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Previous studies have demonstrated that the central nervous system activates
muscles in module patterns to reduce the complexity needed to control each
muscle while producing a movement, which is referred to as muscle synergy. In
previous musculoskeletal modeling-based muscle synergy analysis studies, as a
result of simplification of the joints, a conventional rigid-body linkmusculoskeletal
model failed to represent the physiological interactions of muscle activation and
joint kinematics. However, the interaction between themuscle level and joint level
that exists in vivo is an important relationship that influences the biomechanics and
neurophysiology of the musculoskeletal system. In the present, a lower limb
musculoskeletal model coupling a detailed representation of a joint including
complex contact behavior and material representations was used for muscle
synergy analysis using a decomposition method of non-negative matrix
factorization (NMF). The complexity of the representation of a joint in a
musculoskeletal system allows for the investigation of the physiological
interactions in vivo on the musculoskeletal system, thereby facilitating the
decomposition of the muscle synergy. Results indicated that, the activities of
the 20 muscles on the lower limb during the stance phase of gait could be
controlled by three muscle synergies, and total variance accounted for by
synergies was 86.42%. The characterization of muscle synergy and
musculoskeletal biomechanics is consistent with the results, thus explaining
the formational mechanism of lower limb motions during gait through the
reduction of the dimensions of control issues by muscle synergy and the
central nervous system.
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1 Introduction

Despite decades of research, there remains uncertainty about how the human central
nervous system coordinates the activity of large numbers of muscles during motion (Rabbi
et al., 2020). Many studies have shown that the central nervous system activates muscles in
groups to reduce the complexity needed to control each muscle while performing one
movement (d’Avella et al., 2003; Ivanenko et al., 2004). The coordination of synchronously
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activated muscles is often referred to as muscle synergy (Lee, 1984).
Circumstantial evidence suggests that muscle synergy occurs in the
brain stem and/or spinal cord and follows a modular organization
(Tresch and Bizzi, 1999). Understanding the organization of muscle
synergy may help elucidate the neural mechanisms that underlie a
variety of neurological disorders, including stroke (Pan et al., 2018;
Funato et al., 2022), cerebral palsy (Goudriaan et al., 2022), and
Parkinson’s disease (Falaki et al., 2016).

The concept that underpins the essence of muscular synergy
analysis is dimensionality reduction. Muscle synergy analysis
assumes that signals of muscle activity are not independent of
each other but can be decomposed into a smaller number of
independent control signals known as neural controls. In muscle
synergy analysis, applying a decomposition approach to a set of
muscle activation schemes involves two components: muscle
synergy and activating coefficients. The muscle synergies scale
the neural control intensity of excitation primitives to represent
time-varying neural controls (Lambert-Shirzad and Van der Loos,
2017). For gait motion, only three to five muscle synergies are
typically needed to represent over 90% of the variability in many
muscle activities of the lower limbs (Ivanenko et al., 2004; Cappellini
et al., 2006; Clark et al., 2010). In recent years, a decomposition
method of non-negative matrix factorization (NMF) for muscle
synergy analysis has become increasingly popular (Paatero et al.,
1991; Paatero and Tapper, 1994; Lee and Seung, 1999). NMF is a
non-linear decomposition technique that has the property of having
no negative elements and outputs the optimized basis (synergy)
vectors and corresponding weight (coefficient) vectors by
minimizing the error between the original signals and the
reconstructed data. NMF has been used by many researchers to
separate neural control from signals of muscle activity in humans
(Rabbi et al., 2020) or animals (Huffmaster et al., 2018). The
reliability of muscle synergy prediction is entirely dependent on
the quality of obtained muscle activities. Surface electromyography
(EMG) recording is non-invasive and easy to apply, and has been the
most popular method for measuring muscle electric activity in
biomechanical research. However, surface EMG measurement has
a practical challenge in its inability to acquire a signal from deep
muscles (Sartori et al., 2014; Zonnino and Sergi, 2019). For example,
it is practically impossible to collect muscle electrical activity signals
from deep femur muscles, such as the vastus intermedius, and hip
muscles, such as the iliacus and psoas, using surface EMG. When
EMG data from important deep muscles are missing from the EMG
measurement, force estimates for other muscles with similar roles
may be significantly overestimated (Zonnino and Sergi, 2019), even
though recently some hybrid musculoskeletal modeling studies have
been partially able to address the issue of missing EMGs (Sartori
et al., 2014; Ao et al., 2022). In addition, EMG data have inherent
potential challenges that may limit the accuracy of estimating
muscle activity, such as noisy signals from crosstalk between
adjacent muscles (Germer et al., 2021), motion artifacts (Luca
et al., 2010), and difficulty in obtaining true maximal muscle
excitation for EMG normalization (Hodder and Keir, 2013).
Since EMG measurement cannot accurately obtain the activity of
each muscle of the lower limbs, the reliability of muscle synergy
estimation cannot be guaranteed using EMG data.

The comprehensiveness of muscle representation and the accuracy
ofmuscle activity prediction determine the accuracy ofmuscle synergy.

