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Decellularized corneas offer a promising and sustainable source of replacement
grafts, mimicking native tissue and reducing the risk of immune rejection post-
transplantation. Despite great success in achieving acellular scaffolds, little
consensus exists regarding the quality of the decellularized extracellular matrix.
Metrics used to evaluate extracellular matrix performance are study-specific,
subjective, and semi-quantitative. Thus, this work focused on developing a
computational method to examine the effectiveness of corneal
decellularization. We combined conventional semi-quantitative histological
assessments and automated scaffold evaluations based on textual image
analyses to assess decellularization efficiency. Our study highlights that it is
possible to develop contemporary machine learning (ML) models based on
random forests and support vector machine algorithms, which can identify
regions of interest in acellularized corneal stromal tissue with relatively high
accuracy. These results provide a platform for developing machine learning
biosensing systems for evaluating subtle morphological changes in
decellularized scaffolds, which are crucial for assessing their functionality.
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Introduction

Decellularization is, by definition, a process of removal of cell
components from tissues in which vasculature and extracellular
matrix (ECM) remain relatively intact. Decellularized tissues retain
many of their biochemical, structural, and biomechanical properties,
enabling the formation of various biologic scaffolds that act as the
basis for cell growth and differentiation (Abassi et al., 2013;
Corridon et al., 2017; Corridon, 2021; Corridon, 2022; Corridon
et al., 2022; Wang et al., 2022a; Wang et al., 2022b). Since such
tissues do not possess antigens at the cell surface, the risk of eliciting
an adverse immune response is significantly reduced when
transplanted to a different host. Decellularization is, therefore,
today an important strategy in contemporary transplantology and
regenerative medicine research (Wilson et al., 2016; Polisetti et al.,
2021; Shakeel and Corridon, 2023).

Some authors state that decellularized corneas are today one of
the most promising materials for the successful replication and
engineering of corneal tissues, considering the complexities
associated with the structural organization of its layers and
extracellular matrix (Fernández-Pérez and Ahearne, 2020).
Corneal decellularization is a potentially valuable approach for
creating non-immunogenic scaffolds that can be later used to
reconstruct primary corneal layers and subsequent
transplantation (Wilson et al., 2013; Isidan et al., 2021).
Unfortunately, despite numerous physical, chemical, and
biological methods developed for corneal decellularization over
the past decade, many unresolved issues exist in this research
area (Ahearne, 2020; Fernández-Pérez and Ahearne, 2020;
Holland et al., 2021). For instance, despite great success in
achieving acellular scaffolds, more consensus is needed regarding
the quality of the decellularized extracellular matrix 16. Some of
these issues reflect the challenges associated with pathohistological
and microscopy analysis of the decellularized stroma (Wilson et al.,
2016; Formisano et al., 2021).

The corneal stroma is a transparent layer consisting of keratocytes
and ECM components. The ECM comprises parallel bundles (fibrils) of
collagen fibers that form around 200 lamellae, arranged anisotropically
in a spherical coordinate system (Aldrovani et al., 2007; Meek, 2009;
Sridhar, 2018). Collagen types I (predominant form), II, V, VI, XII, XIII,
XIV, and XXIV, and various glycosaminoglycans can all be located in
the ECM (Meek, 2009; Corridon et al., 2006; Feneck et al., 2019).
Keratocytes, mesenchymal-derived fibroblast cells with complex
interactions with corneal epithelium, are the most abundant cell
type in the corneal stroma and have various functions regarding the
synthesis and organization of the ECM (Corridon et al., 2006; West-
Mays and Dwivedi, 2006). They are usually characterized by a typical
dendritic morphology with cell-processes up to 50 mm long, and in
some histological stains, the cells appear to be flattened and quiescent
(Scott et al., 2011). Because of the relative scarcity of these cells
(sometimes occupying less than 10% of the stromal volume) and
their occasional blurred appearance in hematoxylin- and eosin-
stained sections, it is challenging to differentiate decellularized from
intact stromal tissue during the conventional microscopy analysis,
compared to fluorescent approaches (Hahnel et al., 2000; Cai et al.,
2022; Shaya et al., 2022). This issue is especially the case in experiments
where the decellularization chemical agent has been used in low
concentration and decellularization has only been partially completed.

In recent years, many new and innovative computational
methods have been proposed as effective in detecting subtle
alterations in tissue architecture that are otherwise difficult to
notice during the standard pathohistological evaluation. Some of
these approaches include textural analysis methods, such as those
based on gray level co-occurrence matrix (GLCM) computations
(Zaletel et al., 2021). The results of this and other methods may be
used as input data for the training of numerous machine learning
(ML) models, which further increases the level of automation and
the sensitivity of the methods to detect changes in tissue structure. In
this work, we present results indicating that the GLCM method,
along with the discrete wavelet transform, can be used as an effective
tool to microscopically differentiate intact corneal stromal tissue
from the tissue treated with relatively low doses of the
decellularization chemical agent. Furthermore, we demonstrate
that it is possible to develop an ML model based on random
forest and support vector machine algorithms with relatively high
accuracy in classifying regions of interest in micrographs of intact
and treated corneal stromal tissues.

Current histological assessments are performed in conjunction
with DNA analyses to gauge the degree of decellularization. In the
long-term, such algorithms may enhance decellularization
characterizations by correlating the threshold concentrations of
residual cellular material within the ECM that would unlikely
elicit a negative remodeling response concerning the ECM
source, tissue type into which the ECM is implanted, and host
immune function (Crapo et al., 2011; Corridon, 2023a; Corridon,
2023b; Corridon, 2023c). Ultimately, this approach can eliminate
the need for multiple-stage and time-consuming protocols and
extend our ability further to examine the quality of residual ECM
microstructure.

Materials and methods

Animals and whole eyes samples

Eyeballs from the prominent Arabian sheep breeds (Najdi,
Awassi (Nuaimi), and Orb) in our region of the United Arab
Emirates (UAE) were collected from a local slaughterhouse in
Abu Dhabi to create native and decellularized corneal
keratoprosthesis models (Khan et al., 2023). The experiments
were performed with support and approvals from the Automated
Slaughterhouse of the Municipality of Abu Dhabi City and the
Animal Research Oversight Committee at Khalifa University of
Science and Technology (Abu Dhabi, UAE) in accordance with
ARRIVE criteria.

