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The detection method for technological parameter is outdates as the traditional test
cycle is long as well as the measurement error and the test amount are huge.
Moreover, it is difficult to disclose the operation mechanism of devices as the
operation is time-consuming and laborious. Therefore, numerical simulation was
used in this study to reveal the mechanism of the walnut shell-kernel winnowing
device. Moreover, the influence of baffle opening combinations, inlet wind velocity
and inlet angle on cleaning rate and loss rate was predicted by the neural network
model. The results demonstrated that inlet wind velocity was the primary influencing
factor of cleaning rate, followed by baffle opening and inlet angle. Besides, inlet wind
velocity was the primary influencing factor of loss rate, followed by inlet angle and
baffle opening. The winnowing device performed best (79.91% cleaning rate, 14.37%
loss rate) when the baffle opening, inlet wind velocity and inlet angle were 7.01 cm,
24.36 m/s, and 9.47°. In addition, 1/8 walnut shells and 1/4 walnut kernels were
incorrectly classified due to the increase in inlet wind velocity. The inlet wind velocity
was considered themajor cause behind the deterioratingwinnowing performance of
the device. Finally, the bench test and simulation optimization results were
compared. The cleaning rate and loss rate relative error during the simulation test
was lower than 1.06%, which ascertained the feasibility and validity of the neural
network as well as the combined numerical simulation method. This study could be
useful for future research and development of shell-kernel winnowing devices for
hard nuts.
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1 Introduction

Post-harvest processing of walnut can improve the economic added value. Shell breaking
and kernel collection are crucial steps during the post-harvest process, out of which shell-kernel
separation is the primary step (Liu et al., 2021). Common shell-kernel separation methods
include winnowing (Nahal et al., 2013), image (Jiang et al., 2007), magnetic selection (Krishnan
and Berlage, 1984) and floating selection (Romberg, 1938). Among them, the winnowing
method is mostly used due to its simple principle and low cost. The winnowing effect could be
influenced by real-world engineering challenges by a number of factors including material state,
structural parameters and device operation parameters (Liu et al., 2021). Therefore,
understanding the winnowing mechanism of the device and the optimal parameters is crucial.
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The selection of winnowing is usually differentiated based on the
difference between the suspension speed of each material. Airflow thrust
acts on the material during the winnowing selection process. Therefore,
the material moves along the direction of the joint force while completing
the screening operation. In the actual experiments, the size and direction
of airflow thrust are usually controlled by adjusting inlet wind velocity and
inlet angle. The windward condition of materials is typically controlled by
adjusting the baffle opening. The traditional test methods could face dual
constraints of periods and costs during the exploration of the operation
mechanism of devices and could encounter multiple limitations in
information acquisition (Golshan et al., 2021). Numerical simulation
methods can study the phenomenon production process and operation
mechanism from the microscopic perspective while saving time and labor
costs compared to traditional tests (Qi et al., 2015; Lingfeng et al., 2019).
To understand the drag reduction principle of subsoiling mechanical
bionic structure, Lingfeng et al. (2019) established a soil model through
the Discrete element method (DEM). It simulated the action relationship
between the bionic structure and soil particles under different cultivation
conditions and thoroughly investigated the drag reduction principle of the
bionic structure. Akrami et al. (2021) simulated the natural ventilation
system of a greenhouse by using computational fluid dynamics (CFD)
technology, which disclosed the action principle of inlet position on the
ventilation system by analyzing the influence of different ventilation
openings on ventilation performance. Chen et al. (2022) simulated a
particle collision process in the separation tube through CFD-DEM
coupling to improve the separation performances of the brown rice
screening device. They determined the loss of brown rice as well as
the wrong screening mechanism of rice husks. The numerical simulation
can provide detailed practical data which could be useful to understand
the device operation mechanism. However, the drastic increase in
computational resource needs for numerical simulation during large-
scaled optimization tests cannot be ignored. Fortunately, researchers have
found that the alternativemodel based on artificial neural networks can be
used as a reducing model to effectively reduce the demand for computing
resources. For example, Kolarik and Rudorfer (1994) have demonstrated
that the prediction ability of artificial neural networks was better than the
self-regressionmodel. At the same time,Michael Thomas Rex et al. (2020)
established the response surface method and artificial neural network
prediction model by using the findings of finite element analysis and
demonstrated the ability of the artificial neural network in modelling
optimization. In order to address the poor fitting degree and low accuracy
in multi-objective parameter optimization, Dong et al. (2022) used a
straw-returning device as the research object and obtained the optimal
parameter combination of associated experimental factors through a
neural network optimization model. Therefore, it is essential to apply
neural networks having strong prediction ability and fast optimization
capability for the optimization of parameters. To improve the tractive
performances of tractors under low fuel consumption and a low degree of
soil compaction, Pentoś et al. (2020) introduced a high-precision
mathematical model. They utilized the neural network and indicated
soil type as the major influencing factor of tractive performances. To
investigate the effect of temperature, wind speed and time on the drying of
Artemisia absinthium leaves, Karimi et al. (2012) constructed a prediction
model by combining neural network and response surface methodology.
They completed parameter optimization during the A. absinthium leaves
drying process and improved the drying effect. In order to understand the
macro-mechanical characteristics of granular materials, Dosta and Chan
(2022) used bonded particles model (BPM) for a single-axis compression
test of the cluster. At the same time, the artificial neural network model

