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In the past, linear dimensionality-reduction techniques, such as Principal
Component Analysis, have been used to simplify the myoelectric control of
high-dimensional prosthetic hands. Nonetheless, their nonlinear counterparts,
such as Autoencoders, have been shown to bemore effective at compressing and
reconstructing complex hand kinematics data. As a result, they have a potential of
being a more accurate tool for prosthetic hand control. Here, we present a novel
Autoencoder-based controller, in which the user is able to control a high-
dimensional (17D) virtual hand via a low-dimensional (2D) space. We assess the
efficacy of the controller via a validation experiment with four unimpaired
participants. All the participants were able to significantly decrease the time it
took for them to match a target gesture with a virtual hand to an average of 6.9s
and three out of four participants significantly improved path efficiency. Our
results suggest that the Autoencoder-based controller has the potential to be
used to manipulate high-dimensional hand systems via a myoelectric interface
with a higher accuracy than PCA; however, more exploration needs to be done on
the most effective ways of learning such a controller.
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1 Introduction

The complexity of the human hand has been the topic of abundant research aimed at
understanding its underlying control strategies. With 27 degrees of freedom (DOFs)
controlled by 34 muscles, replacement of the hand, in cases of congenital or acquired
amputation, can be a difficult task, oftentimes either oversimplified (e.g., one-dimensional
hooks) or overcomplicated (e.g., high-dimensional prosthetic hands) by prosthetic solutions.
And while the intricacy of developed prosthetic hands available on the market grew over the
last 5 decades (Belter et al., 2013), their control methods have fallen behind (Castellini, 2020).

The conventional method of controlling dexterous prosthetic hands is through
myoelectric interfaces, in which electromyographic (EMG) signals from existing muscles
in the amputee’s residual limb are used to operate the device. However, lack of available
muscle signals due to the difference in amputation levels oftentimes poses limitations on the
controllers themselves (O’Neill et al., 1994). The issue arises from the fact that while there
might be many DOFs in the device, which allows for an individuated movement, a limited
number of EMG signals might be available on the residual limb to control these DOFs (Iqbal
and Subramaniam, 2018). To account for the differences in the control and output
dimensions, some have investigated the potential of using dimensionality-reduction (DR)
methods.
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A famous study in which a DR technique was applied to complex
hand kinematics during object grasping was done by Santello et al.
(1998). There, the group used principal component analysis (PCA),
which is a linear DR technique that creates a low-dimensional
(latent) representation of the data by finding the directions in the
original space that explain the most variance in the input data. In
their study, they found that a 2D latent space could account for
approximately 80% of the variability of hand kinematics during
various type of grasping. Relying on this finding, several groups have
developed, what they called, a postural controller in which a
prosthetic hand with multiple DOFs could be operated via a 2D
space (Magenes et al., 2008; Ciocarlie and Allen, 2009; Matrone et al.,
2010; Matrone et al., 2012; Segil and Weir, 2013; Segil et al., 2014;
Segil and Weir, 2015).

One of the main limitations of PCA is its linearity, due to which
it can only account for linear relationships in the input data. In our
recent study, we explored the use of a nonlinear autoencoder (AE) as
a way to account for nonlinear relationships in hand kinematics data
(Portnova-Fahreeva et al., 2020). In the study, we found that two
latent dimensions of an AE could produce superior results to that of
PCA, reconstructing over 90% of hand kinematics data. In addition,
a nonlinear AE spread the variance more uniformly across its latent
dimensions, allowing for a more even distribution of control across
each DOF. As a result, AEs may serve as a platform for more
accurate lower-dimensional prosthetic control, utilizing its
reconstruction power and more equal spread of latent dimension
variance.