Whole eye decellularization and corneal
extraction

Cadaveric sheep eyes were excised from the ocular globe, washed
several times in saline, placed in a sealed container with saline, and
kept on ice in a cooler for transportation from the slaughterhouse to
the laboratory. A total of 25 eyes were collected and randomly
grouped into five groups, presented in Table 1. The native grafts
were obtained by extracting corneas with the limbus intact and
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placing them in cold storage until experimentation. On the other
hand, the acellular corneal scaffolds were created using whole eye
immersion/agitation-based decellularization using the conditions
outlined in Table 1.

Each cornea was placed in separate small containers and
immersed in 50 mL of 1% and 4% biosurfactant solution (Ecover,
Malle, Belgium) that consisted of 15%–30% non-ionic surfactants,
5%–15% anionic surfactants, ethanol, sodium citrate, glycerin,
trisodium ethylenediamine disuccinate, polypropylene
terephthalate, and citric acid. Each container was set up on an
Ohaus™ Analog Heavy Duty Shaker (Thermo Fischer Scientific,
Waltham, MA, United States) and agitated for 2 or 4 days at
300 rpm, depending on the group. After the decellularization
period, the corneas were removed from the detergent solution.
The corneas were then immersed in a similar volume of
deionized water and agitated again at 300 rpm for 3 days to
remove traces of the detergent. During the first 2 days, the water
was changed at 3X daily, and then on the end of third day, the water
solution was changed for a final time. After which, the corneas were
sectioned for DNA and histological assessments.

DNA quantification

DNA quantification and histological analyses experiments were
performed on the extracted native or decellularized corneas to
investigate the effective removal of all the cellular components
using GLCM. DNA extraction was performed using the QIAamp
DNA Mini kit (Qiagen, #51306, Germantown, MD, United States)
per the manufacturer’s instruction (Mousa et al., 2021).
Approximately 20 mg of each sample was cut into small pieces
and subjected to overnight lysis. DNA was bound onto a silica
membrane spin column, and further purification washes were done
using wash buffers provided in the kit. Finally, DNA was eluted by
using an elution buffer. Extracted DNA quantity and purity were
assessed by using a Nanodrop Spectrophotometer (ThermoFisher
Scientific). The quality of DNA was checked on 1% agarose gel.

Optical transmission tests

Transmission spectra of the corneal scaffolds were obtained using a
UV-Vis spectrophotometer connected to an optical microscope, Zeiss
Axioscope (Zeiss Group, Oberkochen, Germany), through a fiber optic
probe. The utilized spectrophotometer was USB 4000+ (Ocean Optics,
Dunedin, FL, United States), which has an operation range of

200–1,100 nm, and the spectra were recorded using OceanView
software. A glass slide was used as a reference for this experiment,
and triplicate measurements of each sample were recorded and
averaged. The spectra of the scaffolds, stored in saline, were initially
measured. Then, upon placing the scaffolds in pure glycerol for 20 min,
their surfaces were wiped with delicate task wipes, and their
corresponding optical characteristics were recorded. The
transmission spectra data were then averaged for each decellularized
and native corneal sample placed in both saline and glycerol.

Histological assessments

Corneas were fixed with 10% formalin for 1 h at 4°C. The samples
were rinsed in distilled H2O and stored in 70% ethanol. Specimens were
dehydrated through a graded series of ethanol (70%, 80%, 95%, and
100%) for 40 min each, cleared in xylene for another 40 min, infiltrated
four times with paraffin for 60 min each, and finally embedded in fresh
paraffin. Then Reichert-Jung 820 microtome (Depew, NY,
United States) was used to cut approximately 3.5 μm thick sections
that were flattened on a warm water bath and mounted on glass slides
and stained with H&E. A CX43 Olympus microscope (Olympus
Corporation, Tokyo, Japan) was used to acquire brightfield
micrographs of the stromal regions to examine decellularization
efficacy and ECM integrity. For this process, 30 images per group
were collected, and 6 random areas were selected in each image to
identify morphological changes in the corneal stroma that result from
decellularization by outlining various regions of interest (ROIs) to
separately gauge stromal fiber misalignment and damage, resulting
in a score of either 0 or 1; whereby 0 represents intact (aligned or non-
damaged) lamellae, whereas 1 represents impaired (misaligned or
damaged) lamellae. Six ROIs were randomly selected in thirty 10X
micrographs from each defined group. Three scorers blinded to the
hypotheses and experimental conditions recorded the number of intact
and impaired lamellae regions.

Gray level co-occurrence matrix analysis

Textural analysis was done in “Mazda” software developed and
maintained by Dr. Michal Strzelecki and Dr. Piotr Szczypinski of the
Institute of Electronics, Technical University of Lodz Poland
(Szczypinski et al., 2007; Piotr et al., 2009; Michal et al., 2013). This
software was created using C++ and Delphi© programming languages
within actions COST B21 European project “Physiological modelling of
MR Image formation,” and COST B11 AQ6 European project

TABLE 1 A description of the native and decellularized sample groups and decellularization conditions.

Group Number in group Detergent conc. (%) Days Decellularization condition

1 5 0 0 Native

2 5 1 2 1%2D

3 5 1 4 1%4D

4 5 4 2 4%2D

5 5 4 4 4%4D
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“Quantitative Analysis of Magnetic Resonance Image Texture”
(1998–2002). In the main part of our research, for each corneal
specimen, 3 representative digital micrographs were made using 100x
magnification, 3,088 × 2076 resolution units in size, with a horizontal
and vertical resolution both being 96 dpi, and with a bit depth of 24 that
was analyzed in a grayscale setup (Figure 1). For each digitalmicrograph,
GLCM analysis was performed on 3 representative squared regions of
interest sized 300 × 300 resolution units. For each ROI, 5 different
GLCM features were quantified: Inverse difference moment (IDM),
GLCM contrast (CON), GCLM correlation (COR), angular second
moment (Kazim et al., 2021), and sum variance (SVAR).

It should be noted that GLCM analysis is a complex mathematical
and statistical method that uses second-order statistics to calculate
features from two-dimensional signals such as digital micrographs or
other images. For this type of analysis, the images are first converted to
grayscale format, usually 8-bit. After that, each resolution unit of the
image (pixel) is assigned a numerical value based on its gray level
intensity. After that, a matrix is created based on the data describing how
often a specific spatial relationship occurs between a pixel with the value i
and a pixel with the value j. Usually, the analyzed pixels are the
immediate neighbors, or in other words, the pixel j is horizontally
adjacent and on the right side of the pixel i. Second-order statistical
features such as IDM, ASMand others are calculated from the frequency
of occurrence of pixel pairs (i,j) that are in a predetermined spatial
relationship. The features are basically an indirect way to quantify
textural homogeneity (and heterogeneity), which may, in some cases,
correspond to homogeneity in a morphological sense.

