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Cotton verticillium wilt (CVW) represented a typical plant soil-borne disease and
resulted in widespread economic losses in cotton production. However, the effect of
broccoli residues (BR) on verticillium wilt of spring-sowing-cotton was not clear. We
investigated the effects of BR onCVW,microbial communities structure and function
in rhizosphere of two cotton cultivars with different CVW resistance using amplicon
sequencing methods. Results showed that control effects of BR on CVW of
susceptible cultivar (cv. EJ-1) and resistant cultivar (cv. J863) were 58.49% and
85.96%, and the populations of V. dahliae decreased by 14.31% and 34.19%,
respectively. The bacterial diversity indices significantly increased in BR treatment,
while fungal diversity indices significantly decreased. In terms of microbial
community composition, the abilities to recruit bacteria and fungi were enhanced
in BR treatment, including RB41, Gemmatimonas, Pontibacter, Streptomyces,
Blastococcus, Massilia, Bacillus, and Gibberella, Plectosphaerella,
Neocosmospora, Aspergillus and Preussia. However, the relative abundances of
Sphingomonas, Nocardioides, Haliangium, Lysobacter, Penicillium, Mortierella and
Chaetomidium were opposite tendency between cultivars in BR treatment.
According to PICRUSt analysis, functional profiles prediction showed that
significant shifts in metabolic functions impacting KEGG pathways of BR
treatment were related to metabolism and biosynthesis. FUNGuild analysis
indicated that BR treatment altered the relative abundances of fungal trophic
modes. The results of this study demonstrated that BR treatment decreased the
populations of V. dahliae in soil, increased bacterial diversity, decreased fungal
diversity, changed the microbial community structure and function, and increased
the abundances of beneficial microorganisms.
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Introduction

Cotton (Gossypium hirsutum L.) is the most important source
of natural textile fibers worldwide and a significant oilseed crop
(Y.L. Zhang et al., 2016). In China, cotton planting patterns are
divided into spring-sowing-cotton and summer-sowing-cotton.
Cotton growing areas mainly include Northwest inland cotton
region, Yellow River basin cotton region and Yangtze River
basin cotton region. In Northwest inland cotton region and
Yellow River basin cotton region, spring-sowing-cotton is the
main planting pattern, while summer-sowing-cotton is the main
planting pattern in Yangtze River basin cotton region. As a single
season crop, spring-sowing-cotton is generally late maturing
cultivars with a long growth period. Summer-sowing-cotton is
early maturing cultivars and short growth period. Summer-
sowing-cotton was sown in late May to early June. The main
planting patterns of summer-sowing-cotton are wheat-cotton
double cultivation, oilseed rape-cotton double cultivation,
cabbage-cotton double cultivation and so on. Broccoli is planted
and an important economic crop in Hebei province. There are
generally two planting patterns for broccoli in this area, one is
planted in early spring (March), and the other in summer and
autumn (early August). We have previously evaluated the impact of
BR on verticillium wilt of summer-sowing-cotton (W.S. Zhao et al.,
2019).

Cotton verticillium wilt (CVW), caused by Verticillium dahliae,
is a typical soil-borne disease and results in extensive economic
losses. In China, losses of approximately 250–310 million US
dollars have been reported for cotton annually due to V. dahliae
(C.H. Li et al., 2015; L; Rehman et al., 2018). CVW is particularly
difficult to control due to the long-living dormant microsclerotia
produced by the pathogen, which could remain viable in the soil for
more than 2 decades (E.F. Fradinand Thomma, 2006; S; Alstrom
2001), as well as the inability of fungicides to contact the hyphae of
V. dahliae after they spread inside the xylem (S.J. Klosterman et al.,
2009). It is imperative to develop novel control strategies to control
this devastating disease. Previous studies showed that soil-borne
disease management has relied principally upon fumigation (Z.K.
Atallah et al., 2012; D.A; Johnson and Dung, 2010; R.J; Taylor et al.,
2005). However, the application of chemical fumigants to the soil
may be environmentally unfriendly (A.K. Uppal et al., 2008).
Therefore, there is growing interest in the search for alternatives
to fumigants for disease control. Many reports have demonstrated
that the use of organic soil amendments may be a potential strategy
for the control of insect pests, pathogens, nematodes, and weeds
(J.C. Díaz-Pérez et al., 2012; J.A; López-Pérez et al., 2005; J; Poveda
et al., 2021), since they could increase organic matter and nutrients
and change the structure of the microbial community in the soil
(Z.Z. Shen et al., 2013; S; Akao 2017; D.L; Chen et al., 2022). The
changes in soil microbial community structure caused by organic
soil amendments provide useful information on soil health and
quality (P.H.B. Poulsen et al., 2013; N; Rodríguez-Berbel et al.,
2022). In particular, the responses of soil bacterial communities to
organic soil amendments are particularly important and are
believed to be one of the main drivers of disease suppression (P.
Garbeva et al., 2004; A.O; Akanmu et al., 2021). Broccoli residues
(BR) were reported to successfully reduce the incidence of
verticillium wilt in eggplant, potato, strawberry, sunflower and
summer-sowing-cotton by reducing microsclerotia or DNA copy

numbers of V. dahliae in the soil (P. Inderbitzin et al., 2018; W.S;
Zhao et al., 2019; 2021). Mechanism for control was partially
attributed to breakdown of glucosinolates from BR in soil to
produce volatile compounds (isothiocyanates) that had
fungicidal properties (G.D. Bending and Lincoln, 1999; K.V;
Subbarao et al., 1999). However, more in-depth research should
be performed to further explore this potential mechanism,
especially from the perspective of rhizosphere microbiomics.
Microbiome-based research has opened a new frontier that will
greatly expand our knowledge of the relationships between plant
disease incidence and microbiota, and offer new opportunities for
developing novel approaches for biocontrol. To our knowledge,
this detailed comparison of the soil microbial community
associated with different cultivars resistant to CVW was the first
to be performed in BR treatment.

