set to
0.04–0.2 mg to determine the catalytic activity of the
recombinant enzyme. Each measurement was executed three

FIGURE 2
SDS-PAGE analysis of recombinant Escherichia coli expression
products. SDS-PAGE analysis of recombinant Escherichia coli
expression products M, PageRuler Prestained Protein Ladder; 1,
expression products of E. coli BL21 (DE3)/pET28a; 2, crude
expression product of E. coli BL21 (DE3)/pET28a-ScNRK1; 3, purified
expression product of E. coli BL21 (DE3)/pET28a-ScNRK1.
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times. The apparent kinetic data for the enzyme exhibiting no
substrate inhibition were calculated using the Michaelis-Menten
equation (Ziegler et al., 2009). All calculations were performed by
Origin 9.0.

Reusability of reconstituted reScNRK1

To test the number of times the immobilized enzyme can be
reused: the immobilized enzyme was used repeatedly to utilize the
immobilized enzyme 10 times according to the above immobilized
enzyme measurement method.

Results and discussion

Gene cloning and expression of
nicotinamide riboside kinase1

A nicotinamide nucleoside kinase1 from S. cerevisiae was found
in NCBI. The corresponding genome sequence (Genebank:
AY611479.1) was designed to amplify the upstream and
downstream primers of the target gene according to the
corresponding gene sequence of ScNRK1. ScNRK1-F: GGAATT
CCATCATGATGATGACTTCGAAAAAAAAAAAGTGATA
(including Nde I digestion site) and ScNRK1-R: CCGCTCGAGCTA
ATCCTTACAAGCTTTAG (including Xho I digestion site), Suzhou
Hongxun Biotechnology was entrusted to conduct primer synthesis.

FIGURE 3
HPLC analysis of NMN standard and substrate NR. (A) Retention time of NMN standard in HPLC, (B) Retention time of NR standard in HPLC.

FIGURE 4
Standard curve of NMN. Prepare 100 μMNMN stock solution and
dilute it to standard solutions of 20 μM, 40 μM, 60 μM, 80 μM and
100 μM respectively as standard koji of immobilized enzyme. The
abscissa is the NMN standard concentration, and the ordinate is
the peak area.

FIGURE 5
The optimal reaction temperature of the reScNRK1. The optimal
reaction temperature of the reScNRK1 toward NR was determined
under the standard assay conditions as above, except temperatures
ranging from 25°C to 55°C.
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The total RNA of S. cerevisiae was used as the template, and after
reverse transcription, ScNRK1-F and ScNRK1-R were used as the
primers for PCR amplification. The amplified products were
subjected to agarose gel electrophoresis, as shown in Figure 1A,
there were obvious specific bands at about 750 bp, and the length of
the PCR product fragment was basically consistent with the expected
theoretical length. The PCR products were purified and recovered
with the kit, and then double digested with Nde Ⅰ and Xho Ⅰ. The
digested products were connected to the pET28a plasmid which was
also double digested, and transformed into E. coli BL21 (DE3)
competent cells were screened for kanamycin resistance and
detected by double enzyme digestion and double enzyme
digestion electrophoresis as shown in Figure 1B. After
identification, they were sent to Shanghai Sangon for sequencing
and identification to obtain the gene sequence of ScNRK1 and
speculate its amino acid sequence.

Sequence analysis of ScNRK1

The deduced amino acid sequence of ScNRK1 was predicted on
ProtParam for theoretical physical and chemical properties. The results
showed that the theoretical isoelectric point (pI) of ScNRK1was 6.23, the
theoretical molecular weight was 27689.58 Da, and the instability index
II was 25.59. ScNRK1 was a relatively stable protein, and its half-life in
E. coli and yeast could reach more than 10 h and 20 h respectively. The
TMHMM—2.0 server was used to predict the transmembrane structure
of the protein. The results showed that 240 amino acid residues of
ScNRK1 were extracellular residues, indicating that ScNRK1 was
theoretically easier to achieve extracellular secretory expression.