Considering that p(i,j) represents the (i,j)th entry of the gray-
level co-occurrence matrix following the normalization, the values of
ASM were calculated as:

ASM � ∑
i

∑
j

p i, j( ){ }2

An angular second moment is often considered an indicator of
textural uniformity since it is related to the uniformity of distribution of
gray levels within the two-dimensional signal. Inverse difference
moment is a similar GLCM feature. It represents local homogeneity
of the micrograph, and in our work, was calculated as:

IDM � ∑
i

∑
j

1

1 + i − j( )2
p i, j( )

Textural correlation feature, which in essence is a quantification
of linear dependency of gray levels, was determined as:

COR � ∑i∑j ij( )p i, j( ) − μxμy
σxσy

Here, the μ is the average value (mean) of GLCM rows x and y,
while σ is the standard deviation. Textural contrast as a
quantification of local intensity variation, and textural variance as
a determinant of dispersion of gray levels around the average value,
were calculated as follows:

CON � ∑
i

∑
j

i − j( )kPd i, j[ ]n

SVAR � ∑ i −∑ipx+y i( )[ ]
2

The GLCM features were stored in the local database for
ANOVA/Kruskal–Wallis statistical analysis in SPSS (v.25.0 IBM
Corporation, Chicago, IL, United States).

Discrete wavelet transform analysis

Discrete wavelet transform (DWT) analysis is sometimes used as
a supplemental method to GCLM to understand better the changes

FIGURE 1
Example of Mazda user interface with a digital micrograph of native cornea. The micrographs were converted to grayscale BMP format for ROI
creation and subsequent GLCM and DWT analyses.
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occurring in textural patterns. In our study, the Mazda platform, as
mentioned above, can compute wavelet coefficients (d) energies
taking into consideration different filters such as high (H) and low-
pass (L) during a filtering cascade of rows and columns. Such
computations can be performed after the data vectors are linearly
transformed into numerical ones of the same length. In our study,
we quantified 3 wavelet coefficients energies, EnLH, EnHL, and
EnHH, depending on the combination of filters used:

En � ∑x,y∈ROI dsubbandx,y( )
2

n

In this equation, values of x and y are subband locations, and n is
the number of resolution units in the ROI. Additional info on the
DWT features can be found in our recent publications (Pantic et al.,
2022; Pantic et al., 2023a; Pantic et al., 2023b), as well as in the works
of other authors (Kociołek et al., 2001).

This mathematical method essentially breaks down a part of the
micrograph (ROI) into various frequency components and
calculates the energies of those components. By analyzing
changes in these energies, one can indirectly assess textural
characteristics and separate between “rough” and “smooth”
textures. From our previous (unpublished) experience, when
calculating DWT features in biological structures such as tissues,
heterogenous cytoarchitecture usually has higher EnLH, EnHL, and
EnHH. When combining DWT with the GLCM method, structures
with high GLCM local homogeneity indicators, such as IDM,
typically tend to have low values of wavelet coefficient energies.
These features may imply that the DWT features may be good
indicators of textural heterogeneity, although this remains to be
confirmed by a future study.

Machine learning models

The objective of the second part of our research was to develop
an ML model capable of separating regions of interest of intact
corneal stroma from the ROIs of the stromal tissue treated with the
lowest dose of decellularization chemical agent (concentration of
1%, period of 2 days). We opted for 2 supervised ML approaches:
random forests (RF) and support vector machine (SVM). We used
the GLCM and DWT features for the input data, while the output
(target) was the allocation of the ROI to the experimental or the
control group of specimens. For training and testing purposes, we
created and analyzed a total of 1,000 ROIs (500 of the decellularized
corneal stroma and 500 of the intact stroma).

Approximately 80% of the data was used for training the model,
and 20% was used for testing. The ML models were developed in
Python programming language, its “Scikit-learn” programming
library, which is currently open source and commercially usable).
The Random forests approach an ensemble learning method that
can create many different decision trees and combine their
predictions to make a final prediction (Geng et al., 2022). The
trees are built based on a random data subset to give a prediction on
the target variable (in our case, the target was the class of the ROI
describing its allocation to the experimental or control group) based
on input data which are, in our case GLCM and DWT features. After
all the trees are constructed, the machine model takes amajority vote
to make the best prediction (the predictions from most trees are

considered correct). Random forests can be used for various
classification tasks when the target variable is categorical (similar
to in our study) or regression tasks when the target variable is
continuous (i.e., consists of data on the ratio scale). In this work, we
applied the RF Scikit-learn code previously developed on
micrographs of Saccharomyces cerevisiae cells as a part of the
SensoFracTW project supported by the Science Fund of the
Republic of Serbia (Pantic et al., 2023b).

The support vector machine (SVM), on the other hand, is a
supervised learning algorithm based on the margin maximization
principle and structural risk minimization (Adankon and Cheriet,
2015). In essence, this ML model finds the best possible boundary
(or so-called “hyperplane”) that can separate two classes of data
points (in our case, the points belonging to experimental and control
groups). The goal of this classifier would be to maximize the margin
(distance) between the boundary and the nearest data points. For the
SVM to achieve this, the data points must be mapped to a higher-
dimensional space, usually using a specialized “kernel”
mathematical function. In our study, the Python and “Scikit-
learn” codes for both models were implemented in the Jupyter
Notebook service hosted in “Colaboratory,” a product developed by
Google Research. Using this approach, we also quantified the
performance of the models by calculating their classification
accuracy and the area under the receiver operating characteristic
curve (discriminatory power).

In addition to the computational analysis described above, we
performed a subjective classification of the corneal stroma regions of
interest. Individuals with comprehensive experience in histological
evaluations were presented with 500 ROIs of the decellularized
corneal stroma (obtained using a 1% concentration of the
decellularization chemical agent for 2 days) and 500 ROIs of the
intact stroma. These ROIs were randomly selected and were similar
to those used for the training and testing of ML models, following
the selection protocol described in a recently published work (Pantic
et al., 2023a). Briefly, the ROIs were sized to 300 × 300 resolution
units using the ImageJ software platform (National Institutes of
Health, Bethesda, MD) and then cleared of the surrounding area
(ImageJ > Edit >Clear Outside). The observer assigned a value of “0”
or “1” based on their subjective assessment of whether the ROI
belonged to the control or experimental group. After allocating the
values, the actual classes of the ROIs were revealed, and a ROC
analysis of the “subjective method” was performed.