Hebei is the second largest cotton growing province in China, the
planting area is approximately 150 thousands hectares, with spring-
sowing-cotton as the main planting pattern. In our previous study, it
was showed that BR could reduce the occurrence of summer-sowing-
cotton verticillium wilt and improve soil bacterial community structure
under the broccoli-cotton double cropping cultivation mode (W.S. Zhao
et al., 2019). However, the effects of BR on the occurrence of verticillium
wilt of spring-sowing-cotton and soil bacterial and fungal communities
are still unclear.

Recent evidences suggest that variability in plant genotypes or
cultivars could have a significant impact on rhizosphere
microbiomes, particularly bacteria (I.A. Stringlis et al., 2018; J.Y;
Zhang et al., 2019). However, information regarding the variation
in soil microbial communities in rhizosphere that are influenced by
cotton cultivars that vary in resistance to CVW following the
application of BR is still lacking. It is unclear whether and, if so,
how cultivar resistance against V. dahliae is related to rhizosphere
microorganisms. The overall objectives of this study were therefore
i) to determine the effect of BR on the incidence of verticillium wilt
of spring-sowing-cotton with different CVW resistance levels, ii) to
study the differences in soil microbial diversity indices, and
microbial communities structures in BR treatment, iii) to
analyze the effect of BR on soil microbial function.

Materials and methods

Field experiment site

The experimental sites were located in Quzhou County
(115°01′E, 36°47′N), Hebei Province. Field had a same long
history of cotton cultivation and incidence of CVW. The field
with flat terrain, relatively uniform fertility and continuous cotton
planting for more than 10 years. Soil nutrient characteristics were
described as follows: soil organic matter 0.66%, nitrate nitrogen
21.3 mg/kg, ammonium nitrogen 12.5 mg/kg, available potassium
0.25 mg/kg, available phosphorus 0.68 mg/kg, and pH 8.35.

Experimental setup and design

The experiment was carried out from 2018 to 2019. The field
was divided into two plots. The first plot was named BR, which
broccoli (cultivar Yanxiu) was planted in August 2018, after edible
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portion was harvested, then the incorporation of BR into the soil
was carried out according to the method of previous study (W.S.
Zhao et al., 2020), then following planted by cotton (2019). The
second plot was named CK, cotton was planted for two
consecutive years (2018 and 2019). Cotton cultivar Ejing 1 (EJ-
1, susceptible for CVW) and cultivar Ji 863 (J863, resistant for
CVW) with different CVW resistance levels were planted on
25 April. The experimental design included four treatments: 1)
susceptible cultivar EJ-1 planted without BR (EJ-1-CK); 2)
susceptible cultivar EJ-1 planted with BR (EJ-1-BR); 3) resistant
cultivar J863 planted with BR (J863-BR); 4) resistant cultivar
J863 planted without BR (J863-CK). Experiment consisting of
thirty-six 40 m long rows in field, spaced 75 cm in per row, per
plot with three rows represented a replicate, each replicate area
was 60 square meters. The experiment was three replicates.

Soil sample collection, DNA extraction and
qPCR analysis for V. dahliae

Soil samples from different treatments were collected at the
flowering and boll-forming stages of cotton. Within each sampling
plot, three plants were randomly selected and carefully removed
from the soil using a spade. The root systems of the three plants
from each plot were first vigorously shaken to remove loosely
adhering soil particles, and then the remaining root systems were
combined as a rhizosphere sample. Soil samples were immediately
preserved at 4°C for less than 48 h. To remove plant material,
samples were sieved through a 2.0 mm sieve and stored at −80°C
for subsequent DNA extraction. DNA from samples were
extracted following the instruction manual for the FastDNA™
SPIN Kit for Soil (MP Biomedicals, Solon, OH, United States) in
accordance with the protocol of the manufacturer. The
concentration and quality of DNA were determined using a
spectrophotometer (NanoDrop 2000; Thermo Fisher Scientific
Inc., Waltham, MA, United States). The extracted DNA was
stored at −20°C prior for further analyses. The DNA copy
numbers of V. dahliae in different soil samples were
determined through qPCR according to the method described
in our previous study (W.S. Zhao et al., 2019).

PCR amplification, Illumina MiSeq sequencing
and data processing

PCR amplification of bacterial 16 S rRNA targeting the V3/V4
region was conducted by using primers 338 F (5′-ACTCCTACGGGA
GGCAGCA-3′) and 806 R (5′-GGACTACHVGGGTWTCTAAT-3′),
and fungal ITS-1 region with the primers ITS1F (5′-CTTGGTCAT
TTAGAGGAAGTAA-3′) and ITS2R (5′-GCTGCGTTCTTCATC
GATGC-3′) (W.S. Zhao et al., 2021). PCR protocols were used to
amplify the 16 S rRNA gene and ITS gene (W.S. Zhao et al., 2021; R; Lu
et al., 2018). Finally, equal amounts of PCR product from each sample
were placed in individual tubes and analyzed with the Illumina MiSeq
platform. Illumina MiSeq sequencing was performed at Majorbio
Biopharm Technology Co., Ltd. (Shanghai, China). The raw
sequences data were deposited at the National Center for
Biotechnology Information (NCBI) under accession numbers

PRJNA734729 and PRJNA894483. Processing of the raw sequences
were performed using the QIIME 1.9 software. Paired-end reads were
assigned to samples based on their unique barcode and were merged
using FLASH 1.2 software. Reads (average quality score <20),
improper primers and ambiguous bases were discarded before
clustering (Y.X. Feng et al., 2019). The effective sequences were
clustered into operational taxonomic units (OTUs) at 97%
similarity using UPARSE 7.0 software. Soil bacterial and fungal
diversity indices were calculated based on resampled OTU
abundance matrices in MOTHUR 1.30 software.