with aggregates as input parameters was established. Moreover, the
relationship model between the aggregate model and mechanical
properties was successfully established.

In conclusion, the application of an artificial neural network and
numerical simulation method for the optimization of device
parameters is more conducive to understanding the operating
mechanism and achieving rapid optimization of the device.
However, the sample data of artificial neural network models do
not often derive from rigorous calculation but rather from engineering
experience and test measurement. The artificial neural network is
mostly used for safety evaluation or prediction. There are relatively few
researches on the optimization of device parameters by coupling
artificial neural networks with CFD-DEM. The combination of
artificial neural network and CFD-DEM coupling not only reduces
the errors caused by objective factors but also quickly and accurately
predicts the performance of the device under the combination of
different parameter solutions. Therefore, in this study, the parameters
of the walnut shell-kernel winnowing device were optimized by
combining CFD-DEM coupling and an artificial neural network. In
order to improve the separation performances of the winnowing
device, provide a reference for the optimal design in other fields
and to access the efficiency improvement of related enterprises, the
influence of inlet wind velocity, baffle opening and inlet angle on
separation performance was studied.

2 Materials and methods

2.1 Design of walnut winnowing device

Following shell breaking through air flows, walnut shell-kernel
winnowing device can separate walnut shell-kernel mixtures (walnut
kernels, walnut shells, Diaphragma juglandis and the crushed
materials), yielding pure walnut kernels. The walnut shell-kernel
winnowing device is mainly composed of an inlet, outlet, winnowing
separation chamber, feeding device and discharge collection device
(Figure 1). Following shell breaking, the shell-kernel mixture enters
into the winnowing separation chamber through the feeding device

FIGURE 1
Demonstration diagram of the separation process.
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and thenmoves in a quasi-horizontal projectilemotion along the resultant
force of airflow due to the thrust provided by the draught fan and its
gravitational force. Walnut shells and walnut kernels successfully separate
from one another in the winnowing separation chamber because of their
different mass, density and windward area.

2.2 Performance evaluation

2.2.1 Sample preparation
In this study, Wen 185 thin-shell walnut, a major walnut variety in

Xinjiang, was used as the sample. The auto-classification squeezing
walnut breaking device designed and developed by the research team
was used to break walnut samples. The shell-breaking rate was 93.2%
and the high kernel rate was 89.8% (Shen et al., 2016). Moreover, the
secondary shell breaking was implemented in unbroken walnut shell-
kernel mixtures. Five groups of walnut samples (3.00 kg) were
collected randomly for shell breaking. The shell-kernel mixtures
after shell breaking were collected for screening while obtaining six
types of materials including walnut shells (1/2, 1/4, 1/8) and walnut
kernels (1/2, 1/4, 1/8). Results are shown in Figure 2. Different groups
were separated and weighted followed by the calculation of different
material proportions. The mean values were used as the practical
proportions.

