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Bone remodeling is regulated by the interaction between different cells and
tissues across many spatial and temporal scales. Notably, in silico models are
regarded as powerful tools to further understand the signaling pathways that
regulate this intricate spatial cellular interplay. To this end, we have established a
3D multiscale micro-multiphysics agent-based (micro-MPA) in silico model of
trabecular bone remodeling using longitudinal in vivo data from the sixth caudal
vertebra (CV6) of PolgA(D257A/D257A) mice, a mouse model of premature aging. Our
in silico model includes a variety of cells as single agents and receptor-ligand
kinetics, mechanomics, diffusion and decay of cytokines which regulate the cells’
behavior. We highlighted its capabilities by simulating trabecular bone remodeling
in the CV6 of five mice over 4 weeks and we evaluated the static and dynamic
morphometry of the trabecular bonemicroarchitecture. Based on the progression
of the average trabecular bone volume fraction (BV/TV), we identified a
configuration of the model parameters to simulate homeostatic trabecular
bone remodeling, here named basal. Crucially, we also produced anabolic,
anti-anabolic, catabolic and anti-catabolic responses with an increase or
decrease by one standard deviation in the levels of osteoprotegerin (OPG),
receptor activator of nuclear factor kB ligand (RANKL), and sclerostin (Scl)
produced by the osteocytes. Our results showed that changes in the levels of
OPG and RANKL were positively and negatively correlated with the BV/TV values
after 4 weeks in comparison to basal levels, respectively. Conversely, changes in
Scl levels produced small fluctuations in BV/TV in comparison to the basal state.
From these results, Scl was deemed to be the main driver of equilibrium while
RANKL and OPG were shown to be involved in changes in bone volume fraction
with potential relevance for age-related bone features. Ultimately, this micro-MPA
model provides valuable insights into how cells respond to their local mechanical
environment and can help to identify critical pathways affected by degenerative
conditions and ageing.
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Introduction

With aging, bone becomes more fragile with increasing fracture
risk, leading to an increased morbidity and mortality (Kanis et al.,
2021). To better understand how aging affects bone cellular
behavior, in vivo and in silico studies have been used to analyze
the tissue and cellular properties of bone mechanobiology. It is
known that bone remodeling is regulated by the interaction between
different cells and tissues (i.e., cancellous, cortical and marrow
tissues) across many spatial and temporal scales. Hybrid
modeling has been identified as a powerful modeling technique
which combines multiscale, multiphysics, and agent-basedmodeling
to analyze in a unified way the organ, tissue, cell, and gene scales over
weeks, months or even years (Boaretti et al., 2022). Such an in silico
model can deal with the action of single cells while millions of cells
are active and interact with each other in a multiscale simulation,
making this tool ideal to explore the hierarchical processes
governing bone mechanobiology. Furthermore, by enabling fine
modelling of signaling pathways that regulate the cells’ activity,
such models can help to estimate physiological cytokine production
rates and explore their effect on spatial cellular distribution, bone
formation, and bone resorption, which is hardly feasible in vivo. Yet,
bone remodeling has not been quantitatively studied in silico across
spatial and temporal scales and using 3D in vivo data as reference.

Recent experimental studies have analyzed the effects of aging in
mice and how mechanical loading can counterbalance frailty
(Scheuren et al., 2020a; Scheuren et al., 2020b). Accelerated aging
was provoked in PolgA(D257A/D257A) mice due to systemic
mitochondrial dysfunction caused by accumulation of
mitochondrial DNA point mutations (Trifunovic et al., 2004;
Kujoth et al., 2005). The findings from these publications have
mainly focused on cortical and trabecular bone morphometric
parameters with analyses of selected gene and protein expression
on specific time points. The study of Dobson and colleagues
(Dobson et al., 2020) showed that in this PolgA(D257A/D257A)

mouse model, osteoblast density was reduced and the production
of mineralized matrix by osteoblasts was significantly impaired,
leading to reduced bone formation rates. The mechanisms which
lead to cellular alterations in bone with aging remain to be further
elucidated.