Currently, a computational approach, musculoskeletal modeling based
on motion measurement data, has been proven to provide relatively
accurate prediction of muscle activities on the whole body of a human
(Rajagopal et al., 2016; Trinler et al., 2019). A static optimization
algorithm is generally used to solve the muscle redundancy problem to
estimate muscle activities in the whole body or in a local area of the
body. The key to accurate prediction of muscle activities using static
optimization is the ability to represent the physiological interaction
between joint kinematics and muscle dynamics. The muscle activities
contribute to the joint kinematics and could thus change the
deformation of the cartilage soft tissue. The deformed soft tissues
could change the joint secondary kinematics, which in turn would
seriously affect the muscle length and muscle moment arm, thus
affecting the estimation of the muscle activities. However, traditional
musculoskeletal models, such as OpenSim (Delp et al., 2007) and
AnyBody (Kang et al., 2019), have been mostly constructed in multi-
body dynamics with the skeletal structure being modeled as a rigid
body and the joint being modeled as a simple specific degree-of-
freedom rotational joint. This provides no insight into the interaction
between the joint kinematics and muscle activities, and the interaction
is key to the representation of realistic muscle activity. Recent research
has introduced musculoskeletal modeling on a finite element
framework, combining musculoskeletal modeling and detailed soft-
tissue deformation finite element analysis into a single framework (Shu
et al., 2018; Wang et al., 2021a), which can estimate muscle activities
while maintaining a realistic representation of the joint tissue
deformation to provide insight into the realistic interaction between
the joint kinematics and muscle activities. Furthermore, the muscle-
skeletal model based on EMG has been extensively studied by many
researchers (Sartori et al., 2012; Sartori et al., 2014; Davico et al., 2022;
Esrafilian et al., 2022). The advantage of this model is that it can be
directly driven by measured muscle activity. However, in our research,
the representation of the secondary kinematics of the knee joint
requires the participation of all muscles surrounding the knee joint,
and the deep muscle activity is challenging to measure using EMG.

The purposes of the present study were 1) to demonstrate that
joint tissue deformation affects muscle activity estimates when
included in a musculoskeletal model and to verify that the
muscle activities obtained with the proposed approach are
consistent with the measured EMG, and are therefore plausible,
and 2) to predict muscle synergies extracted using NMF frommuscle
activities estimated by static optimization during the stance phase of
gait. A musculoskeletal model using a single concurrent framework
combining the entire lower limb musculoskeletal dynamics and
knee-joint finite element analysis was used (Wang et al., 2021b;
Wang et al., 2022). The present study may provide a potential
method to investigate the interrelationship between the nervous
system and the joint system, such as the formational mechanism of
joint constriction due to cerebral palsy.

2 Methods

2.1 Subject experiments

A healthy male participant (age: 22 years, height: 170 cm,
weight: 60.8 kg) participated in the gait measurement. The
participant was thoroughly informed about the purpose,
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methods, and caveats of the experiment. The experiment was
approved by the research ethics committee of Doshisha
University. The kinematic, ground reaction force and muscle
EMG data were collected from the participant as he walked on a
dual-belt treadmill instrumented with two force plates for 60 s at a
self-selected pace (1.3 m/s) with his preferred gait during the
experiment. The marker-based motion trajectories (sampling
frequency: 500 Hz, MAC3D Digital RealTime System, Motion
Analysis Corp, UK) were used to compute the positions of
14 optical markers, and the ground reaction force (sampling
frequency: 500 Hz, Bertec, Columbus, OH, United States of
America) was synchronously collected during walking at the
preferred gait. In addition, EMG signals were recorded from
12 muscles on the right lower limb at 1,000 Hz (Biolog DL-3100,
S&ME Corp, US; WEB-7000, Nihon Kohden, JP; FreeEMG, BTS
Bioengineering, ITA). For all EMG signals, high-pass filtering was
performed using a Butterworth filter with a cut-off frequency of
1 Hz, and the signals were demeaned, rectified, and low-pass filtered
using a Butterworth filter with a cut-off of 5 Hz. Finally, the
normalized peak EMG activity for each muscle was obtained.

2.2 Finite element musculoskeletal model

In the present study, a musculoskeletal model of the right lower
limb was developed using a finite element framework, specifically
the ABAQUS/Explicit (SIMULIA, Providence, RI, United States) as

shown in Figure 1. The modeling approach of the finite element
musculoskeletal (FEMS) model of the lower limb included a healthy
knee, which was described in detail in previous studies by Wang
et al. (2021a) and Wang et al. (2022). However, a summary of the
modeling approach is provided below. In order to construct the
FEMS model, the geometries of the bones in the right lower limb, as
well as the articular cartilages and meniscus in the knee, were
obtained from computed tomography and magnetic resonance
imaging scans. These structures were manually segmented and
reconstructed for modeling purposes. The femoral, tibial, and
patellar bones were represented using rigid triangular shell
elements, while the cartilage and meniscus were meshed using
elastic eight-node hexahedral elements. The articular cartilages
were assumed to exhibit linear elastic isotropic behavior based on
the work of Li et al. (2001). The menisci were defined to be
transversely isotropic (Donahue et al., 2002; Yao et al., 2006),
following studies by Donahue et al. (2002) and Yao et al. (2006).
Contact behaviors between different tissue pairs within the knee
were defined, incorporating a coefficient of friction of 0.04 based on
the findings of McCann et al. (2009). The model incorporated
various joint types to represent the different articulations of the
lower limb. A spherical joint with three degrees of freedom (DOFs)
was used to describe the hip joint. The tibiofemoral and
patellofemoral joints, which allow for six DOFs, were represented
using appropriate joint elements. Finally, a hinge joint at the ankle,
with one DOF, was included in the model. In order to simulate the
behavior of ligaments in the knee joint, non-linear spring bundles