Results

DNA assessment of corneal decellularization

The residual DNA in each decellularized cornea was quantified
and compared to the DNA content in native corneas to examine the
effectiveness of each decellularization approach. All four conditions
removed an average of more than 95% of native DNA, a benchmark
indicating effective cell removal outlined by previous reports (Caralt
et al., 2015). The residual DNA contents are shown in Figure 2 and
represent significant reductions using each condition, which were
revealed with the Kruskal–Wallis (p < 0.002). From the data, we
observed a 97% reduction in DNA contents in scaffolds from group
1%2D (p = 0.003 and padj = 0.028) and group 1%4D (p < 0.001 and
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padj = 0.004), a 96.4%, reduction (p < 0.007 and padj = 0.072) in
scaffolds form group 4%2D, and 95.6% reduction (p < 0.007 and
padj = 0.067) in scaffolds from group 4%4D compared to native
tissues after applying the Dunn’s pairwise test. The term padj, denotes
the p values obtained for the pairwise test after applying the
Bonferroni correction, which only identified pairwise
comparisons, native-1%2D, and native-1%4D, as significant.
These results are summarized in Table 2.

Transmittance through native and
decellularized corneas

The degrees of optical transmittance from our reference (a
transparent glass slide) and native and decellularized corneas
with and without glycerol treatment are presented in Figure 2.
The Kruskal–Wallis test revealed a significant difference (p <
0.002) among the measured groups. Decellularized corneas
treated with glycerol are shown in Groups 6–9; the reference is

Group 10. These measurements confirmed that the reference
(control) was almost 100% transparent, while the native was
nearly 55% transparent, and the scaffolds before glycerol
treatment facilitated roughly 0%–3% light transmission.
Conversely, glycerol treatment reversed corneal opacity and
substantially enhanced light propagation through these sections,
supporting approximately 40%–50% degrees of light transmission.
Likewise, the Kruskal–Wallis test revealed that the degrees of optical
transmittance among the groups (p < 0.002), as well as significant
pairwise differences, except for the data obtained compared from
scaffolds treated by 1%2D and 4%4D (presented in Supplementary
Table S1).

Macroscopic and histological assessments

Regardless of the initial decellularization condition, all the
biosurfactant-treated ovine corneas became opaque, in varying
degrees (Figure 3B through Figure 3E) compared to native

FIGURE 2
Light transmittance through native and decellularized corneas. Comparison of DNA contents in native and acellular corneas. Residual DNA contents
estimated in scaffolds produced from each decellularization condition significantly differed from theDNA contents in the native corneas. The p values are
based on the Kruskal–Wallis test that identified the difference among the groups (p < 0.002), and pairwise group comparisons generated using the Dunn’s
post hoc test highlight the significant difference between the native DNA concentration andDNA concentration retained after each decellularization
approach (**), before and after the Bonferroni correction.

TABLE 2 A summary of statistical analyses used to estimate significant reductions in DNA contents observed with each decellularization condition.

Group comparisons Native and decellularization conditions % reduction in DNA content p-value Adjusted p-value

Group 1 vs Group 2 Native vs 1%2D 97.0 0.003 0.028

Group 1 vs Group 3 Native vs 1%4D 97.0 <0.001 0.004

Group 1 vs Group 4 Native vs 4%2D 96.4 <0.007 0.072

Group 1 vs Group 5 Native vs 4%4D 95.6 <0.007 0.067

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Pantic et al. 10.3389/fbioe.2023.1105377

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1105377


transparent corneas (Figure 3A), which is a visible hallmark of
corneal decellularization (Wilson et al., 2016; Polisetti et al., 2021).
Furthermore, histological assessments were conducted on acellular
scaffolds and native corneal tissues to examine the quality and extent
of decellularization, as well as the effect each condition had on the
stromal ECM. These assessments identified each decellularizing
condition’s ability to effectively balance cellular removal and
retention of the innate ECM architecture, albeit to different
extents. In each case, micrographs obtained from scaffolds
illustrated the absence of cellular components throughout corneal
compartments, using each decellularized condition (Figure 3G
through Figure 3J), compared to the native corneal layers
(Figure 3F). These results correlate well with our DNA-based
biochemical assays.

However, the quality of the resulting ECM varied for different
decellularization conditions as we estimated the morphological
changes in the corneal stromal lamellae based on
decellularization concentration and duration. These
micrographs showed that decellularization concentration had a
greater effect than duration. Specifically, collagen layers appeared
more ordered and stacked after treatments with the lower (1%)
biosurfactant concentration. In contrast, the higher biosurfactant
concentration appeared to produce more disruptions to the
intrinsic lamellae structure (Figure 4). These blinded semi-
quantitative analyses also revealed notable variations in the
degrees of intactness pertaining to lamellae alignment and
damage.

Each scorer examined a total of 900 images, i.e., 180 images for
each of the 5 treatment groups. From these assessments, the
Kruskal–Wallis test revealed statistically significant differences only
among the numbers of aligned (p = 0.025) and misaligned (p = 0.025)

stromal lamellae. For the statistical evaluation of numbers of aligned
stromal lamellae, the Dunn’s adhoc test outlined pairwise differences
between 4%4D-4%2D (p = 0.035 and padj = 0.353), 4%4D-1%2D
(p = 0.005 and padj = 0.153), 4%4D-native (p = 0.005 and padj =
0.045), and 1%4D-native (p = 0.049 and padj = 0.491). Similarly, for
the statistical assessment of numbers of aligned stromal lamellae, the
Dunn’s adhoc test outlined pairwise differences between 1%4D-native
(p = 0.049 and padj = 0.491), 4%4D-native (p = 0.005 and padj =
0.045), 1%2D-4%4D (p = 0.015 and padj = 0.153), 4%2D-4%4D (p =
0.035 and padj = 0.353).