Leveraging these findings of superior features of nonlinear AEs
over its linear counterpart (i.e., PCA), we developed and
implemented a novel myoelectric controller that allowed for the
control of a high-dimensional virtual hand with 17 DOFs via a low-
dimensional (2D) control space using only four muscle signals. We
referred to it as an AE-based controller. An in-depth description of
the development and implementation of the controller as well as the
motivation behind certain design choices, such as the type of an AE
network used for dimensionality reduction of hand kinematics, are
presented in this paper. In addition, a simple validation experiment

was run to assess the ability of four unimpaired naïve users to learn
to control a multi-DOF virtual hand with four EMG signals without
being aware of the underlying dimensionality of the controller. The
least and most effective ways of training this AE-based controller
were assessed in a different work done by our group (Portnova-
Fahreeva et al., 2022).

2 Methods

2.1 Autoencoder-based controller

2.1.1 Standard autoencoders
In the our previous study (Portnova-Fahreeva et al., 2020), we

determined the superiority of a standardAE structure (Figure 1A) to the
conventional linear PCA method when reducing the dimensionality of
complex hand kinematics to two latent dimensions.

AEs are artificial neural networks consisting of two components:
an encoder that converts the inputs (x) to a latent representation,
followed by a decoder that transforms the latent representation back
into the outputs (x̂), with the same dimensions as the inputs. A
standard AE learns to efficiently encode the input data variability
within its latent space by minimizing the reconstruction error
between the input and the output of the network (Eq. 1).

LossAE � x − x̂‖ ‖2 (1)

2.1.2 Variational autoencoders
Despite their strong capabilities of reconstructing biological data

with minimal information loss, the topological characteristics of
latent spaces derived from standard AEs do not allow for intuitive
interpolation. In other words, points that are not part of the encoded
latent space often reconstruct to unrealistic data. In the case of the
hand kinematic data from our previous study (Portnova-Fahreeva
et al., 2020), this would result in the reconstruction of unnatural
hand gestures with joint angles outside of their possible ranges of
motion.

FIGURE 1
(A) Structure of a standard autoencoder (AE) with three hidden layers. Themiddle layer represents the latent space. Curves over the units represent a
nonlinear activation function. (B) Structure of a variational autoencoder (VAE) with three hidden layers and a regularizer term before the latent space.
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In addition, standard AEs often yield inconsistencies in the
latent space, leaving large gaps between encoded clusters of different
data types (e.g., different gestures) (Portnova-Fahreeva et al., 2020).
This means that getting from one gesture to another would require
crossing spaces of unrealistic datapoints. As a result, such a latent
space may not be the most optimal option for myoelectric prosthetic
control (Figure 2, left).

To counteract these fundamental problems of standard AEs, we
proposed using a Variational Autoencoder (VAE) (Kingma and
Welling, 2013) in the development of our controller. Differently
from a standard AE, a regularizer term is added to the
reconstruction error in the VAE cost function, which aims to
match the probability distributions of the latent space to that of
a prior (or source) distribution (Figure 1B). VAEs typically use the
Kullback-Leibler Divergence (KLD) (Kullback and Leibler, 1951) to
minimize the distance between the latent and the source
distribution. When the source distribution is a Gaussian, the cost
function that a VAE optimizes is:

LossVAE � x − x̂‖ ‖2 + β*KLD N μx, σx( ), N 0, I( )[ ] (2)
By optimizing the two terms of the cost function, the resulted

VAE latent space can locally maintain the similarity of nearby
encodings yet be globally densely packed near the latent space
origin (Figure 2, right). In our study, VAE was trained to
regularize the latent space distribution N(μx, σx) into a normal
Gaussian distribution (μ = 0, σ = 1). Such a shape was desired for

simple center-out reaching tasks to recreate various gestures that we
required from the users during validation.

We applied the VAE network to the data recorded from one of
the participants (P1) from Portnova-Fahreeva et al., which resulted
in a 2D latent space with separable encoded gesture classes
(Figure 3).