FIGURE 1
Right lower limb finite element framework for musculoskeletal model containing knees. The musculoskeletal model includes a 12-DOF knee joint,
along with 20 muscles (gluteus maximus [gmax]; iliacus; pectineus; quadriceps: rectus femoris, vastus medialis, vastus intermedius, vastus lateralis;
hamstrings: semimembranosus, semitendinosus, biceps femoris; gastrocnemius [gas]; soleus; tibialis anterior [tibant], tibialis posterior [tibpost]; extensor
halluces longus [ehl]; and extensor digitorum longus [edl]); ligaments (anterior cruciate ligament [ACL], posterior cruciate ligament [PCL], medial
collateral ligament [MCL], posteromedial capsule [PMC], lateral collateral ligament [LCL], anterolateral structure [ALS], oblique popliteal ligament [OPL],
and transverse ligament); cartilage: the meniscus; and the meniscus horn attachments.
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were used. The anterior cruciate ligament (ACL), posterior cruciate
ligament (PCL), medial collateral ligament (MCL), posteromedial
capsule (PMC), lateral collateral ligament (LCL), anterolateral
structure (ALS), and oblique popliteal ligament (OPL) were all
modeled using force-strain relationships, as proposed by Abdel-
Rahman and Hefzy in 1998:

fi �
0 εi ≤ 0
k1i li − l0i( )2 0< εi ≤ 2εl

k2i li − 1 + εl( )l0i[ ] 2εl < εi

⎧⎪⎨
⎪⎩ (1)

where li is the current length in the i th ligament, l0i is the slack length
of the i th ligament, εl is the strain (assumed to be constant at 0.03),
and k1i and k2i are the stiffness coefficients of the spring elements
representing the i th ligament for the non-linear toe and linear
regions, respectively. The values of the material properties of the
non-linear spring elements are listed in Table 1 (Abdel-Rahman and
Hefzy, 1998; Yu et al., 2001).

Modeling of the anterior transverse ligament, which connects
the anterior convex margin of the lateral meniscus to the anterior
end of the medial meniscus, was performed using multiple linear

TABLE 1 Stiffness parameters of ligaments.

Ligament Ligament bundle Number of bundles k1 (Nmm−2) k2 (Nmm−1)

ACL anterior 2 22.48 83.15

posterior 2 26.27 83.15

PCL anterior 2 31.26 125.00

posterior 2 19.29 60.00

MCL anterior 1 10.00 91.25

oblique 1 5.00 27.86

deep 1 5.00 21.07

PMC — 3 12.00 52.59

LCL — 3 10.00 72.22

ALS — 3 5.00 19.00

OPL — 3 3.00 21.42

FIGURE 2
Overview of the computational muscle synergy analysis. Marker positions were input into the inverse kinematics to predict the joint primary angles
(lumbar flexion–extension, hip joint 3–DOF rotations, knee joint flexion–extension, and ankle dorsiflexion–plantarflexion). The joint primary angles on
each joint and the ground reaction force measured from the force plate were input into the inverse dynamics in order to predict the muscle lengths,
muscle moment arms, and right lower limb joint moments. The static optimization of the muscle force was performed with the joint moments, the
muscle lengths, and the muscle moment arms as inputs to predict the muscle force. The knee finite element analysis was performed from the muscle
forces and the ground reaction force to predict the knee joint secondary kinematics and contact mechanics. The predicted knee secondary kinematics
was fed back to a new static optimization, and the muscle force optimization and knee contact mechanics were again computed. The muscle synergies
were decomposed from the muscle activities using a method of non-negative matrix factorization.
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spring elements. The stiffness of these spring elements was set to
12.5 N/mm, as determined by Donahue et al. (2003). Regarding the
four meniscal horn attachments, they were also represented as
multiple linear spring elements. The stiffness constants for these
springs were calculated based on the reported Young’s modulus for
the horn attachments, as investigated by Hauch et al. (2009). These
spring elements were used to firmly connect the faces of the meniscal
horns to the tibial bone, as depicted in Figure 1.

The FEMSmodel incorporated a total of 20 representative linear
element muscles that are present in the lower limb. These muscles
included the following: gluteus maximus (three units), iliacus,
pectineus, rectus femoris, vastus medialis, vastus intermedius,
vastus lateralis, semimembranosus, semitendinosus, biceps
femoris (short and long heads), gastrocnemius (medial and
lateral heads), soleus, tibialis (anterior and posterior), extensor
hallucis longus, and extensor digitorum longus. The mechanical
properties of these muscles were characterized using a Hill-type
model, as described by Zajac (1989). This model consists of three
main components arranged in series and parallel configurations.
The contractile element represents the active fiber force-length
property of the muscle, the passive elastic element represents the
passive fiber force-length property, and the elastic tendon element is
included in series with the other elements.

The musculotendon parameters (e.g., optimal force, optimal
fiber, tendon slack length, and pennation angle) are based on studies
of cadavers (Rajagopal et al., 2016), and the scaled optimal fiber and
tendon slack length of each muscle was adjusted to ensure the
consistency of the force-length relationship of the muscle model
(Arnold and Delp, 2011). The wrapping between the muscles and
femoral and tibial bones was considered in the model to
approximate the muscle paths using some wrapping surface (Ali
et al., 2016) and dashpot element.

