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Background: Poor prosthesis alignment during total knee arthroplasty could
cause problems such as polyethylene spacer wear, leading to surgical failure
and revision surgery. The problems caused by the malalignment of the tibial
plateau prosthesis in the medial and lateral planes are unclear. We aimed to
investigate the stress distribution and micromotion of the tibia when the tibial
plateau prosthesis is translated 1 and 2 mm medially and laterally, respectively,
using finite element analysis (FEA).

Method: A non-homogeneous tibia model was created and load conditions when
standing on two legs were applied using FEA to simulate themisaligned prosthesis.
The stresses, stress distribution, and micromotion of the proximal tibia were
analyzed in five positions of the tibial plateau prosthesis: Lateral-2 mm;
Lateral-1 mm; Medium; Medial-2 mm; Medial-1 mm.

Result: The maximum stress in the five groups with different misalignments of the
platform was 47.29 MPa (Lateral-2 mm). The maximum micromotion among the
five groups in different positions was 7.215 μm (Lateral-2 mm).

Conclusion: When placing the tibial plateau prosthesis during total knee
arthroplasty, an error of 2 mmor less is acceptable as long as it does not overhang.
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1 Introduction

Several studies have shown that total knee arthroplasty (TKA) is an effective and durable
treatment for end-stage knee arthritis (Vessely et al., 2006; Guo et al., 2012). The primary
goals of TKA include reducing knee pain, re-aligning the femur and tibia, maintaining knee
stability, and preserving joint flexibility. Despite the great clinical results of TKA, revision
rates remain high due to poorly aligned prosthetic components, resulting in aseptic
loosening, instability, and polyethylene wear (Dalury et al., 2013).

To predict and avoid the problems mentioned above and thus improve the prognosis of
surgery, the analytical approach (Jin et al., 1995), experimental measurement (Liau et al.,
1999) and finite element analysis (Popescu et al., 2019; Dong et al., 2020; Park et al., 2021)
(FEA) have been widely used in the field of orthopedics. Matsuda et al. (1999) investigated
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the effect of varus tilt on contact stresses in total knee prostheses
using electronic pressure sensors; Liau et al. (1999) studied the effect
of tibiofemoral joint contact alignment of knee prosthesis using Fuji
pressure-sensitive film in an in vitro biomechanical test. They also
explored the effect of the tibial polyethylene component of the total
knee prosthesis on stresses using FEA (Liau et al., 2002). Different
misalignment conditions are tested by FEA by simulating angles,
friction, and stresses. These findings are applied in preoperative
planning to prevent potential TKA failure (Perillo-Marcone and
Taylor, 2007; Minh et al., 2013). To our knowledge, there have been
few studies examining the effect of medial-lateral translational
misalignment of the tibial plateau prosthesis on the tibia.

Inoue et al. (2016) showed that the risk of medial tibial condylar
fractures increases with increased tilt of the valgus angle of the tibial
prosthesis. If the tibial prosthesis is poorly rotated, firstly, the riser of
the polyethylene prosthesis will be worn further and, since the
femoral and tibial prostheses are no longer matched in the same
position, the soft tissue will be twisted during flexion and extension
activities, resulting in a stiff knee (Bedard et al., 2011). Secondly,
internal rotation can bring about lateral patellar subluxation and
wear of the lateral patellofemoral joint, while external rotation can
cause inward patellar trajectory, internal tibial rotation, or a change
in gait (Perillo-Marcone et al., 2000; Ishii et al., 2015). Any errors
that cause asymmetric loading of the joint, such as misalignment or
instability of the prosthesis, could lead to increased wear rates,
resulting in surgical failure and revision (Fraser et al., 2015).

We aimed to investigate the stress distribution and micromotion
of the tibia when the tibial plateau prosthesis is translated 1 mm and
2 mm medially and laterally, respectively, using FEA. This may
contribute to the reduction of TKA revision rates and improved
satisfaction of patients after TKA.

2 Materials and methods

2.1 Establishment of a non-homogeneous
three-dimensional (3D) tibia model and
surgical simulation

Computed tomography (CT) scan data were recorded from a 49-
year-old male volunteer. The images were imported into Mimics
(v21.0, Materialise, Leuven, Belgium), and the right tibia was rebuilt
as a 3Dmodel. This research was approved by the Ethics Committee
of the Second Hospital of Jilin University and the volunteer provided
informed consent.

The 3D model of the right tibia and the tibial plateau prosthesis
(Ai Kang A3)were prepared as STL format files, and the simulated
surgery was performed in Magics (v21.0, Materialise, Leuven,
Belgium). The posterior slope was set to 5°, and the tibial model
was resected in the traditional surgical fashion (Indelli et al., 2016;
Maderbacher et al., 2017), by removing the tibia 6 mm below the
medial tibial articular surface, perpendicular to the mechanical axis.
The application of this study focused on the stress distribution
during the interaction of the proximal bone with the platform
prosthesis, so the distal tibia was separated from the system to
reduce the calculation time.