Assessment the effects of BR on cotton
growth promotion and CVW incidence

The effects of BR on cotton growth-related traits were investigated.
CVW severities of all individual plants were recorded on a scale of 0–4.
The disease index of CVW for each plot was calculated based on a five-
level categorization of CVW according to the percentage of plant leaves
with symptoms such as chlorosis, necrosis or defoliation (W.S. Zhao et al.,
2019). The detailed statements were as follows: 0 = healthy plants or no
symptoms, 1 = diseased plants with leaf symptoms below 25%, 2 = 26%–
50% diseased plants with leaf symptoms and leaf margin rolled up and
showing symptoms of wilt, 3 = 51%–75% diseased plants with leaf
symptoms and leaf margin rolled up with wilting symptoms, 4 =
more than 76% diseased plants or dead with leaf symptoms. The
disease incidence, disease index and control effect were calculated
using the following formula:

Disease index � 100 ×∑ No.of diseased plants × responding disease rating( )[ ]/
total plant numbers × 4( )

Control ef fect %( ) � disease index of CK treatment − disease index of BR treatment( )/disease index of CK treatment[ ] × 100

Statistical analysis

Statistically significant differences (p < 0.05) in disease index,
DNA copy numbers of V. dahliae, and changes in soil bacterial and
fungal community composition between CK and BR treatments
were evaluated with Student’s t-test or one-way analysis of variance
(ANOVA) using SPSS 17.0. Principal component analysis (PCA)
was performed to explore the differences in soil bacterial and fungal
community structures. Analysis of similarities (ANOSIM) were
performed to identify the significant differences in bacterial and
fungal community structure and function among treatments.
Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt) software package was used to predict
the functional composition of bacterial communities in different
samples from amplicon sequencing results. The functional genes
were identified from Kyoto Encyclopedia of Genes and Genomes
(KEGG) database. FUNGuild database was used to analyze, classify,
and interpret fungal communities according to fungal functions.
The FUNGuild software annotates taxonomic data within the OTU
table with corresponding data on its online database, the
annotations include the guild, trophic mode and growth
morphology; only confidence scores of “Probable” and “Highly
Probable” were used. Graphs were generated with Origin
8.6 software.
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Results

Effect of BR on CVW of different cultivars and
on population of V. dahliae in rhizosphere soil

BR treatment had a significant impact on the disease index of
CVW (p < 0.05). For susceptible cultivar (EJ-1), the disease indices
were 34.69 and 14.40 under CK and BR treatments, respectively. For
resistant cultivar (J863), the disease indices were 7.62 and 1.07 under
CK and BR treatments, respectively. The disease indices of susceptible
cultivar (EJ-1) and resistant cultivar (J863) were decreased by 58.49%
and 85.96%, respectively (Figure 1). Compared with CK, the DNA
copy numbers of V. dahliae in the rhizosphere from susceptible
cultivar and resistant cultivars treated with BR were significantly
reduced by 14.31% (p = 0.015) and 34.19% (p = 0.007),
respectively (Figure 2).

Effect of BR on cotton growth promotion

Cotton growth traits were recorded among different treatments,
respectively (Table 1). For cultivar EJ-1, compared with CK treatment,
all growth traits (such as plant height, ground diameter, fresh weight,
dry weight, and number of branches) were significantly increased. For
cultivar J863, except plant height characteristic, there were no
significant differences on ground diameter, fresh weight, dry
weight, and number of branches of cotton. In addition, yields of

the susceptible and resistant cultivar under BR treatment were
3532.55 kgha−1 and 5791.98 kgha−1, and the yield increase rates
were 8.4% and 3.7%, respectively (Table 1).

Alpha diversity of soil bacterial and fungal
communities

Alpha diversity of soil microbial communities were expressed
by ACE and Chao indices in our study (Figure 3). For bacterial,
ACE and Chao indices in different cultivars under BR treatment
were higher than that in CK treatment (Figures 3A, B). However,
for fungi, ACE and Chao indices in different cultivars under BR
treatment were lower than that in CK treatment (Figures 3C, D).

Beta diversity of soil bacterial and fungal
community structures

Principal component analysis based on the OTU level was used
to study the effects of BR on soil bacterial and fungal community
structures associated with different cotton cultivars (Figure 4).
The results showed that the bacterial community structures
associated with the different cultivars were located in the same
quadrant in BR treatment, while that of the blank control of the
different cultivars were located in the different quadrants. It was
indicated that bacterial community structures changed and
converged together in BR treatment (Figure 4A). However, the
fungal community structures between different cultivars were

FIGURE 1
Comparison of the incidence of verticillium wilt of different cotton
cultivars. CK represents treatment with blank control, BR represents
treatment with broccoli residues. EJ-1 represents susceptible cultivar for
CVW, J863 represents resistant cultivar for CVW. Values are the
means of three replicates. Means with the same letters for the same
cultivar are not significantly different according to Student’s t-test at
p < 0.05.