2.3 Static optimization for muscle
activations

Previous studies (Wang et al., 2021b; Wang et al., 2022; Wang
et al., 2022) have provided a description of the gait analysis method
that considers lower limb motion. In the following, a brief overview
of the proposed method is given. The analysis incorporates inverse
kinematics, inverse dynamics, muscle activity optimization, and FE
analysis of the knee, using a motion capture system (Figure 2). The
first step involves inverse kinematics analysis, which calculates the
primary angles of joints (such as hip joint flexion–extension,
internal–external rotation, abduction–adduction angles; knee joint
flexion–extension angle; and ankle joint dorsiflexion–plantarflexion
angle) based on marker trajectories obtained from the gait
experiment. These primary joint angles, along with the ground
reaction force measured by force plates, are then input into the
inverse dynamics analysis. This analysis determines the joint
moments and uses a model to calculate simultaneous muscle
lengths, muscle moment arms, and joint axis vectors. Next, the
muscle lengths, muscle moment arms, and joint axis vectors are fed
into a static optimization algorithm. This algorithm estimates the
muscle activities by satisfying an equilibrium equation of the joint
moment. Themuscle activities are optimized byminimizing the sum

of the cube of the muscular activation am, following the approach
described by Hase and Yamazaki (2002):

Mj � ej
T ∑

20

m�1
rjm θj, s( ) × fjm am( )[ ]⎧⎨

⎩
⎫⎬
⎭ (2)

I � min∑
20

m�1
am

3 (3)

whereMj is the moment of the j th joint, ej is the unit vector along
the rotation axes of the j th joint, θj is the primary angle of the j th
joint, s is the secondary kinematics of the knee joint (please note that
the hip and ankle joints only include primary angles), and rjm(θj, s)
is the moment arm vector of them th muscle for the j th joint. With
each muscular activation considered as a variable, the force of them
th muscle can be expressed as a function fjm(am) of the activation
about the j th joint. In addition, the muscular activations were
constrained to be in the range of zero to one (inclusive).

The static optimization was implemented by subroutines written
in MATLAB (R2018b, MathWorks, MA, United States) using the
interior-point method at 16 evenly distributed time points while
combining concurrent FE analysis of the knee joint in ABAQUS/
Explicit during the stance phase of gait. The muscle forces obtained
from the static optimization, along with the ground reaction force
and ground reaction moment acting on the foot center of mass, were
imposed as boundary conditions. Since the remaining DOFs except
flexion–extension were left unconstrained, the knee joint secondary
kinematics determined entirely from the interaction of the joint
contact behavior, muscle forces, and ligament restraint.
Subsequently, the computed knee secondary kinematics was fed
back into a new static optimization step, resulting in updated muscle
lengths and moment arms. This iterative process allowed for the re-
estimation of muscle forces and the computation of knee secondary
kinematics until the convergence criteria of static optimization for
equilibrium in the joint moment were satisfied. In summary, each
muscle activation static optimization takes into consideration the
muscle lengths, muscle moment arms, and joint axis vectors of the
knee joint determined by the current FE analysis. In order to
investigate the influence of the complexity of the representation
of the knee joint on muscle activity, we simultaneously constructed a
rigid body musculoskeletal (MS) model and used static optimization
to infer muscle activity. The model lacks knee joint tissue geometry
and soft tissue contact behavior and is constrained to a flexion-
extension 1–DOF hinge joint.

2.4 Muscle synergy analysis

Muscle synergies were extracted from the muscle activities,
which were estimated by a concurrent simulation that performs
the static optimization with the knee FE analysis. Muscle synergies
were identified by NMF with the multiplicative update method (Lee
and Seung, 1999; Funato et al., 2022). MatrixA (t × m, where t is the
number of samples and m is the number of muscles) is arranged so
that each column is the time series of the muscle activity am for each
muscle, and NMF decomposes matrix A as the product of two
matrices, one of which is represented as a time-invariant component
(muscle synergy) W that co-activates multiple muscles, and the
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other of which is activated by a temporal waveform (activating
coefficients) H:

A � HWT + r � ∑
n

p�1
hpwp

T + r (4)

where wp is the component for the p th synergy, the columns of
matrixW (m × n, where n is the number of synergies) are the muscle
synergies, hp is the temporal waveform for the p th synergy, the
columns of matrix H (t × n) are their activations, r indicates the
residuals, and A is the muscle activity. The above parameters have
only non-negative values.

The “nnmf” function in MATLAB (R2021b, MathWorks,
MA, United States of America) was adopted in order to
compute NMF. The number of synergies was determined by
setting the threshold of the variance accounted for (VAF)
(Torres-Oviedo et al., 2006). We calculated the VAF for a
single stance phase of gait and selected the minimum number
of synergies with the VAF exceeding 80% as the number of
synergies for the computational prediction (Torres-Oviedo
et al., 2006; Tresch et al., 2006).

Using the same method, muscle synergies were decomposed
from EMG data, while the muscle synergies obtained from EMG
data were regularized based on each peak activating coefficient
obtained from the model.