After installing the tibial plateau prosthesis, the prosthesis was
moved medially and laterally by 1 mm and 2 mm, respectively, to

simulate a slippage dislocation. The prosthesis is shown in the
middle position, as well as translated 2 mm to the medial and
lateral side, in Figure 1.

In the Mimics software, the 3D model of the tibia with
inhomogeneous material properties was defined based on the
grayscale values of the CT scans. Following previous studies, the
material properties of the tibia were determined according to the
following equations (Rho et al., 1995):

ρ g/m3( ) � −13.4 + 1017 × GV HU( ) (1)
E Pa( ) � −388.8 + 5925 × ρ g/m3( ) (2)

in which E is the modulus of elasticity, ρ is the bone density, and
GV is the gray value of the bone in the CT data. According to
other previous studies (Thompson et al., 2016), the Poisson’s
ratio of the bone was set to 0.3 and the modulus of elasticity of
the tibial plateau prosthesis was set to 114,500 MPa with a
Poisson’s ratio of 0.3. To differentiate, the tibia was divided
into ten colored regions, and the material properties are shown
in Figure 2.

2.2 Meshing and load setting

All components were imported into Hypermesh (14.0, Altair,
Troy, MI) to create triangular meshes with the element type C3D4.
The number of elements in the bone and prosthesis are 420,036 and
117,094 respectively. A non-linear friction model with surface-
surface contact was established between the superior surface of
the tibia and the inferior surface of the prosthesis, and the
friction coefficient was set to 0.2 (Li et al., 2019). A static
analysis of the tibia was performed under a load condition of
963 N to simulate a two-legged stance (Kutzner et al., 2010).
According to a previous study (Lin et al., 2017), the ratio of force
between the lateral and medial tibial plateau is 40%:60%,
respectively, so the force was divided into 385 N and 578 N and
loaded with rigid bar element 3 (Rbe3) to transfer the force
uniformly. The inferior surface of the distal tibia was constrained
in all directions (Figure 3).

3 Results

3.1 Finite element analysis

3.3.1 Stress
Figure 4 shows the maximum von Mises stress in the tibia for

five sets of platforms in different positions. The highest stress peak of
47.29 MPa can be seen when the platform is misaligned by 2 mm to
the lateral side, followed by the stress peak of 20.90 MPa when the
platform is misaligned by 2 mm to the medial side. The remaining
three data groups were not significantly different compared to each
other.

The proximal tibia was divided into seven regions to analyze
the stress distribution (Figure 5). All cell points in each region were
extracted separately and the data was analyzed using SPSS
software. Since the data does not obey a normal distribution,
the results were analyzed using the Kruskal–Wallis test.
According to the stress distribution in the first six regions, the
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data statistics were obtained as shown in Figure 6. Significant
differences were found between the groups except for those labeled
p > 0.05. The largest median of 1.43 MPa occurred in the case of a
2 mm medial misalignment in the F region, while the smallest
median of 0.075 MPa was seen in the B region where the prosthesis
was in the middle position. It can be seen that the red part of the
high stress was concentrated in the lower part of the proximal tibia
which was the G region.

A representative evaluation path was defined for qualitative and
quantitative comparison among the different positions of stresses at
the region of the tibia plateau. Figure 7 shows stresses along the path
defined at the stem cavity border. The major differences along this
path pertain to the extreme values at the distance of 25–50 mm. The
maximum stress along the defined path occurred in the lateral-2 mm
group; the maximum stress in this case was 6.43 MPa. In the same

location, the least stress model represents the medium group, with
the maximum value of 1.38 MPa.

3.2 Micromotion

Figure 8 shows the micromotion clouds of one of the groups and
Figure 9 demonstrates the micromotion of the five sets of platforms
for different misalignment situations. When the platform was
misaligned to the lateral side by 2 mm, its micromotion of
7.215 μm was significantly larger than the remaining four groups.
Additionally, while the platform was misaligned 2 mm medially, its
micromotion of 2.869 μm was the smallest among the five groups.
The middle three groups of micromotions are almost half of the first
group, respectively. Figure 10 shows the micromotion at different

FIGURE 1
Prosthesis in different positions. (A) Lateral-2 mm; (B) Medium; (C) Medial-2 mm.

FIGURE 2
Material properties of the inhomogeneous tibia. (A) External material properties of the tibia. (B) Internal material properties of the tibia. ρ: bone
density. (E) elastic modulus.
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misalignment positions of the plateau and stem. The largest
micromotion of 3.854 um occurred on the plateau when the
platform was misaligned 1 mm medially.

4 Discussion

Addressing the problems caused by the wear of prostheses in
TKA remains a challenge for orthopedic surgeons. In previous
studies, varus-valgus, anterior-posterior tilt, and internal and
external rotation misalignment of the prosthesis were included
(Fraser et al., 2015). However, no studies have been conducted to
investigate the medial-lateral translational misalignment of the
prosthesis.