FIGURE 2
Quantification of V. dahliae in soil by qPCR. CK represents
treatment with blank control, BR represents treatment with broccoli
residues. EJ-1 represents susceptible cultivar for CVW, J863 represents
resistant cultivar for CVW. Bars with different letters are significantly
different by Duncan’s multiple range test at p < 0.05.
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located in different quadrants in BR treatment, while that of the
blank control of different cultivars were located in the same
quadrant, which also indicated that fungal community
structures changed in BR treatment (Figure 4B). In addition,

the first principal component (PC1) and the second principal
component (PC2) at the OTU level in rhizosphere soil were
found to explain 34.07% and 16.36% of all variables in bacterial
community structure, and 36.34% and 24.23% of all variables in

TABLE 1 Effect of BR on cotton growth promotion.

Cultivar Treatment Plant
height (cm)

Ground
diameter (cm)

Plant fresh
weight (kg)

Dry
weight (kg)

Number of
branches

Yield
(kg/ha)

Susceptible
EJ-1

CK 107.20 (3.67) b 1.83 (0.11) b 0.94 (0.36) b 0.23 (0.04) b 12.75 (1.48) b 3259.10
(339.35) a

BR 157.23 (1.12) a 2.37 (0.09) a 1.66 (0.35) a 0.35 (0.03) a 21.25 (5.54) a 3532.55
(190.35) a

Resistant J863 CK 122.05 (8.09) b 2.17 (0.03) a 1.09 (0.23) a 0.26 (0.05) a 13.75 (0.83) a 5587.45
(785.54) a

BR 148.17 (3.76) a 2.17 (0.05) a 1.23 (0.21) a 0.29 (0.05) a 14.50 (0.50) a 5791.98
(796.61) a

Values are the means of three replicates. Means with the same letters are not significantly different according to Student’s t-test at p < 0.05. CK, represents treatment with blank control; BR, represents

treatment with broccoli residues. Susceptible represents cultivar EJ-1, Resistant represents cultivar J863.

FIGURE 3
Effect of the BR treatment on the alpha diversity indices of soil bacterial and fungal community. (A, B) bacterial, (C, D) fungal. CK represents treatment
with blank control, BR represents treatment with broccoli residues. EJ-1 represents susceptible cultivar for CVW, J863 represents resistant cultivar for CVW.
Bars with different letters are significantly different by Duncan’s multiple range test at p < 0.05.
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fungal community structure, respectively. The cumulative
contribution rates of variance of the two principal components
reached 50.43% and 60.57%, respectively. In addition, ANOSIM
indicated that BR treatment contributed significantly to the
separation of CK treatment (R = 0.9815, p = 0.001, bacterial)
and (R = 0.8827, p = 0.001, fungal).

Comparison of bacterial community
composition

Among all sequences, unknown sequences were classified as
“others”. The dominant bacterial phyla were Proteobacteria,

Actinobacteria, Acidobacteria, Gemmatimonadetes, Chloroflexi,
Bacteroidetes, Planctomycetes, Rokubacteria, Nitrospirae,
Verrucomicrobia, Latescibacteria, Firmicutes and
Patescibacteria, and these phyla accounted for more than 95%
of the total sequences in each sample. The fold changes in the
relative abundances of the dominant bacterial taxa associated
with different cotton cultivars in BR treatment were compared at
the phylum level (Figure 5A). The relative abundances of
Actinobacteria, Gemmatimonadetes, Rokubacteria, Nitrospirae,
Verrucomicrobia and Firmicutes for cultivar EJ-1, the susceptible
cultivar, were increased in BR treatment. While for cultivar J863,
the resistant cultivar, the relative abundances of
Gemmatimonadetes, Chloroflexi, Planctomycetes, Rokubacteria,

FIGURE 4
Principal component analysis (PCA) of microbial communities at the OTU level under different treatments. (A) bacterial, (B) fungal. CK represents
treatment with blank control, BR represents treatment with broccoli residues. EJ-1 represents susceptible cultivar for CVW, J863 represents resistant cultivar
for CVW.

FIGURE 5
Relative abundance of the dominant bacterial taxa at the phylum level under different treatments. (A) Logarithm of fold changes of BR/CK, (B), Analysis of
significant differences in mean proportion of dominant bacterial. Log2 fold change < 0 represents the relative abundance of taxa decreased, Log2 fold change
> 0 represents the relative abundance of taxa increased. CK represents treatment with blank control, BR represents treatment with broccoli residues. EJ-1
represents susceptible cultivar for CVW, J863 represents resistant cultivar for CVW. Asterisk represents significantly different by Duncan’s multiple range
test at P < 0.05.
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Verrucomicrobia, Latescibacteria and Firmicutes were increased
(Figure 5A). Furthermore, analysis of variance showed the
differences in the mean proportions of Proteobacteria,
Bacteroidetes, Rokubacteria, Latescibacteria, Firmicutes and
Patescibacteria (Figure 5B). The relative abundances of
Gemmatimonadetes, Rokubacteria, Verrucomicrobia and
Firmicutes were increased in susceptible and resistant cultivars,
respectively. Firmicutes was the most fold changes (5.66) in
susceptible cultivar EJ-1, while that for Verrucomicrobia (1.59)
in resistant cultivar J863.