2.2.2 Performance indexes
To determine the separation performance of the walnut shell-

kernel winnowing device, cleaning rate (P, %) and loss rate (Q, %)
were used as test indexes. The cleaning rate refers to the degree of
thorough material cleaning after separation, as presented in Eq. 1. The
loss rate refers to the proportion of walnut kernel loss after material
separation, as presented in Eq. 2.

P � mw

ma
× 100% (1)

where P is the cleaning rate (%),mw is the walnut kernel mass collected
from the outlet (g), and ma is the sum of all material masses collected
from outlet (g).

Q � mk0

mkt
× 100% (2)

where Q is the loss rate (%), mk0 is the walnut kernel mass collected
from the outlet (g), and mkt is the sum of all walnut kernel masses in
the device (g).

2.3 CFD-DEM coupling simulation

Shell-kernel winnowing process is an example of a typical gas-
solid flow simulation. The principle behind the accurate
description of gas-solid migration and collision lies in whether
it is necessary to build an appropriate simulation environment and
analyze the gas-solid coupling effect. No matter whether the
material-free airflow field numerical analysis or airflow-free
particle simulation analysis is used exclusively, research on the
winnowing process still has certain limitations (Shi and Sakai,
2022). Therefore, in this paper, EDEM software was used to
establish a walnut-crushing material model and Fluent in
ANSYS software was used to simulate and analyze the fluid in
the air separation chamber. The Fluent module was coupled with
EDEM software to simulate the gas-solid coupling two-phase flow
of the designed walnut shell human-air separation device.
Considering the overly complex structure of the walnut model,
the following assumptions were made before simulation to simplify
the model:

FIGURE 2
Component proportion diagram of shell-kernel mixtures.
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(1) The airflow in a winnowing separation chamber is defined as an
incompressible viscous fluid and the air density as well as the
kinematic viscosity are regarded as constants.

(2) The walnut density is assumed to be uniform for the same
material.

2.3.1 Construction of discrete element model
Accurate parameter setting and the construction of an accurate

particle model are prerequisites for reliable results. Walnut is
considered a typical agricultural material. After shell breaking,
shell-kernel mixtures could get various shapes, which are difficult
to correctly define (Ma et al., 2022). Since the walnut shell-kernel
windward area could significantly influence the separation
performance, the standard spheres are useful for the description.
The irregular walnut fragments were equivalent to standard
spheres. The equivalent transformation of the irregular shell-kernel
mixtures was implemented based on the spherical diameter of the
windward area (Lim et al., 2016).

To determine the windward area distribution of the walnut shell-
kernel mixture, the windward areas of shell and kernel samples were
tested by image processing. According to statistics, the windward area
range of walnut shells was 6.15–1085.56 mm2 while the windward area
range of walnut kernels was 5.18–827.15 mm2 (Figure 3).

As shown in Figure 3, both shell and kernel windward areas
followed the logarithmic normal distribution. To select representative
parameter values with statistical significance, the logarithmic normal
distribution was divided into three regions by using the “3 Sigma
criterion” (Simone et al., 2017). The distribution values in the 1 and
2 standard deviation ranges were about 68% (blue part in Figure 3A)
and 95% (red, blue and green parts in Figure 3B), respectively.
According to the three split parts, volume percentages (trapezoidal
numerical integral) of walnut shells and kernels were calculated.
Finally, the weighted mean of particles in each size section was
used to represent the logarithmic value of the particle windward
area. It was substituted into the calculation formula (Eq. 4) of
equivalent spherical diameter and the equivalent spherical

diameters were obtained (Table 1). The required particle density
was calculated according to Eq. 5 based on the equivalent spherical
diameter of the equivalent windward area.