Gray level co-occurrence matrix and
wavelet analysis

GLCM indicators for native corneas and scaffolds created
using various decellularization conditions are presented in
Figure 5. From these plots, the mean value and standard
deviation of the angular second moment of corneal stroma
were 0.068637 ± .01337 in the control group. It was
significantly increased in all experimental groups (p < 0.001).
In the first (treatment with 1% of decellularization agent, for
2 days), second (1% for 4 days), and third (4% for 2 days)
experimental group, the values were 0.101 ± 0.019, 0.113 ±
0.008 and 0.132 ± 0.008, respectively, while in the fourth group
(treatment with 4% of decellularization agent, for 4 days) there
was a slight non-significant reduction compared with the third
group (0.129 ± 0.015) but still highly significant when compared
with to the controls. From this finding, we could conclude that
decellularization, even with a relatively small concentration of
the agent, causes a substantial increase in textural homogeneity

FIGURE 3
Digital images and brightfield 10Xmicrographs of native and decellularized ovine corneas. Digital images of an extracted (A) native cornea (group 1),
(B) cornea decellularized using 1% biosurfactant for 2 days (group 1), (C) cornea decellularized using 1% biosurfactant for 4 days (group 1), (D) cornea
decellularized using 1% biosurfactant for 2 days (group 1). Brightfield 10X micrographs obtained from an extracted (A) native cornea (group 1), (B) cornea
decellularized using 1% biosurfactant for 2 days (group 1), (C) cornea decellularized using 1% biosurfactant for 4 days (group 1), (D) cornea
decellularized using 1% biosurfactant for 2 days (group 1). The epithelium, Bowman’s membrane, and stroma (specifically with the presence of
keratocytes identified by the arrows) are clearly defined in native tissues compared to the decellularized scaffolds. Scale bars = 20 μm. Digital images and
brightfield 10X micrographs using 1% biosurfactant for 2 days (group 2), (C) cornea and (E) cornea decellularized using 4% biosurfactant using 1%
biosurfactant for 2 days (group 2), (H) cornea and (J) cornea decellularized using 4% biosurfactant the arrows) are clearly defined in native tissues
compared.
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of the corneal stroma, which can be quantified using the gray
level co-occurrence matrix method.

The average values in the four experimental groups were 0.842 ±
0.017, 0.849 ± 0.013, 0.869 ± 0.012 and 0.871 ± 0.011, and all of the
values were significantly (p < 0.001) increased in comparison to the
controls (0.787 ± 0.024). We could observe a relatively stable and
significant trend in this increase, indicating the dose dependence on the
chemical agent. Similar results were observed in the changes of local
textural homogeneity quantified with inverse difference moment.

For the values of the textural contrast and GLCM correlation
feature, an opposite trend was observed compared to ASM and
IDM. The mean values of the textural contrast experimental groups
were 0.360 ± 0.055, 0.336 ± 0.037, 0.278 ± 0.036 and 0.271 ± 0.031,
respectively, which represented a substantial reduction (p< 0.001) when
compared to the control group (0.810 ± 0.157). The average value of
correlation in the control group was 0.971 ± 0.005, and it significantly
(p < 0.001) decreased in experimental groups to 0.940 ± 0.009, 0.931 ±
0.009, 0.927 ± 0.010 and 0.940 ± 0.011, respectively. A similar but even
more drastic reduction was observed in the average values in textural
sum variance, which in the controls equaled 117.75 ± 22.37. In contrast,
in the experimental groups, it equaled 15.15 ± 5.70, 12.20 ± 1.72, 7.57 ±
0.69, and 10.80 ± 3.52, respectively.

After decellularization, we observed a statistically significant
reduction in all quantified wavelet coefficient energies (Figure 6).
The mean value of the WavEnLH feature in experimental groups
was 0.732 ± 0.224, 0.834 ± 0.118, 0.440 ± 0.122, and 0.524 ±

0.175 which was significantly lower than its average value in
controls (2.570 ± 0.223, p < 0.001). A similar reduction was
detected for the WavEnHL indicator, with the mean values in
experimental groups equaling 0.699 ± 0.183, 0.651 ± 0.132,
0.438 ± 0.132 and 0.410 ± 0.095, while in controls, it was
2.362 ± 0.585 (p < 0.001). Finally, the WavEnHH feature also
significantly decreased from the value of 0.107 ± 0.027 in the
control group to the values of 0.062 ± 0.016, 0.080 ± 0.018,
0.048 ± 0.016, and 0.040 ± 0.004 in experimental groups.

Regarding the ML models, we obtained the best
performance when for input data, we used Inverse difference
moment, GLCM contrast, GCLM correlation, angular second
moment and variance, EnLH, EnHL, and EnHH. After
performing 5-fold cross-validation on the training data using
“cross_val_predict” function in Scikit-Learn, the estimated
accuracy of the random forests model was 82.67%, while the
area under the receiver operating characteristics curve was
approximately 0.92. The classification accuracy of the
support vector machine was 80.5% which was relatively
similar to random forests. However, the support vector
approach had significantly lower discriminatory power in
separating treated stromal ROIs from intact stromal ROIs
with the area under the receiver operating characteristics
curve of 0.84 (Figure 7). It was concluded that random
forests were a more powerful approach for evaluating
morphological changes in corneal stroma associated with

FIGURE 4
Histological assessments identifying morphological fiber misalignment and damage that resulted from decellularization.
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decellularization, although support vector machines also
presented a satisfactory performance.

It should be noted that the wavelet indicators, when analyzed
separately, also showed relatively high classification accuracy and
discriminatory power. The most important feature was EnHL, with
an area under the ROC curve of 0.79, followed by the EnHH feature,
with a calculated area of 0.78. The wavelet coefficient energy EnLH was
associated with slightly lower discriminatory power, with an area under
the curve of 0.76. Although the RF and SVMmodels combining GLCM
and DWT input data were significantly more powerful, this finding
implies the potential value of DWT as a stand-alone computational
method applicable in corneal pathology research.

After performing the classification of corneal ROIs based on
subjective observer assessment, it was found that the classification
accuracy of this approach was 60.8%, which was considerably lower
when compared to the accuracy achieved by the developed ML
models. The area under the receiver operating characteristic curve
was only 0.61, indicating poor discriminatory power in separating
ROIs from the decellularized and intact corneal stroma. These
findings suggest that individual GLCM and DWT indicators, as
well as SVM and RF models trained based on these data, hold some

scientific value regarding their ability to identify decellularized
corneal tissue.