In addition, the top 23 dominant bacterial genera (cultured and at
least one group in two groups average relative abundance>0.5%) were
Sphingomonas, RB41, MND1, Haliangium, Nitrospira, Lysobacter,
Bryobacter, Gemmatimonas, Gaiella, Iamia, Pontibacter,
Streptomyces, Steroidobacter, Ilumatobacter, Blastococcus, Dongia,
Luedemannella, Rubrobacter, Nocardioides, Gemmatirosa, Massilia,
Bacillus and Sphingobacterium (Figure 6A). Furthermore, analysis of
variance showed that the differences in the mean proportions of
Sphingomonas, RB41, MND1, Haliangium, Lysobacter,
Gemmatimonas, Gaiella, Iamia, Pontibacter, Ilumatobacter,
Blastococcus, Dongia, Nocardioides, Gemmatirosa, Massilia, Bacillus
and Sphingobacterium (Figure 6B). In terms of susceptible cultivar EJ-
1, the relative abundances of Sphingomonas, RB41, Gemmatimonas,
Pontibacter, Streptomyces, Blastococcus, Nocardioides, Gemmatirosa,
Massilia, Bacillus and Sphingobacterium in BR treatment were
increased by 29.46%, 50.95%, 39.23%, 49.67%, 75.91%, 44.95%,
28.41%, 151.74%, 338.52%, 486.83% and 710.03%, respectively. For
resistant cultivar J863, the relative abundances of RB41, Haliangium,
Lysobacter, Gemmatimonas, Pontibacter, Streptomyces, Blastococcus,

Massilia and Bacillus in BR treatment were increased by 16.60%,
11.08%, 14.30%, 16.05%, 29.68%, 75.69%, 49.73%, 82.26% and
106.84%, respectively. Among them, the relative abundances of
RB41, Gemmatimonas, Pontibacter, Streptomyces, Blastococcus,
Massilia and Bacillus were increased by BR treatment in susceptible
and resistant cultivars.

Comparison of fungal community
composition

Ascomycota, Basidiomycota and Mortierellomycota were the
dominant fungal phyla in different treatments. There was no
significantly difference in susceptible and resistant cultivars in BR
treatment (Supplementary Figure S1). At the genus level, the top
23 dominant fungal genera were Chaetomium, Corynespora,
Gibellulopsis, Acremonium, Gibberella, Plectosphaerella,
Schizothecium, Mortierella, Podospora, Neocosmospora,
Cephalotrichum, Penicillium, Pseudombrophila, Chaetomidium,
Cercospora, Alternaria, Poaceascoma, Aspergillus, Coprinellus,
Preussia, Badarisama, Podosordaria and Cephaliophora (Figure 7A).
Furthermore, analysis of variance showed that the differences in the
mean proportions of Corynespora, Gibellulopsis, Acremonium,
Gibberella, Plectosphaerella, Schizothecium, Mortierella, Podospora,
Cephalotrichum, Pseudombrophila, Cercospora, Alternaria and
Preussia (Figure 7B). In terms of susceptible cultivar EJ-1, the
relative abundances of Corynespora, Gibellulopsis, Acremonium,
Gibberella, Plectosphaerella, Cercospora, Alternaria and Preussia in
BR treatment were increased, while others were decreased. For

FIGURE 6
Changes in the relative abundances of the bacterial taxa at the genus level under different treatments. (A) Relative abundance of bacterial (B) Analysis of
significant differences in mean proportion of bacterial. CK represents treatment with blank control, BR represents treatment with broccoli residues. EJ-1
represents susceptible cultivar for CVW, J863 represents resistant cultivar for CVW.
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resistant cultivar J863, the relative abundances of Gibberella,
Plectosphaerella, Mortierella, Pseudombrophila and Preussia were
increased. Among them, the relative abundances of Gibberella,
Plectosphaerella, Alternaria and Preussia were increased in BR
treatment between susceptible and resistant cultivars, while the
relative abundances of Schizothecium, Podospora, Cephalotrichum
were decreased, respectively.

Effect of BR onmicrobial community function
in rhizosphere

To study the effect of BR on soil bacterial function, we used
PICRUSt to perform bacterial function prediction analysis. Through
comparisons with the KEGG database, 6 categories of biological
metabolic pathways at level 1 were obtained, including metabolism,
genetic information processing, environmental information

processing, cellular processes, organ systems, and human diseases
(Table 2). Among these pathways, metabolism, genetic information
processing, and environmental information processing were the
primary components, accounting for 51.50%–51.77%, 16.25%–
16.32% and 12.85%–13.06%, respectively. The pathways of
environmental information processing in different cultivars were
downregulated in BR treatment compared with CK. The pathway
of metabolism in susceptible cultivar EJ-1 was enriched in BR
treatment, while the opposite tendency was obtained in resistant
cultivar J863. In addition, the analysis of the functional pathways
at level 2 of the predicted genes showed that it consisted of
41 subfunctions. For cultivar EJ-1, 17 pathways, including amino
acid metabolism (e.g., tyrosine metabolism), carbohydrate metabolism
(e.g., pentose and glucuronate interconversions, fructose, mannose,
starch and sucrose metabolism), glycan biosynthesis and metabolism
(e.g., N-glycan biosynthesis), lipid metabolism (e.g., sphingolipid,
linoleic acid, steroid biosynthesis) were enriched in BR treatment

FIGURE 7
Changes in the relative abundances of the fungal taxa at the genus level in under different treatments. (A) Relative abundance of fungal (B) Analysis of
significant differences in mean proportion of fungal. CK represents treatment with blank control, BR represents treatment with broccoli residues. EJ-1
represents susceptible cultivar for CVW, J863 represents resistant cultivar for CVW.

TABLE 2 The proportion of predicted functional profiles in different treatments (Pathway level 1).