We performed hyperparameter tunning on the VAE network to
determine the most optimal model for the given data. We used a
separate validation dataset not included in the analysis performed in
the original study (Portnova-Fahreeva et al., 2020), in which the
participant performed American Sign Language (ASL) gestures. The
hyperparameters under assessment were the type of nonlinear
activation function between neural network layers, learning rate,
and the weight on the regularizer term in the cost function, indicated
with β (Eq. 2). The performance of each hyperparameter pair was
evaluated in terms of reconstruction, assessed with a Variance
Accounted For (VAF) between the input and the output of the
network, and similarity between the empirical VAE latent space and
the target distribution (i.e., normal Gaussian), calculated with via
KLD. VAF was calculated using Eq. 3.

VAF %( ) � 1 − var Y − Ŷ( )
var Y( ) *100% (3)

Y −original data
Ŷ −reconstructed data
The VAE network with the most optimal performance was as
follows: learning rate = 0.025, tanh activation function for the

FIGURE 2
Examples of potential two latent spaces without (left) and with (right) regularization as part of the neural network. In the absence of the regularizer,
the latent space yields close points that are not actually similar once decoded (note the points that are close to each other but of different color). In
addition, without regularization, some points on the latent space can reconstruct to something unexpected (note the purple point). Regularization, on the
contrary, yields a more uniformly distributed latent space, in which two close points project into similar representations once decoded. Points on a
regularized latent space also give “meaningful” content when reconstructed.
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nonlinear layers (see Figure 1B), and β � 0.0007. This network
produced KLD of 0 and VAF of 97 − 98%.

2.2 Virtual hand

The controller was validated using a virtual environment with a
3D computer model of a hand with 17 DOFs (Figure 4A). The
17 DOFs that were operated with the controller were flexions/
extensions of the three joints (metacarpal, proximal
interphalangeal, distal interphalangeal) of the four fingers (pinky,

ring, middle, and index) and flexion/extension of two joints of the
thumb (metacarpal and interphalangeal) as well as the 3D rotation
of its carpometacarpal joint.

To prevent the hand from generating biologically unnatural
gestures during the control, we limited the possible ranges of
motion of the virtual hand joints to the ranges of motions of an
actual hand. If the reconstruction output yielded a number
outside of the natural range of motion of a hand joint, that
joint did not change its angle in the virtual hand. Neutral gesture
was defined as a completely open hand, with all fingers fully
extended.

FIGURE 3
Latent space derived by applying a variational autoencoder to hand kinematics data of an individual performing American Sign Language gestures.

FIGURE 4
(A) 17 degrees of a freedom (DOFs) of the virtual hand. (B) Surface electrode placement on the participant’s forearm for the myoelectric interface.
Each electrode location is specific to one of the four wrist movements.
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2.3 Controller components

The developed AE-based controller, which converted four
muscle signals into 17 joint kinematics of a virtual hand,
contained four components: EMG acquisition, Vector Summation
Algorithm (VSA), EMG-to-kinematics map, and kinematic
decoding (Figure 5). Each component of the controller is
described at length in the sections below.

2.3.1 EMG acquisition
The control of the virtual hand was performed with muscle

signals acquired from four surface EMG electrodes (Delsys Inc., MA,
United States), placed on the user’s right forearm (Figure 4B). Each
electrode recorded one of the four wrist movements: flexion,
extension, abduction, and adduction. Raw EMG signals were
recorded at a sampling frequency of 2kHz. A series of standard
pre-processing techniques were applied to the raw recordings to
extract the EMG envelope: a 3rd orderband-pass Butterworth filter
30 − 450Hz to eliminate movement artifacts and high frequency
noise, rectification, and a 3rd order low-pass Butterworth filter at
3Hz. A low-pass filter was chosen over another standard technique
in signal processing of EMG (i.e., a moving-average filter) due to the
latter being a finite impulse response (FIR) filter. Such filters tend to
exhibit “ripples” at higher frequencies, making some of the higher
frequencies “rebound” during cursor control. Such frequency
response of FIR filters makes them, in our experience, less
suitable for control purposes, leading to noisier control signal.