φi �
∑jSij · pij∑jpij

(3)

ds � 2

����
lgφi

π

√
(4)

ρ � πd3
s

6
(5)

where i represents the segment number and j represents the points
contained in this part segment; Sij is the j-size class and pij is the
volume probability of each class j. Regions of different categories are
expressed by different colors in Figure 3, where ds is the equivalent
spherical diameter of irregular shells and kernels (mm) and φi is the
equivalent windward area of irregular shells and kernels (mm2).

2.3.2 Construction of computational fluid dynamics
(CFD) and model verification

Even though limited by the computational capacity of servers and
the simulation ability of the software, the winnowing device was
simplified appropriately and then a model was built using
professional modeling software (Figure 4).

Boundary conditions are essential to calculate the motion
boundaries of an airflow. The airflow inlet was established as the
velocity inlet. The inlet turbulent flow was defined by 5% turbulence
intensity and the hydraulic diameter of 218.18 mm. The outlet
boundary was established as the pressure outlet. The outlet
turbulent flow was defined by 5% turbulence intensity and the
hydraulic diameter of 342.85 mm. The surface boundary was
established as the no-slip boundary. The heat transfer among
winnowing airflows, walnut shell-kernel and wall surface was ignored.

In order to verify the accuracy and reliability of the calculation on
the established winnowing separation chamber model, nine-point
sampling was carried out at the feeding device (Figure 4) and the

FIGURE 3
Walnut windward area distributed diagram of numerical frequency. (A) Frequency distribution of walnut kernels on the left and (B) Frequency distribution
of walnut shells on the right.
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measured wind speed of each measuring point at the feeding device
was compared with the simulated value (Figure 5). To obtain the
measured value, the induction probe of the thermal anemometer was
placed on nine measuring points of the same measuring section. The
average wind speed of nine measuring points was considered at this
place to complete the single wind speed measurement. The simulation
value acquisition and EnSight module on the ANSYS platform were
used to extract wind speed based on nine-point sampling.

As shown in Figure 5, there was a certain deviation between the
measured value and the simulated value of wind speed. However, the
overall distribution and variation trend were consistent. It

demonstrated that the model established in this simulation met the
simulation requirements. The meshing was moderate and the
boundary conditions were found to be reasonable. It can be
concluded that the established CFD model is effective and can be
used for the follow-up test.

2.3.3 DDPM coupling parameter setting
The grid model was input into DEM. Property parameters and

collision contact parameters of walnut shells and kernels were
established. According to the proportion of different types of shells
and kernels after shell breaking (Section 2.2.1), the ratios of simulation
particles were established. The Hertz-Mindlin (no-slip) contact model
was utilized in the dense discrete phase model (DDPM) model, which
was based on the calculation of particle volume fraction. The
gravitational acceleration was established according to the practical
gravity direction, a comparatively accurate Realizable k-ε turbulence
model was chosen to calculate the fluid domain. The time step length
of DEM was chosen to be 20%–30% of Rayleigh’s time step in order to
balance accuracy and calculation time. Time step length was
established as 1 × 10−8 s and the Fluent calculation time step length
was established as 1 × 10−6 s.

2.4 Experimental design

According to relevant literatures and pre-tests in early stage (Yuan
et al., 2018), it decides to optimize technological parameters of the
separation device first under the premise of successful walnut shell-
kernel winnowing, including opening of baffle, inlet wind velocity and
angle of inlet. The statistics data of the artificial neural network
training set and verification set was determined using the central
composite design (CCD) test. The factor level coding was decided and
presented in Table 2.

All experiments had three parallel tests and the results were
expressed by mean values. Optimization data analysis was carried
out using the neural network platform of JMP Pro.

3 Results and analysis

3.1 Experimental design and construction of a
neural network model

Based on the principle of CCD test design, orthogonal factor and
repetition times at the center point were established as 1.633 and 6,
respectively. The experimental design and results are shown in Table 3.

The above orthogonal test results were used as the training set and
verification set. A neural network model was constructed using JMP
Pro14.0 (SAS) platform. The samples were divided into K groups (K
folds, where K equal to 5) randomly without repetitions by choosing

TABLE 1 Windward area equivalent ball diameter information table.