Discussion

Surfactants used for corneal decellularization have mainly been
ionic (such as sodium dodecyl sulfate, SDS) and non-ionic (Triton
X-100) (Isidan et al., 2019). Similarly, zwitterionic surfactants, like
the most widely used agent of this type, 3-((3-cholamidopropyl)
dimethylammonio)-1-propanesulfonate (CHAPS) have also been
effective in isolating the corneal ECM from cellular components
(Marin-Tapia et al., 2021). Other reports have shown that neutral
hydrophilic groups of zwitterionic detergents can protect native
proteins during decellularization (Wang et al., 2022a). Using these
arguments as a basis for our study, we investigated how the quality of
the decellularized corneal ECM is affected by zwitterionic surfactant
concentration and processing time.

This work shows that effective decellularization was achieved
with a zwitterionic biosurfactant, as evidenced by a greater than 95%
cellular removal efficiency and corneal opacity, which can be

FIGURE 5
GLCM indicators for native corneas and scaffolds created using various decellularization conditions. **p < 0.01 compared to controls.
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restored using an optical clearing agent like glycerol (Polisetti et al.,
2021). Furthermore, histological analysis showed subtle alterations
in the lamellae structure that varied according to decellularization
concentration and processing time, consistent with the previous
reports (Luo et al., 2019; Polisetti et al., 2021). Such alterations
compromise the biomechanical and bio-inductive properties of the
scaffolds (Williams, 2019), as well as limit their optical transmission.
Typically, analyses used to examine the quality of residual ECM
microstructure require user-driven, multiple-stage, and time-
consuming protocols. As a result, computational-based
approaches may help resolve these issues.

From our investigations, we realized that exposing corneal
stromal tissues to a decellularizing chemical agent leads to
significant changes in the features of gray level co-occurrence
matrix and discrete wavelet transform, as with conventional
histological scoring. These changes indicate a substantial
increase in textural uniformity and local homogeneity and a
reduction of stroma’s co-occurrence and wavelet heterogeneity,
probably due to the loss of keratocytes and their nuclei. In this
study, we also demonstrate that it is possible to develop and test
ML models based on support vector machine and random
forests using GLCM and DWT as input data, which will
substantially decrease evaluation time and complexity as
evidenced using multiple scorers that each required at least
2 days to perform these assessments. These models presented
good performance indicators, and their classificational accuracy
and discriminatory power in differentiating regions of interest
of treated and intact stroma were relatively high. To the best of
our knowledge, this is the first research to combine knowledge

and techniques of decellularization with computational
algorithms such as GLCM and DWT and to use the raw data
to propose a contemporary ML model based on supervised ML
(Schmitt et al., 2017).

Gray level co-occurrence analysis of the tissue texture is a
frequently used method to quantify subtle alterations of tissue
architecture that occur after inducing damage by a chemical,
physical or biological agent. One of the first works to use GLCM
for this purpose was the research by Shamir et al. (2009) (Shamir
et al., 2009), where this method was used to evaluate the level of
structural deterioration of the muscle tissue on experimental animal
model and to relate it to gene expression. Later, GLCM analysis of
tissue micrograph ROIs was successfully applied to separate
different areas of white mass in the central nervous system
(Pantic et al., 2014). Textural analysis with GLCM was also used
to prove that structurally similar layers of the hippocampus can be
distinguished during computational evaluation (Pantic et al., 2015).
Over time, the method also proved helpful in assessing micrographs
of cancer tissue stained with the conventional hematoxylin-eosin
(H&E) technique (Kolarević et al., 2018). A particularly important
application of GLCM is in evaluating changes in chromatin
distribution within nuclei of individual cells (Lee et al., 2021).
The GLCM-quantified reorganization of chromatin patterns
during pathological processes such as carcinogenesis may have
some diagnostic and prognostic value in various medical disciplines.

At present, there are relatively few works in which GLCM data is
used to develop ML models. Most of these models are used in
radiology to classify or predict different phenomena related to the
presence of tumor tissue (Reddy et al., 2019; Saju et al., 2022). One of

FIGURE 6
Mean values of discrete wavelet transform coefficient energies. **p < 0.01.
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the rare approaches where GLCM is used in light microscopy
analysis is our recent work in yeast cells exposed to sublethal
doses of ethanol intended to induce low-level damage (Davidovic
et al., 2022; Pantic et al., 2023c). Here we compared the ML
algorithms based on a multilayer perceptron neural network,
decision trees (random trees), and binomial logistic regression.
Although all three models had similar performance in terms of
classification accuracy and area under the ROC curve, it seems that
the multilayer perceptron may be the best approach for the analysis
of individual nuclei in these conditions.

Regarding the application of the GLCM method in the
assessment of changes occurring in the corneal tissue, to the best
of our knowledge, in the past, only one focused on corneal stroma
(Marian et al., 2013). In that study, image texture analysis was used
to evaluate changes in corneal surface roughness, and the tissue was
examined using a scanning electron microscope. Surface roughness
was assessed subjectively and using second-order GLCM statistics.
The authors concluded that compared to the subjective manual
assessments method, and is also objective, quantitative, faster, and
more robust. However, the results are not directly comparable with
our current findings due to significant methodological differences
(e.g., microscopy technique, aspects related to the GLCM
method, etc.).

The computational method is valuable in designing computer-
aided diagnostic systems for corneal diseases that use topographical

parameters to increase the probability of making the correct clinical
decision. A recent study utilized the GLCMmethod to analyze three-
dimensional corneal maps obtained from a non-invasive imaging
device using Scheimpflug imaging technology (Cengiz, 2021). In
addition, the authors proposed supervised ML approaches, which
included Naive Bayes, decision trees, support vector machines, and
the K-Nearest Neighbors algorithm. These models were trained on a
relatively large dataset of more than 4,000 corneal maps and
provided a reasonable basis for further ML development in
corneal pathology.

The computational method is valuable in designing computer-
aided diagnostic systems for corneal diseases that use topographical
parameters to increase the probability of making the correct clinical
decision. A recent study utilized the GLCMmethod to analyze three-
dimensional corneal maps obtained from a non-invasive imaging
device using Scheimpflug imaging technology (Cengiz, 2021). In
addition, the authors proposed supervised ML approaches, which
included Naive Bayes, decision trees, support vector machines, and
the K-Nearest Neighbors algorithm. These models were trained on a
relatively large dataset of more than 4,000 corneal maps and
provided a reasonable basis for further ML development in
corneal pathology.

