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The repair and reconstruction of bone defects and the inhibition of local tumor
recurrence are two common problems in bone surgery. The rapid development of
biomedicine, clinical medicine, and material science has promoted the research
and development of synthetic degradable polymer anti-tumor bone repair
materials. Compared with natural polymer materials, synthetic polymer
materials have machinable mechanical properties, highly controllable
degradation properties, and uniform structure, which has attracted more
attention from researchers. In addition, adopting new technologies is an
effective strategy for developing new bone repair materials. The application of
nanotechnology, 3D printing technology, and genetic engineering technology is
beneficial to modify the performance of materials. Photothermal therapy,
magnetothermal therapy, and anti-tumor drug delivery may provide new
directions for the research and development of anti-tumor bone repair
materials. This review focuses on recent advances in synthetic biodegradable
polymer bone repair materials and their antitumor properties.
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1 Introduction

Bone tumors and cancer metastasis to bone pose a serious threat to human health, especially
osteosarcoma being the most common. For example, the age-standardized incidence rates for
0–79 ranged from 2 cases per million in Southern Asia to 4.2 in Sub-Saharan Africa, and the 5-
year survival rate of osteosarcoma treated by amputation surgery has been 5%–20% for decades.
The standard clinical treatment strategy for bone cancer involves surgical resection and
reconstruction of the involved bone followed by adjuvant radiotherapy or chemotherapy.
Surgical resection of bone malignancies can cause bone defects or delayed bone healing, severely
affecting the patient’s quality of life (Isakoff et al., 2015; Rojas et al., 2021; Chen and Yao, 2022).
Finding the ideal repair materials has always been a challenge for orthopedic surgeons.
According to the different components of the materials, synthetic bone repair materials can
be mainly divided into metal materials, bioceramics, calcium phosphate bone cement, polymer
materials, composite materials, tissue engineering materials, etc. Among them, polymer
materials have been used as bone-filling materials since the mid-1960s, with the advantages
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of immunocompatibility and good biocompatibility (Cao et al., 2021).
Polymer materials commonly used in bone tissue engineering research
can be divided into natural polymer materials and synthetic polymer
materials. Among them, natural polymers include collagen, fibrin,
chitin, hyaluronic acid, sodium alginate, chitosan, etc (Zhang et al.,
2021; Zhang et al., 2022). Synthetic polymers include polylactic acid
(PLA), polyglycolic acid (PGA), poly (lactic-co-glycolic acid) (PLGA),
Polyvinyl alcohol (PVA), polycaprolactone (PCL), polyamide and
other synthetic polymers (He et al., 2018). Natural polymer
materials have good biocompatibility and thus contribute to
improving cellular properties. However, they are difficult to design,
with limited processing capacity, high contamination risk, and
instability and variability of the property. Compared to natural
polymer materials, synthetic polymer materials have stable
chemical properties, and can be modified to obtain specific
properties. Other advantages of synthetic polymer materials include
cost-effectiveness, mass-production capacity, and longer storage time
(Dwivedi et al., 2020). Synthetic polymer materials mainly exist in the
form of scaffolds in bone repair, and composite materials with tissue
cells, growth factors, and other materials can improve the biological
activity and biocompatibility of the material itself (Yassin et al., 2017).
The development of biomaterials provides broad prospects for the
future treatment of bone tumors, and worldwide scholars constantly
explore biomaterials that can both repair bone defects and inhibit
tumor recurrence. This review focuses on new advances in synthetic
biodegradable polymer bone repair materials and their antitumor
properties.