We have recently proposed an in silico multiscale micro-
multiphysics agent-based (micro-MPA) model (Boaretti et al.,
2018) adapted from the model of fracture healing in cortical
bone by Tourolle (2019). This micro-MPA model was based on
multiscale (from the organ to the protein spatial scales and from
weeks to minutes as temporal scales), multiphysics (mechanical
signal, reaction-diffusion-decay of cytokines), and agent-based
modeling (single-cell behavior). Each cell was represented as a
single agent, and signaling pathways were modeled to regulate
the cell behavior with distinct expression and bone remodeling
profiles dependent on the mechanical signal which we define as
mechanomics. Crucially, this enabled simulating the movement,
differentiation, cluster behavior, apoptosis of bone cells, their
response to the local mechanical environment in terms of
synthesis of cytokines and bone remodeling in the trabecular
region, employing the same isotropic voxel resolution of the 3D
micro-computed tomography (micro-CT) in vivo data. In this
model, osteoprotegerin (OPG), receptor activator of nuclear

factor kB ligand (RANKL), sclerostin (Scl) were cytokines that
decayed, diffused in the volume, and were produced by the cells.
Transforming growth factor beta 1 (TGF-β1) was modeled as
cytokine stored in the bone volume and it could diffuse and
decay after resorption. The signaling pathways were modeled
with receptor-ligand kinetics, with the receptors located on the
cells’ surfaces. In addition, a free ligand could bind to another
free ligand, e.g., OPG can bind to RANKL. These pathways have
been shown to be the main regulators of cell differentiation and
proliferation (Krishnan et al., 2006; Boyce and Xing, 2008; Lin et al.,
2009; Tang et al., 2009; Warren et al., 2015; Elson et al., 2022). The
osteocytes were considered the main mechanosensors of the
mechanical signal (Santos et al., 2009; Klein-Nulend et al., 2012;
Klein-Nulend et al., 2013) and they promoted bone formation or
resorption by releasing cytokines into the volume to regulate the
signaling pathways affecting eventually the osteoblasts and
osteoclasts. These cells formed and resorbed bone on the surface,
respectively. Osteocytes, osteoblasts and osteoclasts were the basis
for the regulation of bone remodeling we could simulate using in
vivo data. Indeed, a previous version of this model was used for
simulating denosumab treatment in human biopsies over 10 years,
showing the potential of micro-MPA models for designing optimal
clinical trials (Tourolle et al., 2021).

In the current study, we present an updated micro-MPA model
to simulate how bone adapts and remodels through single-cell
mechanomics in mice. We hypothesized that cells produce
cytokines to regulate the cellular actions as a response to the
local mechanical signal they perceive, e.g., osteocytes and
osteoblasts release cytokines to promote anabolic or anti-
catabolic responses under high effective strain (EFF) and
osteocytes and osteoblasts release catabolic or anti-anabolic
cytokines under low EFF. This hypothesis is implemented with
an adaptation of the bone microarchitecture through an EFF-based
sigmoidal dose-response mechanomics at the cellular level.
Furthermore, we hypothesized that osteocytes are mainly
responsible for regulating the other cells’ activity through their
single-cell mechanomics.

The aim of this study is to show that the proposed in silicomodel
can reproduce a homeostatic condition similar to the longitudinal in
vivo data, where a dynamic equilibrium between bone formation
and bone resorption maintains relatively constant bone volume
fraction (Rodan, 1998; Nakahama, 2010; Rauner et al., 2020).
Moreover, we investigated the quantitative effect of manipulating
the cytokines levels involved in the signaling pathways on the bone
morphometric parameters. For this purpose, the proposed novel
micro-MPA in silico model of bone remodeling was applied to
micro-CT in vivo data to test the effect of different production values
of RANKL, OPG, and Scl by osteocytes on the static and dynamic
bone morphometry data relatively to the homeostatic configuration.