Component (walnut shells) ds/(mm) Component (walnut kernels) ds/(mm)
1/2 shells 4.19 1/2 kernels 4.63

1/4 shells 6.77 1/4 kernels 8.14

1/8 shells 12.42 1/8 kernels 16.59

FIGURE 4
Winnowing device room size labeling and grid diagram.

FIGURE 5
Comparison of measured and simulated values.
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the “K-fold” crossing verification method. Among them, 1 group was
used for verification and the rest (K-1) groups were used for training.
The separation performances were optimized.

Through multiple analyses of the training set and verification set, a
3-input and 2-output neural network model was determined. The
3 input neurons represented the baffle opening, inlet wind velocity and
inlet angle. There were nine neurons in the two hidden layers. The
2 output neurons represented the cleaning rate (P) and loss rate (Q) of
separation performances, respectively. The hidden layer structure was
established. The S-shaped TanH function, the identical linear function
and the radial Gaussian function were activated to increase the
learning rate to 0.1. The transformation covariable was chosen as a
fitting option and robust fitting was chosen to prevent overfitting. The
penalty method used “square.” The fitting process of this neural
network model was executed while obtaining R2 of the loss rate
(96.37%) and the cleaning rate (89.72%).

3.2 Optimization and analysis of neural
network model

The neural network prediction model produced the prediction
formula and the three-dimensional response curved surface
diagram was plotted (Figure 6). The red part in the figure
represents high level and the blue part represents the low level.
As shown in Figure 6-①, when the baffle opening was 7 cm, the
cleaning rate increased gradually with the increase in inlet wind
velocity. Meanwhile, the minimum cleaning rate was achieved
when the inlet angle was fixed and the inlet wind velocity was
22 m/s. The maximum cleaning rate was achieved when the wind
velocity was 25.5 m/s. As shown in Figure 6-②, the maximum
cleaning rate was achieved when the inlet wind velocity was 24 m/s,
the baffle opening was 7.75 cm and the inlet angle was 8.50°. With
the reduction in baffle opening and the increase in inlet angle, the

TABLE 2 Test factors horizontal coding table.

Levels Opening of baffle/(cm) Inlet wind velocity/(m/s) Angle of inlet/(°)

−1 6 22 8

0 7 24 10

1 8 26 12

TABLE 3 Test design matrix and test results.

Num Model Opening of baffle/(cm) Inlet wind velocity/(m/s) Angle of inlet/(°) Loss rate/(%) Cleaning rate/(%)

1 + + − 8 26 8 24.57 ± 3.12 83.92 ± 5.34

2 − + + 6 26 12 22.76 ± 4.89 77.60 ± 2.11

3 − − − 6 22 8 16.00 ± 4.01 65.93 ± 2.36

4 000 7 24 10 14.86 ± 2.09 77.15 ± 3.14

5 000 7 24 10 12.25 ± 3.49 76.13 ± 2.65

6 + − + 8 22 12 21.74 ± 6.45 66.74 ± 5.63

7 000 7 24 10 15.78 ± 4.62 81.34 ± 3.18

8 − + − 6 26 8 19.91 ± 1.99 75.39 ± 5.24

9 + − − 8 22 8 22.00 ± 2.51 73.53 ± 3.15

10 000 7 24 10 15.40 ± 3.89 78.23 ± 4.68

11 + + + 8 26 12 21.06 ± 3.14 74.03 ± 5.23

12 − − + 6 22 12 22.00 ± 2.58 68.37 ± 1.85

13 00a 7 24 6.7340 14.50 ± 2.36 71.95 ± 3.46

14 000 7 24 10 15.00 ± 2.38 83.14 ± 2.53

15 00A 7 24 13.2650 17.30 ± 4.36 72.23 ± 3.16

16 A00 8.6330 24 10 20.76 ± 3.98 75.32 ± 2.56

17 0a0 7 20.73401 10 23.26 ± 4.11 63.70 ± 3.27

18 000 7 24 10 11.73 ± 5.12 79.34 ± 4.36

19 a00 5.3670 24 10 16.93 ± 3.25 71.07 ± 4.12

20 0A0 7 27.2660 10 25.82 ± 4.36 75.80 ± 2.16

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Li et al. 10.3389/fbioe.2023.1107836

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1107836


cleaning rate declined. As shown in Figure 6-③, the cleaning rate
increased with the increase in inlet wind velocity while having a
constant inlet angle at 10°. However, it started to decline when the
inlet wind velocity approached 26 m/s. Based on the above results,
inlet wind velocity was found to significantly influence the cleaning
rate while baffle opening and inlet angle had a minor influence.