2 Polymer materials containing
polylactic acid, polyglycolic acid or poly
(lactic-co-glycolic acid)

PLA, PGA, and PLGA are currently the most widely used
extracellular matrix materials for bone tissue engineering. PLA is
hydrolyzed in vivo to produce lactic acid, and PGA is degraded to
hydroxyacetic acid in vivo, which can easily participate in the
metabolism in vivo (Liu and Yu, 2021). PLA and PGA have good
biocompatibility, good mechanical properties, and plasticity, which
have been approved by the US Food and Drug Administration (FDA)
for extensive clinical application. However, these materials have
defects such as poor hydrophilic nature and fast degradation rate,
and the intermediate products will accumulate in a local range,
resulting in low pH values. The effect of the two materials directly
used to repair bone defects is not ideal, and other materials need to be
added for performance optimization (He et al., 2018). PLGA is also
one of the most commonly used synthetic materials for bone defect
repair and regeneration. It is a biopolymer material composed of
random polymerization of two monomers, lactic acid and
hydroxyacetic acid in different proportions. The presence of PGA
makes the degradation rate of PLGA faster than PLA, and the
degradation time of PLGA is prolonged as the proportion of
propylene cross-esters in the copolymer composition increases.
This synthetic polymer was first used for biomedical use in the
early 1970s and has received extensive attention and research in
bone tissue engineering for its good mechanical properties,
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controlled degradability, good biocompatibility, and excellent
plasticity (Martins et al., 2018; Su et al., 2021). The unique
physicochemical properties of the material give it broad biomedical
applications, ranging from PLGA polymers for tissue regeneration
scaffolds to drug delivery systems, and other applications for
parenteral administration, diagnostic, basic, and clinical research,
including cancer, cardiovascular disease, tissue engineering, and
vaccines (Altındal and Gümüşderelioğlu, 2016; Ray et al., 2017).
The synthesis method of PLGA can be divided into two categories:
(1) direct polymerization of lactic acid and glycolic acid, which usually
yields PLGA with low molecular mass and wide relative molecular
mass; (2) ester open ring polymerization of propylene ester, which can
obtain higher relative molecular mass and more uniform products
(Zhao et al., 2021). There are many modification methods for PLGA
scaffold, mainly for blending modification and surface modification.
Mixed modification is made by mixing other substances, such as
hydroxyapatite, tricalcium phosphate, magnesium hydroxide, and
other inorganic substances, which can improve the mechanical
properties and hydrophilicity of the scaffold, change cell behavior,
and promote bone production. Surface modification is coated on the
scaffold surface with a layer of active material that regulates
interactions between the cell-scaffold material (Danhier et al., 2012;
Rocha et al., 2022). The researchers found that physically mixing the
right amount of hydroxyapatite and PLGA into a composite scaffold
could improve the scaffold’s mechanical strength and that the
hydroxyapatite would automerize on the scaffold surface to form a
nanostructure, which facilitates cell adhesion and migration and
promotes new bone generation. There are also studies to add
magnetic nanoparticles to PLGA/hydroxyapatite scaffold, which
can effectively inhibit and kill bone tumor cells by magnetic
hyperthermia under the external magnetic field, and the addition
of magnetic nanoparticles can enhance cell adhesion, proliferation,
and differentiation (Li M. et al., 2019). Rong et al. made adriamycin-
encapsulated PLGA nanoparticles in a porous nano-hydroxyapatite/
collagen scaffold, ADM-PLGA-NHAC, and evaluated the
performance of the vehicle scaffold using various techniques such
as scanning electron microscopy and in vitro sustained release. The
results of the in vitro tumor-suppressor experiments showed that the
ADM-PLGA-NHAC scaffold extract had a strong anti-tumor effect on
the MG-63 osteosarcoma cells (Rong et al., 2016). Wang et al.
successfully built the bioglass molybdenum disulfide complex
(BGM) by fixing the molybdenum disulfide polylactic acid glycolic
acid (MoS2-PLGA) membrane on the surface of the 3D printing
bioactive glass bracket. Moreover, they demonstrated the inhibitory
effect of this complex on tumor cells in vitro and in vivo trials (Wang
et al., 2020). Bone infection is a serious complication after bone defect
repair, and it is often difficult to achieve effective concentrations at the
infection site, and the PLGA stent loaded with antibiotics can release
high concentrations of antibiotics locally in bone repair to achieve
therapeutic purposes. Researchers by studying the antibiotic release
curve found that antibiotics in the first few hours of explosive release,
then sustained low dose slow release, which is crucial to repair
infectious bone defects, early local microenvironment of high
concentration of antibiotics to completely kill bacteria, sustained
low doses of antibiotics help to inhibit the growth of bacteria (Gao
et al., 2016; Aragón et al., 2019). PLGA has shown great potential in
drug delivery and tissue engineering, and its application in bone defect
repair after tumor resection may become a new choice for orthopedic
doctors.