Expression, purification and immobilizition
of nicotinamide nucleoside kinase 1

To evaluate the expression level and enzymatic properties of
ScNRK1, the recombinant E. coli strain containing ScNRK1 encoding
gene was picked and incubated as above method. The reScNRK1 was
purified by affinity chromatographywithHis tag, and the purified results
were analyzed by SDS-PAGE (Figure 2). As shown in Figure 2, the
reScNRK1 was successfully expressed in soluble form. Furthermore, the
results indicated that the reScNRK1 was purified to homogeneity with
apparent molecular weight of 27 kDa, which was consistent with its
theoretical molecular weight of 27689.58 Da. After measurement and
conversion, the dehydrogenase activity in fermentation liquor was
14.75 IU/mL. And the specific activity of the reScNRK1 toward
nicotinamide riboside was 2252.59 IU/mg, which was significantly
higher that previously reported (Bieganowski and Brenner, 2004),
and had greater potential for application. The immobilized enzyme
activity was 107.80 IU/mL, the activity of immobilized enzyme is 7 times
higher than that of free enzyme. In this study, 10 mL of cell lysate was
collected per 100 mL LB induction, and the lysate was passed through
2 mL agarose-Ni2+ column, and 0.523 g of immobilized enzyme was
finally collected by freeze-drying. The recovery of enzyme activity of
immobilized enzyme was 81%.

FIGURE 6
The temperature stability of the reScNRK1. The residual enzyme
activity was measured at its optimal reaction temperature after being
preincubated 1 h respectively.

FIGURE 7
The pH optimumof the reScNRK1. The pH optimumof the r reScNRK1 was assayed by the standard activity assaymethod as stated above except the
reaction pH values ranging from 3.4 to 8.8.
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HPLC analysis of NMN standard

The analytically pure NMN was analyzed by HPLC on
ThermoHypersil C 18 column. Under this analysis condition, the
retention time of NMN was about 2.79 min, as shown in Figure 3A.
The substrate standard was also analyzed by HPLC, with the
retention time of 4.02 min, as shown in Figure 3B. As shown in
Figure 4 the immobilized standard curve is y = 6345.6x—15471, R2 =
0.9994, The results show that under the HPLC analysis conditions
and concentration range, the concentration of NMN is linearly
related to the peak area. Therefore, this method can be used to
accurately quantify NMN.

Temperature characteristics of the
reScNRK1

The temperature characteristics of free and immobilization
reScNRK1 were determined. The results are shown in Figure 5 and
Figure 6 respectively. It can be seen from Figure 5 that when the free
enzyme is in the temperature range of 20°C–30°C, the enzymatic
reaction rate increases with the increase of temperature. When the
temperature exceeds 30°C, the reaction rate decreases. The optimal
reaction temperature of free enzyme is 30°C, which is not close to the
physiological temperature of human body, but closer to the optimal
growth temperature of bacteria. The optimum temperature of
immobilization enzyme was 40°C, which was higher than that of
free enzyme. It can be seen from Figure 6 that when the incubation

temperature of free enzyme exceeds 40°C, its residual enzyme activity
decreases significantly, only about 50%. The stability of the immobilized
enzyme is relatively good, and the residual enzyme activity is 50% at
45°C. In general, the stability of the immobilized enzyme is improved.
Metal affinity tag immobilization is a method to immobilize enzyme
molecules on a carrier by forming coordination bonds between certain
amino acids and transition metal ions (Fe2+, Co2+, Ni2+, etc.). The
optimum temperature of immobilized enzymes is higher than that of
free enzymes, which may be attributed to the decreased flexibility and
increased rigidity of the enzyme after immobilization.

pH characteristics of the reScNRK1

The optimum reaction pH value and pH stability of free and
immobilization reScNRK1 were determined. The pH of buffer too high
or too low may lead to changes in spatial structure of the enzyme, thus
reducing its catalytic activity (Shortall et al., 2021). The results are
shown in Figure 7 and Figure 8. It can be seen from Figure 7 that
reScNRK1 is an acidophilic enzyme, and its optimal reaction pH is 5.8.
When the pH is far from its optimum pH and within the acidic range,
its catalytic activity decreases slightly. However, when the pH value of
the system is alkaline, the catalytic activity of the recombinant enzyme
will decrease significantly. Therefore, it is necessary to control the
reaction system to be acidic during use. It can be seen fromFigure 8 that
reScNRK1 has good tolerance to acidic pH, and its residual enzyme
activity can be greater than 90% under measurement conditions, but its
catalytic activity is significantly reduced under alkaline conditions.