According to Figure 6-④, the loss rate first decreased and then
increased with the increase in inlet wind velocity while having a 7 cm
baffle opening. The optimal loss rate was obtained when the inlet wind
velocity was 23.5 m/s. The loss rate was higher than 16% when inlet
wind velocity was 22 m/s or 26 m/s. As shown in Figure 6-⑤, baffle
opening and inlet angle was positively related to loss rate when the

FIGURE 6
The effects of various factors on separation performance.
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inlet wind velocity was 24 m/s. In other words, loss rate increased with
the increase in baffle opening and inlet angle. As shown in Figure 6-⑥,
when the inlet angle was 10°, loss rate first decreased and then
increased with the increase in baffle opening and inlet wind
velocity. The inlet wind velocity had a relatively significant
influence while the baffle opening had a minor influence. To sum
up, inlet wind velocity was the primary influencing factor of loss rate,
followed by inlet angle and baffle opening.

The prediction descriptor plotted by the JMP software is shown in
Figure 7. Within the given range of factor conditions, the cleaning rate
increased with the increase in baffle opening and inlet wind velocity,
while the cleaning rate declined with the increase in inlet angle. In the
given range of reaction conditions, the maximum cleaning rate was
achieved when the baffle opening was 8 cm, the inlet wind velocity was
25.49 m/s and the inlet angle was 8.18°. At this moment, the cleaning
rate was kept at 81.91%. The verification test was carried out under the
maximumwillingness. The cleaning rate was determined to be 82.16%,
which agreed with the software fitting outcomes. Compared to the
cleaning rate, the maximumwillingness value of loss rate was achieved
when the baffle opening was 6.28 cm, the inlet wind velocity was
23.54 m/s and the inlet angle was 8.01°. Under this circumstance, the
cleaning rate stabilized at 13.14%. Based on the combined prediction
of the cleaning rate and loss rate, the cleaning rate was maintained at
79.91% and the loss rate was stabilized at 14.38% while having the
baffle opening of 7.01 cm, inlet wind velocity of 24.36 m/s and inlet
angle of 9.47°. On this basis, the optimal prediction parameter
combination was acquired. For the optimal parameter combination,
the cleaning rate, product quality and value improved while having a
normal operation. Meanwhile, the low loss rate reduces the
optimization caused by the improper selection of products and
avoids the waste of resources, which is the result of neural network
optimization. The above results were obtained based on the neural
network prediction model which was required to be verified by an
experiment.

3.3 Accuracy test of neural network model

To test the reliability of the neural network model, simulation tests
based on five groups of new factor-level combinations were carried

out. Results were compared with the prediction results of neural
network to determine the accuracy and stability of the artificial
neural network predictions (Table 4).

The prediction values of the neural network model and
simulation results are presented in Table 4. The relative error
range of the cleaning rate was 0.82%–2.72% and the relative
error range of the loss rate was 5.67%–9.16%, indicating that
both the cleaning rate and loss rate were kept within a small
error range. The constructed neural network model
demonstrated a good prediction ability and can be used for
separation performance prediction analysis of the winnowing
device.

3.4 CFD-DEM coupling simulation analysis

The transient diagrams of the winnowing device’s airflow field at
0.5 and 2 s are shown in Figure 8. Statistical zones of loss rate and
cleaning rate were established at the shell outlet and kernel outlet,
respectively. After falling into the action zone of airflow, the shell and
kernel developed different motion tracks under the inclined airflows.