A calibration procedure was performed on the recorded EMG
signals to verify proper electrode placement. This step was done by
means of visual inspection. There, the user was asked to perform a
single wrist movement, and the study coordinator confirmed that
only one of the four recorded EMG signals was active.

After that, each participant was asked to perform 60s of
structured movements, in which they were asked to move their
wrist up/down/right/left from the neutral position (hand resting
upright on the lap). Eachmovement was performed seven times with
the guidance of the study coordinator. The participants were asked
to keep contractions at a comfortable level when performing the
movements.

In addition, we recorded 10s of resting EMG, in which the
participants had their right hand placed on their lap in a comfortable
position, with the muscles completely relaxed. The signals recorded
during this resting phase were used to subtract from each muscle’s
offsets that did not correspond to voluntary contractions of the
muscles.

For each muscle i, the EMG envelope was calibrated using the
maximum value recorded during rest, max(EMGrest,i), and during
the structured movements, max(EMGstruct,i) (Pistohl et al., 2013)
(Eq. 4). A scaling value, scalei, was also applied to ensure the
participants had full coverage of the workspace without over-
contracting their muscles.

EMGcalib,i � scalei
EMGi −max EMGrest,i( )

max EMGstruct,i( ) −max EMGrest,i( )
(4)

2.3.2 Vector Summation Algorithm
The calibrated EMG signals of the four wrist muscles were

combined using a VSA to obtain a 2D control signal. The muscles
that controlled wrist extension/flexion were mapped to move the 2D
controller in the up/down direction (i.e., y axis). Similarly, wrist
abduction/adduction moved the controller in the right/left direction
(i.e., x axis). Consequently, if the user positioned their arm with the
palm facing down, their hand movements would match the
controller response on the 2D space (i.e., moving wrist up and

FIGURE 5
Setup of the AE-basedmyoelectric controller. Four electromyographic (EMG) signals, generated during wrist movements, are acquired with surface
electrodes (EMG acquisition) and combined using a Vector Summation Algorithm (VSA) into a 2D vector (xEMG , yEMG). The vector is then transformed into
a 2D cursor on the latent space (xkinem , ykinem) via EMG-to-kinematics map, which, in turn, reconstructed into full 17D hand kinematics via the decoder
part of the variational autoencoder network (kinematic decoding).
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down would correspond to up and down movements of the cursor
on the control plane). An offset was also added to both the x and y
directions in cases when the calibrated rest position did not appear
to match the center point of the workspace (Eqs 5, 6).

xEMG � EMGcalib,abduction − EMGcalib,adduction( ) − xoffset (5)
yEMG � EMGcalib,extension − EMGcalib,flexion( ) − yoffset (6)

Matching the resting EMG position with the center of the latent
space ensured that every trial started from the neutral gesture and
every movement was performed in the center-out reaching manner.
In the resting position, the corresponding virtual hand gesture was
with all five fingers completely open.

An additional 3rd order low-pass Butterworth filter of 1Hz was
applied to the cursor position to further smoothen the myoelectric
controller. The cutoff frequency was determined by testing a range
of values during a pilot run to determine the one that produced
stable controller results without a significant delay.

2.3.3 EMG-to-kinematics map
After mapping calibrated EMG signals to a 2D cursor position

on the screen (xEMG, yEMG), we transformed it into a 2D position on
the latent space (xkinem, ykinem) to account for the difference in the
screen and latent space dimensions. This was done by scaling the
cursor position using screen max (i.e., the length of the control plane
in the local coordinate frame on the screen), and latent max (i.e., the
length of the control plane in the latent space) (Eqs 7, 8). latent max

defined a square that encompassed all the encoded points on the
latent space as seen in Figure 3.

xkinem � xEMG*
latent max

screen max
(7)

ykinem � yEMG*
latent max

screen max
(8)