Pathway level1 EJ-1-CK (%) EJ-1-BR (%) J863-CK (%) J863-BR (%)

Cellular processes 4.13 4.13 4.06 4.05

Environmental information processing 13.06 12.87 12.91 12.85

Genetic information processing 16.27 16.27 16.25 16.32

Human diseases 0.89 0.88 0.90 0.88

Metabolism 51.50 51.63 51.77 51.73

Organismal systems 0.81 0.80 0.80 0.80
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FIGURE 8
A heatmap of the predicted KEGG functional profiles (KEGG level 2) of bacterial microbiota across all samples. * represents functional pathways
enrichment. CK represents treatment with blank control, BR represents treatment with broccoli residues. EJ-1 represents susceptible cultivar for CVW, J863
represents resistant cultivar for CVW.

FIGURE 9
The relative abundance of mainly guilds assigned by FUNGuild for fungal communities. Different letters indicate significant difference between
treatments detected by Student’s-T test (P < 0.05). (A) pathotroph trophic mode (B) symbiotroph trophic mode (C) saprotroph trophic mode.
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compared with CK, while for cultivar J863, 23 pathways were enriched
in BR treatment compared with CK (Figure 8).

FUNGuild was used to predict the nutritional and functional
groups of the fungal communities with different treatments. The
results showed that the fungi community was divided into nine
trophic mode groups. The fungal community was screened to
484 identifiable species, which included saprotroph (43.80%),
pathotroph-saprotroph-symbiotroph (16.32%), pathotroph
(14.88%), symbiotroph (8.68%), pathotroph-saprotroph (6.20%),
saprotroph-symbiotroph(6.20%), pathogen-saprotroph-symbiotroph
(1.45%), pathotroph-symbiotroph (2.27%) and saprotroph-
pathotroph-symbiotroph (0.21%) representing the general
abundance of each nutrition method in the identified community
(Supplementary Figure S2). Among them, pathotrophs, saprotrophs,
and symbiotrophs were the major components. The pathotrophic
mode groups primarily consisted of plant pathogens (not represent a
specific specie) and animal pathogens. The relative abundances of
plant pathogens in susceptible cultivar EJ-1 samples in BR treatment
were higher than those observed in the control, while that in resistant
cultivar J863 samples were significantly lower than that observed in the
control. In addition, the relative abundances of animal pathogens in
cultivars EJ-1 and J863 samples in BR treatment were also significantly
lower than that observed in the control (Figure 9A). In terms of
symbiotrophic mode groups, except ectomycorrhizal, the relative
abundances of arbuscular mycorrhizal and endophyte in cultivars
EJ-1 and J863 samples in BR treatment were significantly lower than
that observed in the control (Figure 9B). For the mode groups of
saprotroph, including undefined saprotroph, dung saprotroph, plant
saprotroph and wood saprotroph. The relative abundance of dung
saprotroph in cultivar EJ-1 samples in BR treatment was 2.21%, lower
than that observed in the control (8.90%), while in cultivar
J863 samples it was 4.48%, higher than that observed in the
control (3.38%). However, the relative abundance of plant
saprotroph in cultivar EJ-1 samples in BR treatment was 0.66%,
higher than that observed in the control (0.31%), while in cultivar
J863 samples it was 0.07%, lower than that observed in the control
(0.14%) (Figure 9C).

Discussion

Evaluation of control effect of BR on CVW

The use of crop residues is an important method associated with
the suppression of verticillium wilt, such as those of broccoli,
buckwheat, canola, mustard, and sweet corn (P. Inderbitzin et al.,
2018; W.S; Zhao et al., 2019; 2021; B.E; Wiggins and Kinkel, 2005; D.L;
Wheeler and Johnson, 2016). Our previous study showed that
incorporation of BR into soil could reduce the incidence of
verticillium wilt of summer-sowing-cotton, and the control effect
on CVW reached 70.77% under the broccoli and cotton double
cropping cultivation mode (W.S. Zhao et al., 2019). In this study,
cotton cultivars with different verticillium wilt resistance levels were
chosen to evaluate the effect of BR on the occurrence of verticillium
wilt of spring-sowing-cotton. The results showed that the control
effect of BR on susceptible and resistant cultivars were 58.49% and
85.96%, respectively. Meanwhile, it could significantly reduce the
populations of V. dahliae in soil. Our results are consistent with
those from previous studies on disease in cauliflower, eggplant, and

potato in BR treatment (W.S. Zhao et al., 2019; K.V; Subbarao et al.,
1999; K; Ikeda et al., 2015; J.R; Davis et al., 2010). Therefore, the
application of BR provides a new method and idea for sustainable
prevention and control of CVW in different planting patterns.

Effect of BR on soil microbial community
structure in rhizosphere of different cultivars
resistant to CVW