3 Results

The tibia was internally rotated during the loading response,
where the maximum internal rotation was 8.6°, and external rotation
occurred where the peak external rotation reached 5.2° (Figure 3).
Next, the tibia was placed in the external rotation position and
underwent a slight rotation until the tibia returned to the initial
angle at toe-off. The anterior translation of the tibia exhibited a
2.5 mm trend near the loading response, whereas the posterior
translation of the tibia occurred, remained in the posterior
translation position and a slight anterior translation occurred
during the pre-swing phase.

The quadriceps femoris muscles (vastus lateralis, vastus
medialis, and vastus intermedius), as knee extensor muscles,
showed activity mainly with peak activities (0.3, 0.26, and 0.2,
respectively) during the loading response, where the rectus
femoris is also activated (peaking at 0.32) at approximately 70%–

90% of the stance phase (Figure 4) on the FEMS model. The muscle
activity of the gluteus maximus was largest (0.41) at 10% of the
stance phase. The maximally activated biceps femoris (long head)
was 0.61 at 20% of the stance phase. The tibialis anterior activity
exhibited a peak trend with a peak activity (0.86) at 10% of the stance
phase. The gastrocnemius (medial head) and soleus exhibited
similar trends with peak forces (0.59 and 0.68, respectively) later

FIGURE 3
Knee secondary kinematics of the tibia with respect to the femur predicted using the model plotted and in vivo experimental results (shaded area)
from previous studies: (A) internal–external rotation, (B) varus–valgus, (C) anterior–posterior translation, and (D) medial–lateral translation. The
measurement data were obtained from (1) Gray et al. (2019), (2) Kozanek et al. (2009), and (3) Clément et al. (2018) and are shifted to start from zero to
exclude any differences in the choice of coordinate system.
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in the stance phase. The similarity between the surface EMG data
with the muscle activities calculated from the FEMS and the rigid
body MS model was assessed using the root mean square error
(RMSE), as shown in Table 2.

Three synergies (86.42% VAF) were required to reconstruct
lower-limb muscle activations during the stance phase of gait.
Figure 5 shows the muscle synergies decomposed by muscle
activities of the lower limb during the stance phase. In Figure 6,
the left-hand panels indicate the muscle synergy, and the right-hand
panels indicate the coefficients. The muscle synergy W1 consisting
mainly of the gluteus maximus, hamstrings, and tibialis anterior was
activated during the response loading. Moreover, the muscle synergy
W2 mainly representing the gluteus maximus, quadriceps femoris,
hamstrings, and tibialis anterior was activated during mid-stance.

The muscle synergyW3 consists primarily of the gastrocnemius and
soleus. This synergy was activated during the late stance phase. The
muscle synergy and activating coefficient extracted from the FEMS
and the rigid body MS model demonstrated a strong similarity.

4 Discussion

In the present study, a computational model-based approach for
predicting subject-specific muscle synergy during gait was proposed.
The computational model of the lower limb combined a
musculoskeletal dynamics and knee-joint FE analysis in a single
concurrent framework that can provide insight into the realistic
interaction between the muscle activation and knee-joint tissue

FIGURE 4
Predictedmuscle activities on lower-limbmuscles obtained by the finite element musculoskeletal model (FEMS) and the rigid bodymusculoskeletal
model (MS) together with the surface electromyography data recorded from eight muscles during a single stance phase of gait.

TABLE 2 Root mean square error (RMSE) values obtained by comparing surface electromyography data with the muscle activities calculated from the finite
element musculoskeletal (FEMS) model and the rigid body musculoskeletal (MS) model for the stance phase during gait.

Recfem vaslat gmax bflh gasmed tibant soleus semiten

RMSE (FEMS) 0.10 0.11 0.21 0.34 0.21 0.29 0.22 0.14

RMSE (MS) 0.10 0.10 0.20 0.33 0.22 0.31 0.22 0.13
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deformation was applied. The interaction between the muscle level
and joint level that exists in vivo is an important relationship that
influences the biomechanics of the musculoskeletal system and can
only be described in the concurrent framework. Meanwhile, there
are physiological high interactions and dependencies between the
nervous and musculoskeletal systems, and this neurophysiologically
coupled relationship means that the neuromuscular response is
controlled through high-precision commands. We hypothesized
that the complexity of the representation of muscles and the
knee joint in musculoskeletal system modeling is particularly
sensitive to the effects of lower extremity muscle activities (Hume
et al., 2018). Thus, the modeling complexity is particularly
important when decomposing neural controls (muscle synergies)
from muscle activities, which requires further validation. The
modeling allows for the representation of structures such as
joints, ligaments, and muscles in sufficient detail, including
complex wrapping, and realistic contact behavior. The complexity
of these muscle and joint representations can provide an accurate
separation of muscle synergy. Tissue deformation of the hip and
ankle joints has little effect on muscle activity (Li, 2021). Thus, it is
feasible that the hip and ankle were assumed to be mechanical joints
with specific DOFs. However, the effect of tissue deformation of the
knee on changes in muscle activity is enormous. This is determined
by the structural characteristics of the knee joint. The muscle
activities contribute to the knee joint kinematics and could thus
change the deformation and translation of the meniscus and
cartilages, and the deformed soft tissues could change the knee
secondary kinematics, which in turn would seriously affect the
muscle length, line of action, and moment arm, thus affecting the
redistribution of the muscle activity. The physiological interaction
between muscle–level and joint–level described earlier cannot be
represented in traditional rigid body MS models but can be
effectively implemented in the model we have developed. Static
optimization is the core algorithm used in our research to estimate
muscle forces, which has the advantages of non-invasiveness and
helping to determine the contribution of muscles to movement.