2.3.4 Kinematic decoding
The decoder sub-network of the VAE model was finally utilized

to reconstruct a point on a 2D control space (xkinem; ykinem) to 17D
virtual hand kinematics (Jhand), where wi and bi were weights and
biases of the VAE decoder network layers (Eqs 9, 10). Note that the
decoder layers are the fourth and fifth of the VAE network
(Figure 1B).

layer4 � tanh xkinem ykinem[ ]*w4 + b4( ) (9)
Jhand � layer4*w5 + b5 (10)

With this controller, a user could consequently control a high-
dimensional virtual hand by moving a point on a 2D plane (See
Video in the Supplementary Video S1).

2.4 Controller validation

To determine the effectiveness of the AE-based controller, we
developed a validation experiment. To do so, we recruited four
unimpaired right-handed individuals, entirely naïve to the
myoelectric controller, to participate in a 2-h experiment.
Participant recruitment and data collection conformed with the

University of Washington’s Institution Review Board (IRB).
Informed written consent was obtained from each participant
prior to the experiment.

In the experiment, the participants engaged in a series of trials to
learn the AE-based controller to operate the 17D virtual hand on the
screen. It contained two train sessions (Train1 and Train2) with a
break in between.

No physical constraints were imposed on the participants
throughout the experiment as they were free to move their right
arm while performing the experiment objectives. The
participants were seated in an upright position in front of a
computer screen, at approximately 1.5m away at eye level
(Figure 6A).

2.4.1 Training sessions
During the training sessions, the participants were presented

with two virtual hands (Figure 6B). The hand on the left was the
target hand the participants needed to match. The hand on the
right was the hand controlled with the wrist muscles through the
myoelectric interface. No visual feedback was given about the
location of the controller or the target gesture on the 2D latent
space. Hence, the participants were unaware of the underlying
dimensionality of the controller. The target hand gestures
followed the VAE latent space shown in Figure 3.

The participants started a new trial with their muscles
completely relaxed. This resulted in the controlled hand
starting from the neutral gesture. After a sound cue indicating
a new trial, the target hand formed a new gesture that the
participants were required to match. Contracting their
forearm muscles, they had 10s to match and hold the gesture
with the controlled hand within the acceptable range. The
acceptable range was determined by the 2D control space
(i.e., if the 2D cursor related to the current hand gesture was
close enough to the 2D target representing the gesture of the
target hand, then the controlled hand was within the acceptable
range). The acceptable range was equivalent to 0.5 units from the
center of the target on the latent space. Unit was a measure of a
distance between points on the 2D latent space shown in Figure 3.
The acceptable range was equivalent to 6.35mm on the screen
Once the user matched the target gesture, they had to hold it
within the acceptable range for 0.75s for the trial to be counted as
successfully completed.

After each trial, successful or not, the participants heard a sound
cue that asked them to relax their muscles, which returned their
controlled hand back into the neutral gesture. Once completely
relaxed for 1.5s, a new gesture was presented, and a sound cue was
given to the participant to indicate a new trial.

The gestures that the participants were required to match
during Train1 and Train 2 were slight variations of the original
eight ASL gestures, which were created by selecting a set of
equidistant points between 50% and 90% along the path to the
complete gesture on the latent space (Figure 7). The number of
variations, or equidistant points, depended on the training
session: 30 variations of each of the eight ASL gestures in
Train1 and 10 variations of each of the eight ASL gestures in
Train2. Gesture variations were the same across participants but
differed between training sessions.
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It is important to note that given the acceptable range of 0.5 units
on the latent space and many variations being sampled on a small
latent space segment (i.e., the 50 − 90% path), it was possible that

some of the variations belonging to the same ASL gesture class
would be within the acceptable range.

Train1 session contained a total of 240 trials in a pseudo-
random order. The participants were given 1 minute to rest after
every 40 trials. Train2 session contained a total of 80 trials presented
in a pseudo-random order and 1 minute break was given to the
participants after 40 trials. The reach and hold times were the same
as in Train1. A 10-min break was given to the participants between
the two training sessions.