Regarding applying the GLCM method in the analysis of light
microscopy images, a similar approach combining textural analysis with
ML was used in a recent study on laryngeal cancer micrographs
(Valjarevic, 2023). GLCM and DWT methods were used to detect
subtle changes in the nuclear structural organization of squamous
epithelial cells in cancer biopsies. This process enabled the
researchers to distinguish them from morphologically similar cells in
benign chronic laryngitis. Like our current study, random forests and
support vector ML algorithms were trained to differentiate between the
nuclear regions of interest. In this case, the classification accuracies of
the support vector machine and random forest models were 81% and
84.5%, respectively. The random forest also outperformed the SVM in
other indicators, such as the area under the ROC curve.

Finally, one should mention a recent study on applying GLCM and
DWTmethods in assessingmicroscopic kidney structure aftermild acute
injury (Pantic et al., 2023a) and ways to examine the integrity of the
decellularized renal structure (Pantic et al., 2022). In the first study,
textural analysis was performed on proximal tubule cells after inducing
mild damage under experimental conditions, after which nuclear ROIs
were evaluated computationally. It was indicated that GLCM and DWT
could identify subtle alterations in cell structure that are not visible using
subjective methods. Similarly, to our current research, the personal
evaluation and classification of the ROIs were performed, and it was
determined that MLmethods have far greater classification accuracy and
discriminatory power. In addition, to support vector machine and
random forest, a model based on binomial logistic regression was also
developed and showed comparable performance, suggesting that this
approach may also be considered in future research where GLCM and
DWT features are used asML input data. In the second study, we applied
the GLCM computational algorithms to analyze decellularized porcine
kidneys’ vascular and parenchymal integrity under various
physiologically relevant perfusion conditions. This study revealed the
ability to generate statistically significant changes in GLCM and wavelet
features, including the reduction of the angular second and inverse
difference moments, which indicated substantial increases in
angiographic textural heterogeneity in a manner that augments

FIGURE 7
Receiver operating characteristics curves for SVM and RF ML
models.
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conventional fluoroscopic angiography analyses of micro/
microarchitectural integrities.

Additionally, from a functional perspective, optical
transmission tests showed a substantial variation in the rates
of visible light transmitted through decellularized corneas
compared to native corneas, which can be attributed to the
experimental conditions. Corneal opacity in native tissues can
be generated through tissue extraction and storage processes,
which are heightened with decellularization. Overall, multiple
scattering layers in biological tissues limit optical penetration
depth and hence low transmission. The tissue components
(including cells, membranes, collagen, fibrin, and elastin
fibers) have refractive indices from 1.47 to 1.51, while the
surrounding saline solution has a refractive index of nearly
1.3364,65. This mismatch between the refractive indexes
creates interferences from which light diffuses and scatters.
Index matching can be achieved by using a solvent with a
higher refractive index, such as glycerol, with a refractive
index of 1.4766,67, reducing the optical inhomogeneity in the
tissue samples. As shown in Figure 2D, the index-matching agent
glycerol facilitated the reversal of ocular opacity (Figure 1) and
enhanced the degree of light transmittance in these xenografts.

Additionally, from a functional perspective, optical transmission tests
showed a substantial variation in the rates of visible light transmitted
through decellularized corneas compared to native corneas, which can be
attributed to the experimental conditions. Corneal opacity in native
tissues can be generated through tissue extraction and storage
processes, which are heightened with decellularization. Overall,
multiple scattering layers in biological tissues limit optical penetration
depth and hence low transmission. The tissue components (including
cells, membranes, collagen, fibrin, and elastin fibers) have refractive
indices from 1.47 to 1.51, while the surrounding saline solution has a
refractive index of nearly 1.33 (Costantini et al., 2019; Hamdy and
Abdelazeem, 2020). This mismatch between the refractive indexes
creates interferences from which light diffuses and scatters. Index
matching can be achieved by using a solvent with a higher refractive
index, such as glycerol, with a refractive index of 1.47 (Bochert et al., 2005;
Hedhly et al., 2022), reducing the optical inhomogeneity in the tissue
samples. Overall, this index-matching agent facilitated the reversal of
ocular opacity and enhanced the degree of light transmittance in these
xenografts.

Our transmittance studies allowed us to examine the degrees
of optical light transmission through the decellularized corneas
to the native cornea. Specifically, the transmission spectra of the
corneal scaffolds were obtained using a UV-Vis
spectrophotometer. The approach allowed us to gauge the
functional aspects of the scaffolds, and compared with our
previous studies (Xinyu Wang and Salih, 2023). Other studies
have also reported that decellularized scaffolds, generated from
detergent-based procedures comparable to ours, have been
recellularized using stem cells and corneal-derived cells
(Fernández-Pérez and Ahearne, 2020; Polisetti et al., 2021).
Such studies can be classified according to the corneal layer of
interest, namely, the epithelial, stromal, and endothelial layers,
and the cell source, including stem (adipose-derived and induced
pluripotent forms), as well as epithelial, keratocytes/corneal
Fibroblasts, and endothelial cells. These studies’ promising
results highlight the opportunity for autologous and allogeneic

cell transplantation. Major determinants that drive
recellularization relate to the effective removal of remnant
cellular components, retention of ECM compartments, and
removal of the decellularization agent. Our scaffolds adhere to
these criteria, and thus we believe they can support
recellularization practices, which will be examined in future
studies.

From a computation perspective, our results’ potential value reflects
that GLCM and DWT indicators of corneal stroma changed drastically
even when a relatively small dose of the decellularizing agent was applied.
Given that normal corneal stroma is generally deprived of cells and
mainly composed of extracellular matrix (sometimes more than 90% of
the volume), GLCM and DWT methods can detect even minor
alterations in textural patterns associated with cell loss. With the
addition of ML as a way to automate these methods, these methods
may contribute to the future development of sensing systems for
evaluating decellularized tissue and estimating the efficiency of
chemical substances used to remove cell components from the tissue.
Of course, one should know that our results are only preliminary and
must be confirmed in different conditions using different staining and
microscopy protocols.