However, the proposed method also has some disadvantages. For
example, static optimization assumes that muscles generate forces
that balance moments acting on the joint, without considering the
dynamics of the system, which can result in inaccurate estimates of
muscle forces (Lin et al., 2010). Also, static optimization relies on
several assumptions, such as the use of a particular optimization
criterion and the assumption of a fixed set of muscle parameters,
which may not hold true in all cases (Prilutsky and Zatsiorsky,
2010).

The muscle activities are predicted using the FEMS model and
rigid body MS model. Comparing the predicted muscle activation
patterns during normal gait trials with the average experimental
EMG results (Figure 4) shows that both the FEMS and rigid bodyMS
model exhibit relatively good temporal agreement on the muscles,
although at certain time points, the predicted activity characteristics
by the model differ from the EMG signals. The key characteristics of
the EMG of tibialis anterior, gastrocnemius (medial head), and
soleus were well predicted (Figure 4). In the loading response
phase, the EMGs of these muscles exhibited a significant amount
of activity, due to muscular tension caused by individual differences
in high heel strike forces at initial contact. In addition, these trends
are also often exhibited during treadmill walking and have been
confirmed in other studies (Yao et al., 2019; Cherni et al., 2021).
However, these trends cannot be reproduced in the model
calculation by optimizing muscle activity through the equilibrium
in the joint moments obtained from the inverse dynamics. The
activities of the semitendinosus as calculated by the model were
within approximately one standard deviation of the EMG. The
activities of rectus femoris and vastus lateralis were predicted but
there was a time lag with respect to the EMG. The similarity in the
trends of muscle activity predicted by the FEMS and rigid body MS
models suggests that the observed differences are not related to the
complexity of joint modeling but rather may be attributed to the
algorithms used in static optimization.

The secondary kinematics of the knee joint can only be
described in the concurrent musculoskeletal framework that
represents knee joint motion. However, in order to validate the
accuracy of the predicted results, a measurement system capable of
directly measuring joint secondary motion is needed for evaluation.
Mobile biplane X-ray imaging or dual fluoroscopic imaging
technology has been used as the most direct and accurate
approach for measuring joint kinematics during human
movement (Banks and Hodge, 1996; Mahfouz et al., 2003). Some
researchers have demonstrated significant subject-dependent
variations in the trend and magnitude of experimental secondary
kinematics obtained by mobile imaging (Kozanek et al., 2009;
Clément et al., 2018; Gray et al., 2019) (Figure 3). However, the
calculated varus–valgus, anterior–posterior, and medial–lateral
translations were approximately within the standard deviation of
the experimental data, as shown in Figure 3. The knee secondary
kinematics can be explained as the combined effect of the muscle
forces and contact behavior of joint soft tissues in human
locomotion. The internal rotation of the tibia occurred with
maximum rotation during the loading response, as shown in
Figure 3. The semimembranosus and semitendinosus were
activated during the loading response, and the total forces of
these muscles acted as an internal rotator of the knee. Moreover,
the difference in the medial and lateral structures of the femoral

FIGURE 5
Percentage of variance accounted for (VAF) as a function of the
number of extracted synergies. Three synergies were identified for a
single stance phase, which accounted for 86.42% VAF.
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condyle, tibial plateau, and soft tissues leads to a tibial pivot point
closer to the medial side than the lateral side, inducing tibial internal
rotation (Figure 7A). It can be observed that with knee flexion, the
lateral meniscus translates more posteriorly than the medial side at
10% of the stance phase (Figure 7B). The knee remained in the
external position without presenting a trend in internal rotation
from approximately 60%–70% of the stance phase, which is different
from what was observed experimentally. Only the biceps femoris
(long head) maintained a certain activity in the component of the
hamstrings during this phase, which might explain the discrepancy
in the rotation. Afterward, the tibia performed internal rotation until
it returned to its initial angle, which is similar to what was observed
experimentally during the pre-swing phase. During the pre-swing
phase, the hamstrings were not activated and the knee started to flex,
whereas the tibia was expected to rotate internally (a reversal of the
screw-home movement). The tibial translation occurred with
maximum anterior translation during the loading response. The
main reason for the tibial translation is that meniscal deformation
and translation occurred with accompanying knee flexion, which are
crucial functions affecting knee translation (Figure 7B). The
secondary kinematics of the knee, especially internal–external

rotation and anterior–posterior translation, is an important
indicator that influences the motion stability of the knee joint.
Moreover, the precise representation of the physiological
interaction of the knee joint kinematics and muscle activity could
provide an accurate solution for the estimation of muscle synergy.