3 Polymer materials containing polyvinyl
alcohol

PVA is a linear synthetic polymer with biocompatibility,
biodegradability, and chemical stability. PVA is often used in bone
repair materials as a component of composite materials to improve
the mechanical strength, hydrophilicity, and cell compatibility of
scaffold materials (Pourjavadi et al., 2020). Chen et al. prepared the
PVA/β-tricalcium phosphate composite scaffolds by melting deposition
formation, and with the addition of β-tricalcium phosphate, the
maximum stress of the scaffold reached 10.7 kPa, which significantly
improved the carrying capacity of the composite scaffold. Chen et al. also
verified the cell compatibility of the composite scaffold, and the results
showed that the composite scaffold did not inhibit cell growth (Chen et al.,
2019). Kaur et al. prepared PVA scaffolds loaded with different
concentrations of graphene nanosheets by freeze-drying method. The
addition of graphene nanosheets significantly improved the tensile
strength of the polyvinyl alcohol scaffold. When the mass fraction of
nanographene sheets was 1%, osteoblasts proliferated and differentiated
best in the composite scaffold (Kaur et al., 2017). Xia et al. prepared PVA/
silica hybrid fiber by electrospinning method. After 3 days of immersion
in the simulated body fluid, layered apatite precipitation appeared on the
surface of the hybrid fiber, so it is supposed that the fiber has certain bone
inducibility conducive to bone repair (Xia et al., 2018). Lan et al. fabricated
a well-developed porous carbon nanotube (CNT) reinforced polyvinyl
alcohol/biphasic calcium phosphate (PVA/BCP) scaffold by a freeze-
thawing and freeze-drying method. The degradation analysis indicated
that the degradation ratio of scaffolds can be varied by changing the
concentrations of BCP powders and CNTs (Lan et al., 2019). The study of
Li Yao et al. determined the ratio of chitosan/polylactic lactate/
hydroxyapatite/PVA composite, optimized the mechanical properties
of bone scaffold, and the optimal ratio of the composite stent has high
porosity and good mechanical properties (YM et al., 2022). The results of
Istikharoh et al. demonstrated that polylactic ate glycolic acid/PVA coated
hydroxyapatite nanoparticle composites have an optimal aperture,
morphology, and degradability, showing their great potential as an
effective bone scaffold for the repair of alveolar defects after tooth
extraction (Istikharoh et al., 2020).

4 Polymer materials containing PCL

PCL has good degradability, superior biocompatibility, and strong
mechanical properties, and it was approved by the FDA in the 1990s.
PCL is a polyester organic polymer made by artificial synthesis. At
physiological temperatures, the semi-crystalline PCL attains a rubbery
state resulting in its high strength, high toughness, and excellent
mechanical properties, along with good biocompatibility, slow
degradation rate, and strong crystallinity. In addition to being
biocompatible and biodegradable, PCL polyester is widely used as a
scaffold for absorbable sutures, regenerative therapies, and drug delivery
applications for its easy availability and cost-effectiveness, especially for
building long-term implant delivery devices. Its longer degradation time
makes it widely used to replace hard tissues, and load-bearing tissues by
increasing their stiffness, and to replace soft tissues by reducing their
molecular weight and degradation time (Dwivedi et al., 2020). In order
to make the scaffold has antibacterial properties, Felice et al. prepared
mixed with zinc oxide scaffold, the results show that high zinc oxide
concentration can induce early mineralization, and adjusting the
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concentration of zinc oxide and the distribution in the material can
realize the regulation of scaffold degradation rate, and the stent has
antibacterial effect for S.aureus (Felice et al., 2018). Nanoparticles were
cultured on a polydopamine-coated polyhexylactone scaffold and were
significantly enhanced by the presence of a polydopamine coating by
Lee et al. As nanoparticles, this scaffold was found to have good
osteogenic activity in vivo experiments, which is expected to provide
new material options for bony defect repair and regeneration (Lee et al.,
2018). Wu et al. made the 3D-printed calcium silicate, PCL, and
acellular extracellular matrix scaffolds, and observed that they
exhibited excellent biocompatibility, cell adhesion, proliferation, and
differentiation by increasing the expression of osteogenesis-related
genes (Wu Y. A. et al., 2019). The microporous PCL scaffold matrix
found by Palama et al. supports attachment, proliferation, and
osteogenic differentiation of osteoblasts, whereas the polyelectrolyte
multilayer fixation on the endopore surface maintains local
dexamethasone release. These microporous scaffolds demonstrate the
ability to treat dexamethasone as a local tumor therapy, and to promote
the proliferation and differentiation of osteoblast-like cells in vitro
(Palamà et al., 2017).