Despite the apparent advantages of gray-level co-occurrence
matrix and discrete wavelet transform algorithms, they have
several limitations that may hinder their applications in
pathology, histology, and other areas of medicine. First, the
consistency of results across different computational platforms
may need to be clarified since the coding behind the software is
often based on different programming languages and
approaches. For example, the values of GLCM quantifications
obtained on Mazda software may differ from those obtained
from other texture analysis programs that also claim to calculate
the same textural indicators. Second, it is known that textural
features may greatly vary depending on the applied staining
technique. The conventional H&E stain will probably yield
different GLCM results than other stains, such as those
applied during immunohistochemistry. Finally, sometimes
very discrete changes in experimental conditions may
significantly influence final results. For example, minor
modifications in the sharpness of the visual field during light
microscopy or changes in light exposure and brightness may
change the resulting textural features in the micrograph. The
extent to which these changes impact textual analyses is yet to be
well studied.

Regarding theMLmodels, one has to stress the potential importance
of the ML in future diagnostic pathology protocols as these approaches
may greatly contribute to the automation, objectivity, and reduction of
diagnostic errors. However, ML models applied in our study have
significant limitations that may reduce their overall scientific value.
First, the ROI sample used for training was relatively low, and a more
considerable amount of training data would significantly increase the
performance. Second, these models are trained to classify ROIs and are
not intended to be applied to conditions where a micrograph or a tissue
sample is regarded as a statistical unit of measurement. This issue
dramatically limits their applicability in future work in transplantation
and regenerativemedicine since, in practice, experts in this field deal with
tissue specimens (Corridon et al., 2013; Hall et al., 2013; Collett et al.,
2017; Kolb et al., 2018; Corridon et al., 2021) rather than ROIs.
Nevertheless, to the best of our knowledge, this is the first study to
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demonstrate that creating such ML models is possible. The obtained
results may be helpful as a starting point for the future development of
AI-based biosensors for evaluating decellularized corneal tissue.

In the future, deep learning algorithms could be applied to
bridge the current gap in knowledge between ML in corneal
pathology and actual artificial intelligence systems. Deep
learning models, particularly those based on multilayer
perceptrons and convolutional neural networks (CNNs), can
learn features directly from raw image data and pixel values,
leading to more accurate and efficient predictions. It may be
possible to train these neural networks to calculate GLCM and
DWT features and use them to train other networks for image or
ROI classification. Additionally, CNNs could be trained to identify
different complex patterns and features in corneal digital
micrographs, further improving classification accuracy and
discriminatory power compared to other ML methods, such as
random forests and support vector machines. However, it should
be noted that applying deep learning models would require a
significantly larger dataset, and hyperparameter tuning and testing
various architectures of neural networks would require significant
computational resources not typically available in standard
laboratory settings. Nevertheless, deep learning methods offer
considerable potential for improving ML approaches to identify
regions of interest in acellularized corneal stromal tissue.

In the future, we estimate that comprehensive quality assurance
must be performed for both GLCM and DWT methods regarding
their use in pathology and histology. I recommend creating a
standardized computing protocol that controls all confounding
factors that could influence the final results. This approach would
have to be at least partially focused on testing the inter-observer
reliability to see if multiple observers can obtain/calculate the textural
quantifications the same way. Also, the variability of the GLCM
calculations across different software platforms will have to be
considered. The same applies to the variability of the features
when other histological protocols are implemented.

RegardingML applications, additionalmodels need to be trained and
tested in the future. Such procedures include supervised learning
approaches such as neural networks, Naive Bayes, Linear discriminant
analysis, and K-nearest neighbor algorithms. Finally, combining
techniques commonly used for computer vision and image
recognition with GLCM and DWT data also remains a potential
option for improving the classification and prediction of biological
phenomena associated with decellularization.

Conclusion

As expected, increasing the decellularization agent
concentration and duration causes more disruptions to the
ECM. We could detect significant differences between
decellularization conditions using our semi-quantitative and
automated approaches in certain situations. Our results indicate
that the decellularization in corneal stroma leads to substantial
changes in indicators of gray-level co-occurrence matrix and
discrete wavelet transforms. The detected changes are distinct
even when using relatively small concentrations of a
decellularization chemical agent, suggesting the potential
scientific value of GLCM and DWT methods in pathology,

ophthalmology, and regenerative medicine. Such automated
detection schemes can help optimize decellularization
protocols. Minimizing the zwitterionic surfactant
concentration and the processing time is beneficial to
improve the decellularized ECM’s quality. To the best of our
knowledge, this represents the first work on using GLCM and
DWT computational techniques to assess corneal stromal
architecture after decellularization. We also demonstrate that
it is possible to develop contemporary ML models based on
random forests and support vector machine algorithms capable
of identifying regions of interest in decellularized corneal
stromal tissue with relatively high accuracy. The results may
be a valuable foundation for the future design of innovative and
efficient biosensing systems for evaluating corneal
morphological changes associated with physiological and
pathological processes.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The animal study was reviewed and approved by Animal Research
Oversight Committee at Khalifa University of Science and Technology.

Author contributions

PRC and IP conceived and designed the project. PRC, AS, and XW
collected tissues from the slaughterhouse and performed corneal
extraction and decellularization. HV performed DNA quantification.
SD performed histology. IP, JC, SV, and DN performed gray-level
cooccurrence matrix and discrete wavelet transform analyses and
created the ML models. PC, AS, XW, MGS, and ZMA analyzed
micrographs. AES and XW performed the optical transmission
studies, and AES, XW, VC, HB, and PRC interpreted the optical
transmission data. All authors contributed to the article and
approved the submitted version.

Acknowledgments

IP received financial support from the Science Fund of the
Republic of Serbia, grant #7739645 "Automated sensing system
based on fractal, textural and wavelet computational methods for
detection of low-level cellular damage," SensoFracTW, as well as the
Ministry of Education and Science of the Republic of Serbia, grant
no. 200110. Funds from Khalifa University of Science and
Technology under Award No. RC2-2018-022 (HEIC), Research
Fund FSU-2020-25, and ESIG-2023-005 granted to PRC
supported the study. Additionally, PRC would like to
acknowledge the support he receives from the Municipality of
Abu Dhabi City, specifically the Abu Dhabi Automated
Slaughterhouse.

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Pantic et al. 10.3389/fbioe.2023.1105377

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1105377


In Memoriam

It is with deep sadness and heavy hearts that we recognize the passing
of our colleague and friend, Georg A. Petroianu, who passed away on
28th January 2023. Georg passed away unexpectedly after a brief illness.
We are so grateful for the time we shared with him and the work we
achieved, and we dedicate this manuscript to Georg.
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