Previous studies have demonstrated that several muscle
synergies control the total patterns of substantial muscular
activation on a lower limb during gait (Groote et al., 2014; Saito
et al., 2018). Three muscle synergies exceeded 80% of the total VAF
for 20 muscles on the lower limbs during the stance phase, which is
consistent with results of previous studies (Ivanenko et al., 2005;
Esmaeili et al., 2022). Thus, in a single stance phase of gait condition,
approximately three muscle synergies controlled the majority of
lower-limb neuromuscular activation. Evidence supporting the
concept of muscle synergy as modules of locomotion
construction comes from research that has examined muscle
patterns under a variety of behaviors, including planar covariance
of limb joint angles in a cat posture (Lacquaniti et al., 1984;
Lacquaniti and Maioli, 1994), flexible combination of spinal
modules producing a wide range of movement in a simple
manner in frogs (Bizzi et al., 1991; Bizzi et al., 2000), highly

FIGURE 6
Three muscle synergies, W1,W2, andW3 (left-hand panel), and activating coefficients, H1, H2, and H3 (right-hand panel), were extracted during the
stance phase from 13 main muscles (rectus femoris [recfem], vastus lateralis [vaslat], vastus medialis [vasmed], vastus intermedius [vasint], gluteus
maximus [gmax], biceps femoris long head [bflh], biceps femoris short head [bfsh], semimembranosus [semimem], semitendinosus [semiten],
gastrocnemius medial head [gasmed], gastrocnemius lateral head [gaslat], tibialis anterior [tibant], and soleus) using the finite element
musculoskeletal model and the rigid body musculoskeletal model (FEMS; blue), the rigid body musculoskeletal model (MS; green), and were extracted
from nine muscles (rectus femoris, vastus lateralis, biceps femoris long head, gluteus maximus, semitendinosus, gastrocnemius medial and lateral head,
tibialis anterior, and soleus) collected by EMG data (red). The EMG signals with the “None” tag were not measured.
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similar synergies and patterns of modulation during grasping in
monkeys (Overduin et al., 2008), andmuscle synergy decomposition
in human locomotion (Ivanenko et al., 2005). Of note, researchers
found that different factorization algorithms identified similar
synergies under different hypotheses and constraints in simulated
and experimental data (Tresch et al., 2006). Their results strongly
demonstrate that the extracted muscle synergy reflects the basic
modules of the human movement system, rather than some
computational artifact dependencies on algorithmic choices.
Ensuring the consistency between EMG and model simulation
regarding spatial and temporal muscle synergy coordination
poses challenges due to the limited availability of recorded EMG
data compared to the number of muscles in themodel. In the present
study, we primarily focus on maintaining consistency in the
activating coefficients during gait. In order to achieve this, we use
the activating coefficients derived from EMG decomposition with
NMF as a reference. We verify that the peak values of each
decomposed activation coefficient from the model align with the
corresponding peak values derived from EMG decomposition. The
tibialis anterior controlled by synergies W1 and W2 is active from
heel strike to mid-stance during the stance phase (Figure 6). The
tibialis anterior assists dorsiflexion of the foot at the talocrural joint
and inverts this dorsiflexion at the subtalar joint. This plays a crucial
role in the activities during the first half of the stance phase, which
stabilizes the ankle joint as the heel strikes the floor and controls the
transition from heel strike to mid-stance. The gluteus maximus also
controlled from the two synergies mainly activated during the first
half of the stance phase. The gluteus maximus extends the hip joint
and simultaneously pulls the pelvis posteriorly. The activation of the
muscle occurs in synergy with the same action of the hamstrings

represented in synergy W2. This moves the torso from a flexion
posture to an upright posture during the mid-stance phase. In
addition, the muscle helps maintain an upright posture by
balancing the pelvis on the femoral head. The hamstrings are
activated simultaneously during the stance phase, which ensures
both hip joint extension and knee flexion. SynergyW1 controls that
the hamstrings flex the knees, and the semimembranosus and
semitendinosus, which act as accessory stabilizers of the knee,
internally rotate the tibia, acting together with the hamstring
muscles and complementing the function of the medial collateral
ligament. In synergy W2, biceps femoris are strongly activated and
contribute to hip extension and knee flexion. The activation of these
muscles helps the torso in bending forward and realizing an upright
posture. During this phase, the knee joint is extended, biceps femoris
produces tibial external rotation, and the anterior and posterior
cruciate ligaments become tangled and tightened. Consequently, the
knee joint becomes locked in a position. The tibia becomes stable to
ensure the leg upright position during the mid-stance. Furthermore,
the hamstrings are activated simultaneously with the quadriceps
femoris controlled by synergy W2. This is most important as an
antagonist of the quadriceps femoris in the deceleration of knee
extension. The rectus femoris is consistently biphasic, also being
active at the loading response and the preswing, corresponding to
synergiesW2 andW3. The two phases of rectus femoris activity have
entirely different purposes: the first phase provides knee stability
during loading response (activating coefficient H2), and the second
phase (activating coefficient H3) is initiated late in the stance phase
and continues during knee joint flexion to assist in hip joint flexion.
In synergy W3, the gastrocnemius and soleus are active during the
second half of the stance phase. The gastrocnemius is a powerful