5 Other polymer materials

In addition to the above, there are some new materials, that
researchers have brought them to many scholars through in-depth
experiments, and may become candidate substitutes for bone defects
after tumor resection after more long-term exploration. The applications
of emerging technologies such as 3D printing, photothermal effects, and
magnetic materials have gradually attracted the attention of researchers
(Choi et al., 2017; Lu et al., 2018; Yang et al., 2018). Ma et al. studied an
acrylic ester-based composite of polyfumarate as a potential clinical bone
repair material with low heat release and suitable mechanical properties,
which shows good biocompatibility. Furthermore, the surface
morphology and hydrophilic properties can be adjusted by regulating
the content of β-calcium phosphate, and maybe a promising bone repair
material (Ma et al., 2019). Dang et al. combined 3D printing technology
with a solvent thermal method to successfully synthesize CuFeSe2
nanocrystalline bioactive glass scaffold, which was verified to remove

bone tumor cells in vitro by photothermal effects, and confirmed that the
scaffold can kill Saos-2 tumor cells in vivo trials (Dang et al., 2018).

Using a strategy of combining 3D printing technology with
photothermal properties for in situ ablation, Ma et al. made a 3D-
printed calcium phosphate composite scaffold and modified it with
graphene oxide to transfer the infrared laser energy to the
photothermal effect (Ma et al., 2016). Zhang et al. prepared a
hydrogenation black titanium dioxide coating with a micro/nano
graded morphology by using the induction suspension plasma spraying
technology. Good and controlled tumor growth inhibition by 808 nm
near-infrared laser irradiation in vitro and in vivo (Zhang et al., 2019).
Mondal et al. synthesized iron oxide, hydroxyapatite, and hydroxyapatite-
coated iron oxide nanoparticles, and in vitro magnetic hyperthermia
studies showed excellent thermal efficacy against MG-63 osteosarcoma
cells, killing almost all experimental MG-63 osteosarcoma cells within
30 min of exposure (Mondal et al., 2017). KamitakaharaM et al. have
prepared micron-scale magnetic nanoparticles with porous HA particles
acting as a scaffold for bone regeneration, and the magnetic nanoparticles
generate enough heat to kill tumor cells in an alternating magnetic field
(Kamitakahara et al., 2016). Asa et al. have synthesized multifunctional
magnetic ZnFe2O4-hydroxyapatite nanoparticles for local anticancer drug
delivery and bacterial infection inhibition, and their study has found that
drug-borne nanoparticles have the ability to inhibit the proliferation and
growth of cancer cells. With the increasing concentration of the
nanoparticles, the G292 cancer cell proliferation was inhibited, while
the HEK normal cell proliferation was stimulated (Asa et al., 2019).
Here listed in Table 1 are the synthetic biodegradable polymer
materials for bone defects.

6 Strategies for the development of anti-
tumor polymer materials

Modern bone repair materials mainly include polymer materials,
tissue-engineered bone, and related derived composites. With the
continuous progress of technology in medicine and related fields,
the research and technical level of modern materials are more
microscopic. New technology is an effective strategy to develop
new bone repair materials, and nanotechnology, 3D printing

TABLE 1 Synthetic biodegradable polymer materials for bone defects (Henslee et al., 2011; Reichert et al., 2012; Jensen et al., 2014; Subramanian et al., 2015; Pang
et al., 2019; Ding et al., 2022).