3.4.1 CFD-DEM coupling practical simulation effect
analysis

The CFD-DEM coupling practical separation effect is shown in
Figure 9. The best separation performance was achieved by Group 2,
which was therefore considered the optimal parameter group. Data
from different groups are presented in Table 5. Practical simulation
separation performance and prediction results differed slightly. The
separation performance of Group 1 was better than that of Group 2. Its
cleaning rate and loss rate increased by 1.17% and 8.15%, respectively.
However, the comprehensive separation performance declined.
Compared to Group 1, the cleaning rate of Group 3 decreased by
5.23% and the loss rate increased by 2.99%. The separation
performance of Group 3 was poor.

As shown in Figure 9, the left side represents the simulation state
and the right side represents the mass proportion of each component
collected at the exit shell and exit kernel. Moreover, walnut kernels
doped with a lot of impurities were collected at the kernel outlet of
Group 3. The cleaning rate was found to be relatively poor. Many

FIGURE 7
The trend chart of prediction descriptor.
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wrongly classified walnut kernels were collected at the shell outlet,
which increased the loss rate. As shown in Figure 9, materials collected
at all outlets in each test were used as the general data.

Compared to test Group 2, the analysis of the proportion of each
component in the export of 1/2, 1/4, and 1/8 walnut shells in test
Group 3 showed that the walnut shells were increased by 0.21%,
0.61%, and 1.98%. Moreover, 1/8 walnut shells were improperly
selected, which resulted in the poor cleaning rate of the winnowing
device. As shown in Group 2 Figure 9, walnut kernels collected at shell
outlet decreased. The 1/2, 1/4, and 1/8 walnut kernels were decreased
by 0.10%, 1.00%, and 0.54%, respectively, while many 1/4 walnut
kernels were blown to the shell outlet. With the increase in inlet wind
velocity, a higher number of 1/8 walnut shells and 1/4 walnut kernels
are wrongly classified, which decreased the cleaning rate and increased
the loss rate accordingly.

Similarly, relatively pure walnut kernels were collected at the
kernel outlet of Group 1, indicating a relatively high cleaning rate.
Moreover, a higher amount of walnut kernels were collected at the
shell outlet, resulting in a high loss rate. Since the baffle opening and

inlet wind velocity were at a high level, the flight coefficients of the
shell and kernel were relatively high. It resulted in a relatively high
cleaning rate. Nevertheless, inlet wind velocity and inlet angle were
both beneficial for airflow to act on walnut fragments better. As the
difference in flight coefficients was relatively small, it resulted in a high
loss rate. In this section, it was explained by the flight coefficient
theory. However, shell-kernel mixtures demonstrated different shapes
after breaking with varied influencing factors. Besides, since the
suspending speeds of walnut shells and kernels were partially
overlapped, the winnowing technique failed to complete shell-
kernel separation. This is the next problem that requires urgent
attention.

3.4.2 Verification test
A bench verification test was carried out to determine the

reliability of the prediction model and simulation test. The shell-
kernel mixture was placed into the tray for later use. The power was
then supplied to start the draught fan. Wind speed at the inlet was
measured by an anemoscope and the speed switch was adjusted to get

TABLE 4 Test factors horizontal coding table.

Factors Cleaning rate/(%) Loss rate/(%)

Groups Opening of
baffle/(cm)

Inlet wind
velocity/
(m/s)

Angle of
inlet/(°)

Predicted
values

Simulation
values

Relative
error (%)

Predicted
values

Simulation
values

Relative
error (%)

1 6 24 8 72.18 70.22 2.72 13.52 12.59 6.88

2 7 26 10 80.35 79.69 0.82 19.06 20.14 5.67

3 8 22 10 71.70 72.97 1.77 20.85 22.76 9.16

4 7 24 12 69.37 70.17 1.15 19.80 21.05 6.31

5 8 26 12 73.81 72.99 1.11 20.95 22.58 7.78

FIGURE 8
Material particles position transient map.
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the required wind during the test. After the wind speed of the draught
fan was stabilized, the shell-kernel mixed particles in the tray were
discharged from the feeding mouth of the winnowing separation
chamber. The baffle was fixed after being adjusted to the predicted

opening. Samples from the kernel outlet and shell outlet were collected
and weighed once the test was complete. The cleaning rate and loss
rate of walnut kernels in the winnowing device were calculated
(Figure 10).