FIGURE 7
(A) Interaction relationship of the hamstrings and the knee rotation under the same stance phase axis. (B) Predicted knee contact of pressure (COP)
trajectory (blue line) applied to the medial and lateral sides of the tibial cartilage during the stance phase. The dotted lines indicate the meniscal locations
at 0% (black) and 10% (red) of the stance phase. The triangle indicates the COP position at 10% of the stance phase, and the hollow circle shows the COP
position at 70% of the stance phase.
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plantarflexor of the foot, even though it also flexes the knee joint.
The function of the soleus is closely related to that of the
gastrocnemius muscle. Together, they constitute a chief plantar
flexor muscle synergy (W3). During the second half of the stance
phase, i.e., the start of knee flexion, the plantar flexion attributes of
the gastrocnemius are very limited, making the soleus the main
muscle responsible for plantar flexion. The plantar flexor muscle
synergy, i.e., W3, provides vertical support and has opposite
energetic effects on the leg and torso that together ensure
support and forward progression of both the leg and torso and
accelerate the leg into the swing phase. In summary, synergy W1

controls the ankle dorsiflexors to act eccentrically to prevent
slapping of the foot on the ground. Moreover, the gluteus
maximus and hamstrings extend the hip joint and flex the knee
joint in order to ensure that the body weight will be accepted by the
leg making contact with ground. Synergy W2 controls the tibialis
anterior to dorsiflex the ankle, and the gluteus maximus continues
hip joint extension. Moreover, quadriceps femoris extended the knee
to slow knee flexion by the hamstrings in order to maintain the
equilibrium on the lower limb while allowing forward progression.
As a plantar flexor muscle synergy, synergy W3 produces a
propulsive push-off force to advance the extremity into the swing
phase. The muscle synergies decomposed from the EMG data were
compared with the predicted muscle synergies. Differences in
muscle synergies might arise from the different number of
muscles in both modeling and EMG data analyses (Steele et al.,
2013). Since signal collection for some deepmuscle activities, such as
those of the vastus medialis and vastus intermedius, was not
possible. In the present study, the EMG-based muscle synergies
were normalized based on the activating coefficients predicted by the
model. We observed that each activating coefficients maintained a
high degree of activity consistency at the main peak level. Although
it is not possible to compare the muscle synergy, the predictive
accuracy of the model can be assessed by qualitatively evaluating the
activating coefficient.

The present study may provide evidence suggesting that
muscle synergy analysis may be useful for musculoskeletal
disorders and focuses on characteristic modular structures in
muscle synergy rather than the number of modules. Most
recent studies have attempted to apply muscle synergy analysis
to neurological diseases through the number of modules to analyze
the severity of the disease (Clark et al., 2010). However, it is
difficult to identify underlying neurological disorders from
changes in modular structure on muscle synergy because
patients with neurological disorders exhibit a wide variety of
symptoms, regardless of the location of the disease. In contrast,
in musculoskeletal disorders, muscle synergy analysis enables
extraction of disease-specific modular structures because the
phenotypes of musculoskeletal disorders are directly reflected in
changes in muscle activity. In addition, musculoskeletal disorders
cause various types of abnormal movements with joint
dysfunction, for example, knee osteoarthritis. These changes in
muscle activity and joint structure may affect muscle synergy. By
quantifying the muscle activity contained in the muscle synergy,
characteristic modular structures on musculoskeletal disease may
provide indication of neuromuscular features and reveal anomalies
underlying musculoskeletal disease. The complexity
representation of joints in the proposed model offers the

possibility of quantitative muscle synergy analysis of joint
disorders. In addition, although decomposing muscle synergy
through EMG analysis is a widely adopted and accurate
method, our goal is to globally understand the mechanism of
knee joint diseases by comprehending the impact of joint abnormal
movements on muscle synergy. Therefore, it is meaningful and
necessary to develop a workflow from musculoskeletal modeling
on a finite element framework to muscle synergy analysis.

The present study had some limitations. First, the FEMS lower-
limb model and gait data were not from the same subject. The most
accurate computational analysis of lower-limb biomechanics
requires subject-specific model geometry and human motion
data. Second, only one subject participated in the gait
measurement experiment. Due to individual differences, the
generalizability of our findings may be affected by random
individual traits. However, the present study focused on the
development of a new approach of using a single finite element
framework as a musculoskeletal model to provide a potential tool
by which to elucidate the interactions between the nervous system
and the joint-level-musculoskeletal system. Third, a different
number of muscles in the modeling and EMG data analysis
resulted in the impossibility of a quantitative comparison of the
decomposed muscle synergy. A final limitation was that the
articular cartilages were defined as linear elastic isotropic
material, whereas a biphasic fibril-reinforced material might
better approximate the representation of the dynamic response
of the cartilage (Brindle et al., 2001) and may impact the
calculation of the joint kinematics, thereby affecting the back
prediction of neural instructions.

5 Conclusion

In the present study, a computational musculoskeletal model
concurrent knee FE analysis was developed and used to investigate
characteristic modular neuromuscular structures on the lower limb
using muscle synergy analysis during the stance phase of gait. Our
research demonstrated that 20 representative muscles on the lower
limb during the stance phase of gait could be described by three
simple modules of muscle synergies. These muscle activities are
reasonably well described by three synergies, which could reduce the
dimensionality of the control problem on the central nervous
system. These muscle synergies can explain well the motion
mechanism of the lower limbs during gait, because this is
consistent with the behavior of the musculoskeletal biomechanics.
The modeling may provide a potential tool for understanding the
neurophysiologically coupled relationship between the nervous and
joint-level musculoskeletal system, such as the investigation of
indication of neuromuscular features on knee osteoarthritis and
the formational mechanism of joint constriction due to cerebral
palsy.
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