Graft composition Bone defect Regeneration outcomes Limitations References

3D printed polycaprolactone/β-
tricalcium phosphate composite

3 cm, sheep, tibial Radiographic union; mechanical
restoration

Slow graft; resorption Reichert et al.
(2012)

Solid poly (propylene fumarate) rod/
porous sleeve with PLGA microparticle

5 mm, rat, femoral Improved defect fixation by solid rod;
improved bone formation

Regeneration impeded by solid rod;
no union

Henslee et al.
(2011)

Salicylic acid-based poly (anhydride-
ester)/polycaprolactone membrane

5 mm, rat, femoral Ectopic bone formation suppressed; long
bone regeneration improved (no
mechanical testing)

Poor graft mechanical property;
long-term remodelling unclear

Subramanian et al.
(2015)

3D printing polylactic acid polymer-
bioactive glass loaded with bone cement

5–6 mm in diameter and
5–6 mm in depth, rabbit
femoral

Radiographic union; mechanical
restoration; osteogenic differentiation
ability

Improved scaffold degradation rate Ding et al. (2022)

Surface-modified functionalized
polycaprolactone

10 mm in diameter and
10 mm in depth, porcine, skull

Radiographic union; mechanical
restoration

Acceleration of scaffold degradation Jensen et al. (2014)

polyvinyl alcohol-borosilicate gel hybrid
scaffolds

3 mm in diameter and 5 mm
in depth, rat, femoral

Radiographic union; mechanical
restoration

Unclear degradation rate Pang et al. (2019)
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technology, genetic engineering technology, photothermal therapy,
and magnetic thermal therapy have opened up new prospects for the
research of anti-tumor bone defect repair materials (Venkatesan and
Kim, 2014; Atak et al., 2017; Xu et al., 2022). The application of 3D
printing technologymakes bone repair stent preparationmore refined,
and different morphology, porosity, and performance can be made by
changing the printing parameters. With the development of 3D
printing and computer technology, complex bracket materials are
more accurately used for production. Researchers are further studying
the three-dimensional structures of prints mixed with living cells,
growth factors, or other biomaterials, and 3D printed drug carrier
materials are also gaining much attention (Raja and Yun, 2016; Han
et al., 2017). Li et al. synthesized a composite scaffold of nano-
hydroxyapatite (nHA) and reduced graphene oxide (rGO) sheets
fabricated by self-assembly and found that nHA-rGO scaffolds
killed all but 8% of osteosarcoma cells (MG-63) under 808 nm
near-infrared laser irradiation for 20 min in vitro (Li et al., 2018).
In order to optimize and make up for the lack of simple stent material
performance, the researchers added all kinds of polymer, trace
elements, drugs, seeds, cells, and related cytokines, usually different
materials, to improve the mechanical properties, degradation
properties, biocompatibility, and osteogenic properties, optimize
the drug or cytokine load capacity (Li H. et al., 2019).

The composite of multiple materials is an effective way to produce
new material properties. The bone stent composed of a single raw
material cannot fully meet the needs of bone defect repair. Through
the composite of various raw materials, the researchers hope to create
an artificial stent that can perfectly fit the needs of bone defect repair.
Direct local delivery of anti-tumor agents loaded into stents of bone
repair materials is also an effective strategy (Zhou et al., 2017; Qu et al.,
2021). Recently, it has been found that HA can inhibit the proliferation
and induce apoptosis of various cancer cells, including osteosarcoma,
breast cancer, gastric cancer, and colon, and liver cancer cells, but this
biomaterial does not inhibit the proliferation of normal cells (Han
et al., 2014; Zhao et al., 2018; Wu H. et al., 2019). Qing et al. Using
transmission electron microscopy to observe the ultrastructural
changes of the 2 cells showed that HA-NPs have a selective effect
on different cell types of cells: supporting the proliferation of normal
osteocyte cells while causing the apoptosis of osteosarcoma cells (Qing
et al., 2012). It has been shown that chitosan plays a tumor-suppressor
role by inhibiting glycolysis and reducing glucose uptake and ATP
levels in cells, but chitosan has no such effect on normal cells.
Moreover, the tumor cell surface has more negative charge than
the normal cell surface, and the chitosan is positively charged, thus
inhibiting tumor growth and metastasis (Ghezini et al., 2008). Wang
et al. used selenium-doped hydroxyapatite nanoparticles (Se-HANs),
which could potentially fill the bone defect generated from bone tumor
removal while killing residual tumor cells, as an example to study the
mechanism by which selenium released from the lattice of Se-HANs
induces apoptosis of bone cancer cells in vitro and inhibits the growth
of bone tumors in vivo, finding that Se-HANs induced apoptosis of
tumor cells by an inherent caspase-dependent apoptosis pathway
synergistically orchestrated with the generation of reactive oxygen
species (Wang et al., 2016). Lu et al. reported a polydopamine (PDA)-
coated composite scaffold consisting of doxorubicin (DOX)-loaded
lamellar hydroxyapatite (LHAp) and poly (lactic-co-glycolic acid)
(PLGA) in an attempt to reach dual functions of tumor inhibition
and bone repair (Lu et al., 2021). Hess et al. combined a calcium
phosphate microsphere with a matrix scaffold and prepared three