Development of an effective strategy for application of plant
residues is critically dependent on our understanding of several soil
microbiological and their interactions (X.F. Yuan et al., 2021; C.F;
Zhang et al., 2021). There were different opinions on the relationships
between microbial community diversity and disease incidence (L.R.
Bulluck et al., 2002; Z.Z; Shen et al., 2014). Many studies showed that
the diversity and composition of soil microbial community were
related to the occurrence of soil-borne diseases (W.S. Zhao et al.,
2021; L.R; Bulluck et al., 2002; A; Gamliel et al., 2000). Previous studies
suggested that greater bacterial diversity in soils promoted resistance
to plant disease (L. Shi et al., 2017). However, some scholars reported
that there were no significant correlations between bacterial
community diversity and banana fusarium wilt following the
application of bioorganic fertilizer (Z.Z. Shen et al., 2014). In the
present study, the bacterial diversity indices significantly increased
after the application of BR, however, the fungal diversity indices
significantly decreased. Meanwhile, the results of β-diversity
showed that the bacterial community structures in rhizosphere
among cultivars were significantly different, and the bacterial
community structures were changed and located in the same
quadrant in BR treatment, indicating that the bacterial community
structures tended to be consistent and developed toward the direction
of healthy soil in BR treatment. This result was consistent with the
previous studies on the changes in bacterial community structure in
the rhizospheric soil of eggplant (P. Inderbitzin et al., 2018). In terms
of fungi community structure, there were no significant differences in
the rhizosphere among cultivars themselves, however, it was changed
in BR treatment compared with CK. Therefore, it was suggested that
BR treatment played an important role in regulated microbial
community structures in cotton rhizosphere. In addition, the fact
that of the composition of the rhizosphere microbiota were influenced
by cultivars, soil types, health status and growing stages of plant (W.S.
Zhao et al., 2020; X.M; Xu et al., 2010; Z.Q; Huang et al., 2021).

Effects of BR on key microbiota of soil
microbial community in cotton rhizosphere

Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and
Acidobacteria were the five dominant phyla in rhizosphere of
eggplant (P. Inderbitzin et al., 2018). Actinobacteria was considered
a plant growth promoting bacteria and could produce diverse
bioactive compounds (T. Elsayed, et al., 2020). Some bacteria that
belong to Proteobacteria, such as Sphingomonas sp., could protect
tomato against graymold (J. Enya et al., 2007) and rice seedling disease
(T.B. Adhikari et al., 2001), reduce nitrate and enhance total nitrogen
removal in biological denitrification processes (W. Xing et al., 2019).
Acidobacteria might be potential biological control agents for bacterial
wilt and could promote plant growth (C.T. Yin et al., 2013; Y.H; Xiao
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et al., 2018). Some members in the phylum Gemmatimonadetes might
be a potential indicator of soil health or halophilic (M.S. Hahm et al.,
2016). Acidobacteria and Gemmatimonadetes could also participate in
carbon, nitrogen, and sulfur biogeochemical cycles of the rhizosphere
soil (S. Kalam et al., 2020; C.L.M; Khodadad et al., 2011). Firmicutes
played an important role in the biological control of plant disease and
plant growth promoting (Y.X. Feng et al., 2019; M.C; Azabou et al.,
2020; S.Z; Li et al., 2005). Compared with the blank control, the
recruitment abilities of Actinobacteria, Gemmatimonadetes,
Firmicutes and Rokubacteria in susceptible cultivar EJ-1 were
increased after application of BR treatment, while the recruitment
abilities of Gemmatimonadetes, Firmicutes and Verrucomicrobia in
resistant cultivar J863 were increased. At the genus level, RB41 could
contribute to N assimilation (M.A. Meier et al., 2021). Gemmatimonas
was related to the metabolism and transformation of nitrogen (Z. Liu
et al., 2021). Blastococcus was associated with the assimilation of
carbon and involved in the metabolizing the intermediate products
of residue decomposition (F.L. Fan et al., 2014). Streptomyces and
Bacillus were used as biological control agents against plant pathogens
(P. Inderbitzin et al., 2018; Z.Q; Huang et al., 2021). In our study, the
relative abundances of Sphingomonas,Nocardioides,Gemmatirosa and
Sphingobacterium for susceptible cultivar EJ-1 were increased in BR
treatment, while that for Haliangium, Lysobacter, Gaiella,
Luedemannella and Rubrobacter were decreased, respectively.
However, these relative abundances of above microbiota in
resistant cultivar J863 showed opposite results in BR treatment
compared with that of susceptible cultivar EJ-1 (Supplementary
Table S1). In addition, the relative abundances of RB41,
Gemmatimonas, Pontibacter, Streptomyces, Blastococcus, Massilia
and Bacillus were increased for different cultivars in BR treatment,
while that for MND1, Nitrospira, Bryobacter, Iamia, Steroidobacter,
Ilumatobacter and Dongia were decreased, respectively
(Supplementary Table S1).

In terms of fungi, Ascomycota, Basidiomycota and
Mortierellomycota were the dominant phyla, and the relative
abundances of soil fungal communities at phyla level were not
significantly affected by BR treatment. At the genus level,
Penicillium showed good inhibitory effect on peach blight and
growth promotion (G.N. Belofsky et al., 1998; A.D; Cal et al., 1990;
M.M; Hossain et al., 2007). In our study, the relative abundances of
Corynespora, Gibellulopsis, Acremonium, Penicillium, Cercospora,
Alternaria and Badarisama in susceptible cultivar EJ-1 were
increased in BR treatment, while that for Chaetomium,
Mortierella, Pseudombrophila, Chaetomidium, Poaceascoma and
Cephaliophora were decreased, respectively. Compared with
susceptible cultivar EJ-1, these relative abundances of above
microbiota in resistant cultivar J863 showed opposite results in
BR treatment (Supplementary Table S2). In addition, the relative
abundances of Gibberella, Plectosphaerella, Neocosmospora,
Aspergillus, and Preussia were increased for different cultivars in
BR treatment, while that for Chaetomium, Schizothecium,
Podospora, Cephalotrichum, Coprinellus and Podosordaria were
decreased, respectively (Supplementary Table S2). These results
were roughly in line with the basic fact that BR treatment promoted
the proportion of beneficial soil microbes and inhibited the
proportion of pathogens to increase plant defense. Similar
results showed in recent studies that microbial biocontrol agents
treatment promoted beneficial microorganisms in soil and
suppressed the pathogens (Z.Q. Huang et al., 2021).