FEA is an effective tool to evaluate the mechanical
properties of prostheses and bone. The accuracy of the

analysis depends on the veracity of the model. In this study,
a non-homogeneous 3D tibia model was used, which means that
it will be closer to real human bone than a homogeneous bone
model, making the results of the study more realistic
(Venalainen et al., 2016; Ün and Çalık, 2016). According to
Ruggiero et al. (2019) we can learn that the quality of the
hexahedral mesh is better than that of the tetrahedral one,
especially in the dynamic condition. But based on the static
conditions of our study and the fact that we draw the relatively
small mesh, the accuracy is guaranteed even if we use the
tetrahedral mesh in this study.

The comparison of the five groups of maximum stresses shows
that the maximum stress was 47.29 MPa, which is less than the
ultimate stress of 80 MPa in cortical bone (Maslov et al., 2021).
This indicates that translational misalignments of 2 mm or less do
not result in fractures. As can be seen in Figure 6, the stresses in the
A and D regions were high when the platform prosthesis was
misaligned to the lateral side, which was in line with our
expectations. A similar pattern could be seen in regions C and
F, when the tibial plateau prosthesis was transferred medially. Even
with these stress concentrations, the stresses were not sufficient to
cause significant effects on the proximal tibia (Maslov et al., 2021).
Figure 7 demonstrates that, at the stem cavity border, the stresses
are concentrated at the rear. Figure 9 shows that the largest
micromovement was 7.215 μm, which was much smaller than
28 μm, showing that all five groups could have good bone

FIGURE 3
Loads and constraints of the tibia. The distal tibia is constrained
completely.

FIGURE 4
Comparison of maximum stresses when five groups of platforms
are in different misalignment positions.

FIGURE 5
Distribution of von Mises stress in the proximal tibia. (A–G) Seven
different regions of stress.
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growth in the future (Pilliar et al., 1986; Jasty et al., 1997). From
Figure 10 it can be seen that the plateau presents more
micromotion than the stem.

In summary, there is no significant effect on the proximal
tibia whether the tibial plateau prosthesis is misaligned medially
or laterally by 2 mm or 1 mm. However, according to the current
study, the tibial plateau prosthesis should be properly aligned on

the tibial surface. A prosthesis overlapping the bony surface will
have a negative impact on the surrounding soft tissues, such as
the medial and lateral collateral ligaments, and especially upon
the popliteal tendon (Bonnin et al., 2017). Dowson and Jin,
(1986) showed that in synovial joints, micro-

FIGURE 6
Box diagram of the first six different regions. (A–F) Six different regions of stress, corresponding to Figure 5, respectively.

FIGURE 7
Stresses along the border of the stem cavity. Point A is the starting
point and point B is the 100 mm position.

FIGURE 8
Micromotion cloud map when the platform is misaligned 1 mm
to the lateral side.
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elastohydrodynamic action largely smooths the initial roughness
of the cartilage surface, which was then considered a form of
lubrication responsible for the significant tribological properties
of synovial joints. Later, Ruggiero, (2020) reviewed several
theories on the natural synovial lubrication phenomenon in
human joints that have been proposed over the years. These
indicated that the synovial soft tissue was also closely related to
friction. In order to achieve basic stability during the
postoperative period without the formation of an alignment,
the resistance to movement between the bone and the implant
is optimized by increasing the friction at the interface. This is
necessary because excessive relative movements can inhibit bone
growth due to wear and tear of the bone and formation of fibrous
tissue at the implant interface, which can lead to loosening and
pain (de Vries et al., 2022). Therefore, oversizing or malposition
should be avoided when installing a tibial plateau prosthesis
during TKA.

This study has some limitations. First, we applied the stress
under static conditions, without introducing dynamic factors
such as squatting or walking. And no additional loading

conditions such as maximum force in the gait cycle were
added in this study. Second, we did not consider the impact
on the muscles and ligaments. Third, no synovial lubrication
phenomena were considered in this study. Apart from these,
Affatato et al. (2019) used in-vitro experimental investigation in
the study of femoral prosthesis roughness. Such in-vitro
experiments were not used in our study. In future studies, if
the above details are included in the experiments, the results
obtained may be more appropriate to clinical settings.

5 Conclusion

FEA of stress distribution and micromotion results showed that
misalignment of the tibial plateau prosthesis by 2 or 1 mm medially
or laterally during TKA did not significantly negatively affect the
stress upon the proximal tibia. However, to prevent postoperative
pain and stiffness due to impingement on the surrounding soft
tissues and ligaments, it is important to consider and design the
most appropriate prosthesis and ensure proper positioning for
different patients.
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FIGURE 9
Micromotion at different misalignment positions of the platform.

FIGURE 10
Micromotion at different misalignment positions of the plateau
and stem.
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