2.5 Outcome measures

Performance of each participant was assessed with the following
metric.

2.5.1 Adjusted match time (AMT)
AMT was defined as the time taken to complete a hand gesture

match, Tcompelte, scaled by the Euclidian distance to the target on the
2D plane, dtarget (Eq. 11).

AMT � Tcomplete

dtarget
(11)

For everymissed trial, the AMT of the trial was set to the timeout
value (10s). AMT values shown in the figures below were calculated
as follows: 1) AMT values were averaged for each repetition (i.e., one
variation of each of the eight ASL gestures repeated in a random
order), 2) a single average of ten consecutive repetition averages was
calculated.

2.5.2 Adjusted path efficiency (APE)
APE was defined as a measure of straightness of the path taken

to match the gesture, calculated on the 2D control plane. It was
calculated using Eq. 12, where dtravel was the length of the path

FIGURE 6
(A) Experimental setupwith the participant sitting approximately 1.5m away from the computer screen during one of the studies. (B) Setup of the task
gesture-matching task with two virtual 17D hands present. The hand on the left is the target hand that the participants needed tomatch. The hand on the
right is the controlled hand that the participants controlled via the myoelectric interface.

FIGURE 7
Sampling of gesture variations from the latent space. Variations
were sampled from 50% to 90% of the nominal path between the
neutral gesture and the complete gesture on the latent space.
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covered by the cursor to match the gesture and dideal was the
nominal distance between the neutral and the match gesture on
the latent space.

APE � dideal

dtravel
*100% (12)

Similar to AMT, for every missed trial, the APE of the trial was
set to the lowest possible value of 0%.

2.6 Statistical analysis

For statistical analysis, we used MATLAB Statistics Toolbox
functions (MathWorks, Natick, MA, United States). Anderson-
Darling Test was used to determine the normality of the data
(Anderson and Darling, 1954). Since the data were determined to
be non-Gaussian, we used non-parametric tests for statistical
analysis.

We evaluated differences for each participant on the average
AMT and ART values at the beginning and the end of the training
usingWilcoxon Sign Rank Test (Wilcoxon, 1945). The threshold for
significance was set to 0.05.

3 Results

Here we present the results of the validation experiment. By the end
of training by the end of training, all four participants were able to
significantly decrease their adjusted match times and three out of four
participants significantly increased their adjusted path efficiencies
(p< 0.01). The average adjusted match time for the last section of
the experiment was 6.9s (Figure 8A), while the average adjusted path
efficiency was about 23.4% (Figure 8B). The total number of successfully
matched gestures increased for all participants from the first to the last
trial section (Figure 8C).

FIGURE 8
(A)Mean and standard error of the adjusted match time for the four participants during the validation experiment. The average values are calculated
over ten repetitions, each of which consisted of eight distinct ASL gestures averaged for each participant. (B)Mean and standard error of the adjusted path
efficiency during the validation experiment. Asterisks indicate statistical significance between the beginning and the end of the experiment. (C)Number of
successfully matched gestures for every trial section. Every trial section consisted 10 variations of the eight ASL gestures (i.e., 80 trials per trial
section).
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4 Discussion

In this paper, we explored the use of nonlinear AEs to control a
complex high-dimensional hand system via a myoelectric interface. In
addition, we validated the controller’s usability via a simple experiment.
With all four participants improving their performance by the end of
training (three out of four doing so significantly for APE and all four
showing statistical significance in AMT), the AE-based controller proves
to have a strong potential of being used in the space of upper-limb
prosthetics to perform high-dimensional control via a low-dimensional
space.