FIGURE 9
Simulation status and proportion chart.
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Ten tests were performed to verify the reliability of the model. A
statistical analysis of the upper and lower limits of cleaning rate and
loss rate was carried out, which was marked by the red dotted line in
Figure 10. The dotted line represented the upper and lower limits of
multiple test results. If the walnut simulation data (green solid line) is
within the dotted line range, the simulation agrees with practical data.
As shown in Figure 10A, green solid lines were all kept within two
green dotted lines, indicating that simulation test data at the kernel
outlet had relatively high reliability. As shown in Figure 10B, most
green solid lines were within two red dotted lines, indicating that the
simulation test was highly consistent with test results. However, a lot
of 1/8 shells were collected at the shell outlet. Although it exceeded the
upper limit of the test (1.06%), it was still in the acceptable range.

4 Conclusion

The simulation model of the device and its research object can be
swiftly established by using the CFD-DEM coupling. The gas-solid
two-phase flow and the interaction between them can be well
simulated. However, the application of the CFD-DEM coupling in
the industrial and agricultural fields is still in the initial stage and

hence, its application potential needs to be further investigated. For
example, to improve the accuracy and reliability of the model, the
contact model and the model parameters need to be accurately
selected and established. The universality and authenticity of the
coupling simulation method and the computational efficiency of
the model are required to be further improved. At the same time,
neural networks and other advanced technical means must be
integrated with numerical simulation to eliminate the shortcomings
of numerical simulation. Considering the large demand for computing
power and the large number of experiments, it will become a trend in
the future development of numerical simulation. The main
conclusions of this paper are as follows:

(1) In this study, an artificial neural network prediction model of a
walnut shell-kernel winnowing device was constructed. The baffle
opening, inlet wind velocity and inlet angle were used as the input
factors while the cleaning rate and loss rate were used as output
indexes. Results demonstrated that the average relative error of the
cleaning rate of the model was 1.77% and R2 was 89.72%. The
average relative error of loss rate was 7.42% and R2 was 96.37%.
This proves that this prediction model has good prediction
capability.

TABLE 5 Comparison test group.

Factors Cleaning rate/(%) Loss rate/(%)

Groups Opening of
baffle/(cm)

Inlet wind
velocity/
(m/s)

Angle of
inlet/(°)

Predicted
values

Simulation
values

Relative
error (%)

Predicted
values

Simulation
values

Relative
error (%)

1 8.01 25.36 7.47 81.62 82.89 1.56 22.53 23.69 5.15

2 7.01 24.36 9.47 79.91 78.11 2.23 14.38 13.78 4.17

3 6.01 23.36 11.47 74.68 72.49 2.93 17.37 18.02 3.74

FIGURE 10
Simulation status and proportion chart. (A) Each material quality at the kernel outlet passes through (B) Each material quality at the shell outlet passes
through.
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(2) The operation mechanisms of the walnut shell-kernel winnowing
device under different parameter combinations were investigated.
According to response surface analysis, inlet wind velocity was the
primary influencing factor of the device’s cleaning rate, followed by
baffle opening and inlet angle. Moreover, inlet wind velocity was the
primary influencing factor of loss rate, followed by inlet angle and
baffle opening. Meanwhile, a higher number of 1/8 walnut shells and
1/4 walnut kernels were misclassified with the increase in inlet wind
velocity, which deteriorated the device’s performance.

(3) The prediction descriptor plotted by the artificial neural network
prediction model was analyzed while obtaining the optimal
parameter combination for the walnut shell-kernel winnowing
device with baffle opening = 7.01 cm, inlet wind velocity =
24.36 m/s and inlet angle = 9.47°. Under this optimal
parameter combination, the highest cleaning rate (79.91%)
under the low loss rate (14.38%) can be achieved while
obtaining the optimal winnowing effect of the device.
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