Variations in microbial functional metabolic
genes after application of BR

PICRUSt analysis has been used to study bacterial functions and
can predict the presence or absence of functional genes and their
abundances (L. Jiang et al., 2016; J; Luo et al., 2017). Some studies
indicated that energy metabolism could enhance resistance to banana
fusarium wilt (N.V.D. Berg et al., 2007). The function of biosynthesis
of other secondary metabolites could antagonistic to several soil-borne
pathogens (L. Han et al., 2019). In our study, there was a significantly
increase of energy metabolism and biosynthesis of other secondary
metabolites after application of BR. PICRUSt was also used to predict
the relative abundances of key genes in the C, N and p cycles (H.
Ribeiro et al., 2018; Y; Chen et al., 2020). However, due to the
limitations of using a 16 S rRNA dataset and taxonomy assignment
method, the taxa annotation and its function were insufficient,
therefore, further validation should be performed using
metagenomics to better understand the function of the rhizosphere
bacterial community after application of BR in the future studies.

Variations in the composition of fungal functional groups inferred
by FUNGuild showed that BR treatment could influence nutrition
mode (Figure 9). For instance, the trophic mode of pathotroph
consisted of plant pathogens and animal pathogens, the relative
abundance of plant pathogens for susceptible cultivar EJ-1 in BR
treatment was higher than in CK treatment, while the opposite
tendency was observed for resistant cultivar J863. In the present
study, the populations of V. dahliae were decreased in BR
treatment by qPCR analysis. Analysis of the composition of fungal
communities showed that BR treatment could simultaneously increase
proportions of Gibellulopsis, Plectosphaerella, Gibberella (Figure7B).
Plectosphaerella sp. is well known as a pathogen of several plant species
causing fruit, root and collar rot, and collapse (A. Carlucci et al., 2012).
The genus of Gibberella could cause different plant diseases in tropical
and subtropical areas of the world (C.S. Lima et al., 2009; W.G.D
Fernando et al., 1997). For instance, mango malformation disease was
mainly caused by the pathogen of Gibberella fujikuroi species complex
in Brazilian (C.S. Lima et al., 2009). As trophic mode of symbiotroph,
arbuscular mycorrhizal fungi (AMF) could form a symbiotic
relationship with more than 80% of terrestrial plants, enhancing
the absorption capacity of root systems and providing nutrients for
plant growth (A. Berruti et al., 2016). However, in our study, the
relative abundances of AMF and endophyte fungi were significantly
lower than that in CK treatment, suggesting that symbiotroph was not
dominant trophic mode in BR treatment. In terms of saprotroph
trophic modes, some studies showed that saprophytic fungi played
important roles in decomposing organic matter and nutrient cycling
and were the primary decomposers of dead or aged plants in soil (Y.
Chen et al., 2020; L.A; Phillips et al., 2014). In this study, the relative
abundances of undefined saprotroph (39.72%) and plant saprotroph
(0.66%) in cultivar EJ-1 in BR treatment were higher than that of CK
treatment (13.44%, 0.31%), while the opposite tendencies were
observed in cultivar J863. Analysis of the composition of fungal
communities showed that BR treatment could simultaneously
enrich of Schizothecium, Preussia in different cultivars (Figure7B).
Due to FUNGuild analysis was based on preexisting literature and
data, there were some limitations for analyze the functions of fungi to
some extent. Thus, additional in-depth studies on soil fungal
functional groups are also needed to further investigate the
function of the rhizosphere fungal community in BR treatment.
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Root exudates could act as signal molecules that regulated the
community structure and function of the rhizosphere microbiome
(J. Panichikkal and Krishnankutty, 2021). Therefore, the possible
reason was that in addition to the differences of the root exudates of
the cultivars themselves, BR changed the proportion of root exudates,
which could cause different microbial communities to be recruited.
Therefore, the microbial community was changed then to enter a new
balance in BR treatment, and this change was the result of the interactions
between BR treatment and indigenous microbes (Z.Q. Huang et al., 2021;
J; Sylla et al., 2013). Moreover, the interactions among BR treatment with
indigenous rhizosphere microbes and plant were complicated, which due
to it might increase beneficial or inhibit harmful microbes. In our study,
BR treatment could suppress plant disease and promote plant health,
which should not simply be attributed to a single bacterial taxon, but was
most likely regulated by microbial consortia, which was similar result
observed in recent studies (L. Shi et al., 2017; M.A; Cucu et al., 2020).
Some researchers reported that direct applications of potentially beneficial
microbes often resulted in poor disease suppression due to their low
survival and colonization in soil (T. Saravanan et al., 2003; B; Lugtenberg
and Kamilova, 2009). Therefore, the future research will focus on the
acquisition of beneficial microorganisms, the construction of synthetic
communities and evaluation the effects of these beneficial
microorganisms on the incidence of CVW.

In conclusion, the incidence of CVWand the populations ofV. dahliae
in the rhizosphere of different cotton resistant cultivars were decreased in
BR treatment. Meanwhile, partial plant biomass and cotton yields were
increased. The bacterial diversities were significantly increased in BR
treatment, but the opposite tendency for fungal diversities in different
resistant cultivars. There were significantly differences in the ability to
recruit beneficial microorganisms in BR treatment between susceptible and
resistant cultivars. The relative abundances of key microbes were changed,
which effected on CVW in BR treatment. These results provide important
information necessary for a better understanding of microbial community
structure and function in rhizosphere soil in BR treatment. In the future,
potential beneficial synthetic communities will be required to further
explore to control CVW.
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