4.1 Comparing to PCA-based controllers

One of the major outcomes of this study was the application
of a nonlinear AE for the development of a controller, in which
complex kinematics of a virtual hand with 17 DOFs were
operated via a 2D plane. In the past, several groups have
developed similar hand controllers but with the use of a
linear method such as PCA (Magenes et al., 2008; Matrone
et al., 2010; Matrone et al., 2012; Belter et al., 2013; Segil and
Weir, 2013; Segil et al., 2014; Segil and Weir, 2015).

In the studies where a linear postural controller was validated with a
myoelectric interface (Matrone et al., 2012; Segil et al., 2014; Segil and
Weir, 2015), the averagemovement times (time to successfully reach but
not hold the hand in a correct grasp) were between 3s and 5s. The final
reach times by the end of training in our validation study were slightly
higher: about 6.9s. This suggests that we must explore other ways of
training users with the novel controller and determine if other training
paradigmsmay improve and speed up learning.More on the exploration
of various learning paradigms for the AE-based controller can be found
in our other work (Portnova-Fahreeva et al., 2022).

Despite potential differences across the linear- and
nonlinear-based controllers, the nonlinear counterpart yields
a major advantage in its superiority in reconstructing higher
variance of the input signal with a smaller number of latent
dimensions as discovered in Portnova-Fahreeva et al. (2020).
What this means is that a nonlinear-based controller with just
two latent dimensions would results in a reconstructed hand that
is closer in appearance (i.e., kinematically) to the original input
signals whereas the PCA-based controller would be less accurate
in reconstructing the gestures. Consequently, such a controller
can yield a more genuine movement in a prosthetic hand in
comparison to its PCA-based counterpart.

4.2 Limitations

One of the main limitations of the study presented in this work is
a small sample size. The reason for it was mainly the fact that the
study was run for validation purposes only and participant
recruitment happened at the time of the pandemic, with limited
in-person interactions at universities.

Match times during successful trials were another limitation,
especially in the context of myoelectric control. It specifically points to
the ineffectiveness of the training paradigm used in this paper to train the
participants on the AE-based controller. The point of various training

paradigms and their effect on learning of the novel controller is discussed
in our other work (Portnova-Fahreeva et al., 2022).

4.3 Applicability for prosthetic users

When designing this study, the end-user group that we considered
were upper-limb amputees that utilize prosthetic hands in their daily
living. Although our validation experiment was performed on
unimpaired individuals, we were able to highlight the possibility of
using nonlinear controllers for the purpose of manipulating a
myoelectric hand prosthesis. The myoelectric interface that we
designed employed muscle signals generated by wrist movements to
operate on the 2D latent space. And although an upper-limb amputee
might not be able to generate these, other more distal locations can be
chosen to obtain clean signals to control a location of a 2D cursor, to
operate a high-dimensional hand. The main advantage of our controller
is that it does not require a large number of signals to control a handwith
a large number of DOFs (only enough to operate the cursor on a 2D
plane). One does not even need to limit themselves to the EMG
system—a 2D control signal can be obtained from a simpler
interface based on Internal Measurement Units (IMUs). For example,
IMUs can be placed on the user’s shoulders, consequently, controlling
the posture of the prosthetic hand. In the past, IMUs have been widely
used to operate a low-dimensional controller (Thorp et al., 2015; Seáñez-
González et al., 2016; Abdollahi et al., 2017; Pierella et al., 2017; Rizzoglio
et al., 2020). Thus, nonlinear AE-based controllers, such as the one
proposed here, have the potential to serve as a versatile and modular
solution for controlling complex upper-limb prosthetic devices.

Lastly, it is important to note that most of the currently available
prosthetic hands do not provide for continuous control of individual
fingers. However, we believe that such designs are the result of limitations
placed by existing prosthetic control strategies (e.g., pattern recognition)
that are discrete and only allow for a limited number of predefined
gestures. By developing controllers such as the AE-based controller that
would allow the user to operate the device in a continuous manner, we
challenge the existing limits, aiming to jumpstart the development of
prosthetic hands that would facilitate continuous control.
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