Kinetic parameters of the reScNRK1

In order to determine the specificity of NR substrate, modify the
system NR and ATP concentrations according to the literature
(Dölle and Ziegler, 2009). The kinetic parameters of the free and
immobilized reScNRK1 toward nicotinamide riboside (NR) and
ATP were determined according to the above method, and the
results are shown in Table1. The free reScNRK1 exhibited high
catalytic efficiency and affinity toward nicotinamide riboside, its Km

and Vmax values were 18.69 mM and 98.39 μmol·min−1·mg−1.
Meanwhile, it exhibited high catalytic efficiency and affinity
toward ATP, its Km and Vmax values were 54.27 mM and
137.12 μmol·min−1·mg−1, indicating that the reScNRK1 has great
potential in the rapid removal of nicotinamide riboside and ATP.
Compared with the free reScNRK1, the Km value of the immobilized
enzyme increased significantly, indicating that the spatial barrier
after immobilization reduced the affinity of the enzyme to the
substrate.

TABLE 1 Kinetic parameters of recombinant nicotinamide nucleoside kinase1.

Enzyme Substrate Km (mM) Vmax (μmol·min−1·mg−1)

Immobilized enzyme NR 54.76 46.97

ATP 173.18 88.16

Free enzyme NR 18.69 98.39

ATP 54.27 137.12

FIGURE 8
The pH stability of the reScNRK1. The residual activities were
assayed under the optimal reaction temperatures and pH values after
preincubating at 0°C for 1.0 h in varied pH values from 3.4 to 8.8.
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Reusability of reconstituted reScNRK1

An important role of immobilized technology is that the enzyme
can be reused. It can be seen from Figure 9 that the immobilized
enzyme remains 80% active after 4 times of reuse, which is
conducive to the recycling of enzyme and promotes industrial
production. There are some disadvantages of metal affinity
immobilization technology, such as tedious modification process
of carriers and enzymes, and sometimes there are disadvantages
such as easy dislodgement of metal ions, low selectivity and low
affinity, which may be the reason of poor reusability. Factors
affecting the adsorption and desorption of protein and Ni2+: 1)
the adsorption and desorption of immobilized enzyme protein and
metal Ni2+ are greatly influenced by the pH of the solution, usually
the adsorption capacity is enhanced with the increase of the solution
pH, because NRK1 is acidophilic enzyme and the reaction system is
acidic, 2) the influence of ionic strength, at low salt concentration,
the metal ions and protein mainly interact electrostatically, which
will cause non-specific adsorption, but as the salt concentration
increases, the positively and negatively charged salt ions cause a
shielding effect between the protein and the metal ion. These two
points may be the reason why the immobilized enzymes become less
and less active in use.

Conclusion

Nicotinamide mononucleotide is recognized as a nucleotide
of NAD+ biosynthetic intermediate (Poddar et al., 2019), which is
a research hotspot in food, cosmetics and health products.
Genome mining technology can quickly transform
hypothetical enzymes into real ones, providing more options
for biocatalysis (Gong et al., 2013). In conclusion, in this
study, nicotinamide ribokinase1 was successfully cloned from
S. cerevisiae and solubilized for expression in E. coli, and the

optimum temperature of the immobilized enzyme was increased
and the temperature stability was improved. Immobilized
nicotinamide riboside kinase1 can be recycled four times to
maintain more than 80% activity, which implies a reduction in
the cost contribution of the biocatalyst by reducing cost of the
final product (Federsel et al., 2021). However, the number of
times this can be recycled is small and the immobilization method
will be improved subsequently.
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FIGURE 9
Reusability of immobilized reScNRK1. According to the above
enzyme activity measurement method, repeatedly measure the
activity of immobilized enzyme.
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