calcium phosphate/calcium alginate beads as drug carriers by ion gel
droplet extrusion method, and combined it into the scaffold matrix by
cryogen method, which successfully released cisplatin and
doxorubicin in experiments and showed a significant killing effect
on osteosarcoma MG-63 cells (Hess et al., 2017).

7 Shortcomings and limitations of
synthetic biodegradable polymer
materials

Although the artificial synthesis of biodegradable polymer materials
has great potential in bone defect repair, some deficiencies and limitations
still need to be discussed. Some synthetic polymers are hydrophobic
materials, and their surface infiltration is not ideal, affecting the adhesion,
proliferation, and differentiation of cells, and then affecting the
performance of the material and the repair of bone tissue. While the
degradation rate of some materials does not match the speed of bone
growth; the degradation product of some polyester materials is acidic and
not conducive to new bone regeneration. For example, the degradation of
PLA does not depend on enzymes, but through the hydrolysis of the ester
bonds. For polylactic acid, the lack of hydrophilic groups in its structure
makes the surface of the material hydrophobic. Low hydrophilicity is not
conducive to cell adhesion, proliferation, and differentiation. In addition,
PLA could produce acidic degradation products like lactic acid. The
accumulation of lactic acid cannot bemetabolized within a short time and
resulting in a pH as low as 3.0 within 4 weeks, this may also dissolve some
bone components as well (Liu et al., 2013; Han et al., 2020; Li et al., 2022).
The earlier used PCL scaffolds did not provide optimal mechanical
properties and biocompatibility, thus attempting to mix PCL with
natural or synthetic polymers or ceramics. For example, combining
calcium phosphate-based ceramics, bioactive glasses, and polymers
into the PCL can improve the biomaterials with better mechanical
properties, controllable degradation rates, and enhanced biological
activity (Yan et al., 2019). In a word, some synthetic degradable
polymer materials may have unsatisfied mechanical properties and
biocompatibility and even affect osteogenesis. These problems need to
be paid attention to and properly solved.

8 Summary

In recent years, biological materials carrying drugs or biological
materials itself has the characteristics of anti-tumor effect have become
a new direction, many scholars of malignant bone tumor resection of
biological materials after thorough study, but there is not fully meet
the requirements of bone repair materials, with bone defect repair and
anti-tumor multifunctional materials still have a long distance from
clinical trials. With the deepening of the research on the mechanism of
osteogenesis, the continuous development of biomaterials, and the
progress of material science and technology, it is expected to develop
the ideal materials that meet the requirements of human bone repair
(He et al., 2018). As a bone repair material, the core design idea is that,
by inserting a stent in the damaged bone tissue, this stent can maintain
good mechanical properties for a long period of time to support the
repair of the defective bone tissue, and can be naturally degraded and
replaced by the new bone tissue. The ultimate goal of the bone tissue
engineering scaffold is to make an effective repair of the bone tissue, so
cytocompatibility and bone inducibility are problems that cannot be

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Yu et al. 10.3389/fbioe.2023.1096525

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1096525


ignored. A synthetic polymer as a scaffold matrix material, on the one
hand, we should give full play to its own biocompatibility and
biodegradability, and other excellent properties; on the other hand,
it should also make up for the shortcomings of unsatisfactory cell
compatibility due to their own hydrophobicity. How to better use
synthetic polymer materials to simulate the extracellular matrix
structure to promote the repair of bone tissue, and the minimum
of its negative impact on the human body after implantation are still
the problems that scholars need to further study and solve in the
future. Different materials have certain advantages and disadvantages,
so it is necessary to make optimal choices combined with material
characteristics in clinical application. As more and more new
biomaterials-related basic and clinical research are developed, the
problem of postoperative bone defects and tumor recurrence in bone
tumor patients will be solved gradually.
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