Materials and methods

In vivo input data

In vivo data of the control group of a study analyzing the effects
of frailty and osteosarcopenia on the bone microarchitecture of
prematurely aged PolgA(D257A/D257A) mice (n = 9) were used
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(Scheuren et al., 2020a). Briefly, at an age of 35 weeks, stainless steel
pins were inserted at the sixth caudal vertebra (CV6). At week 38, a
sham (0N control) loading regime was applied three times per week
over 4 weeks. Specifically, mice were placed on the loading machine
for 5 min, without any mechanical loading. The in vivo micro-CT

images (vivaCT 40, ScancoMedical AG) were acquired and analyzed
every week at an isotropic voxel resolution of 10.5 um. The acquired
images showed a slight reduction in the normalized trabecular bone
volume fraction over the course of the experiment (2% at the end).
All mouse experiments reported in the present study were

FIGURE 1
The concept of the micro-MPA in silico model in the mouse vertebra. (A) The cells and cytokines modeled in the bone remodeling version of the
model. (B)Overview of the simulation pipeline from the input data to the end of the simulation. (C) A schematic representation of the cell receptor-ligand
kinetics modeled in silico. Here, the ligand can bind only to the targeted cell receptor with a forward rate kf and it can dissociate from the receptor with a
backward rate kr. This is an example of the modeled receptor-ligand kinetics of Lipoprotein receptor-related protein 5/6 (LRP5/6)-sclerostin for an
osteoblast, lining cell and mesenchymal stem cell. (D) A 2D slice from the trabecular region of an in silico simulation with osteocytes (black), osteoclasts
(purple), preosteoclasts (blue), osteoblasts (orange), mesenchymal stem cells (green) and hematopoietic stem cells (brown). (E) A snapshot of the initial
configuration of the simulation at t = 0. On the left, the osteoblasts (orange), osteoclasts (purple) and preosteoclasts (blue) are shown on the trabecular
bone surface, in the middle the spatial distribution of the receptor activator of nuclear factor kB (RANK) binding site occupancy on the osteoclasts and
preosteoclasts and on the right the spatial distribution of the RANK ligand (RANKL) configuration in the trabecular region. (A) created with BioRender.
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previously carried out in strict accordance with the
recommendations and regulations in the Animal Welfare
Ordinance (TSchV 455.1) of the Swiss Federal Food Safety and
Veterinary Office, and results are reported following the principles
of the ARRIVE guidelines (www.nc3rs.org.uk/arrive-guidelines).

In silico micro-multiphysics agent-based
model

In the present study, we adapted the micro-MPA model of
Tourolle et al. (2021) for the simulation of homeostatic bone
remodeling in the mouse vertebra, including the bone response
to physiological loading. A detailed mathematical description of the
model was provided by Tourolle et al. (2021). The overview of the
adapted in silico model is shown in Figure 1.

In the current implementation, the cells are modeled
individually using the agent-based paradigm, where all cells of
the same type share the same biological properties and follow the
same prescribed rules. The model implements the actions of each
cell according to the local physiological, chemical, and mechanical
environment at the cellular spatial and temporal scale. In our
implementation, the changes in the bone microarchitecture are
accumulated over the whole time of the experiment (4 weeks)
which is much longer than the single temporal step of the cells
(40 min). The model simulated bone remodeling only within the
trabecular region, while the cortical region was kept constant during
the simulation, as performed in previous studies (Schulte et al.,
2013b; Levchuk et al., 2014; Levchuk, 2015).

Modeling the cellular behavior

Osteocytes (Ot) are embedded in bone and produce RANKL,
OPG, and Scl depending on the local mechanical signal they
perceive (Santos et al., 2009; Klein-Nulend et al., 2012; Klein-
Nulend et al., 2013). Osteoblasts (Ob) produce osteoid,
unmineralized matrix, in their neighborhood towards the
surface of the bone, based on the local EFF they perceive.
Moreover, Ob may become pre-Ot when the voxel they reside
in is at least 50% full of osteoid and there is an osteocyte in the
normal direction towards the bone (Franz-Odendaal et al., 2006).
Lining cells are considered osteoblasts precursors. In addition,
Ob and lining cells also produce OPG and RANKL according to
the mechanical signal they perceive. Mesenchymal stem cells
(MSC) are present in the marrow space where they can move,
proliferate, undergo apoptosis, and can differentiate into an Ob
or a lining cell if they are close to the surface and close to an
osteoclast (Oc). MSC, lining cells, and Ob have the Lipoprotein
receptor-related protein 5/6 (LRP5/6) receptor which binds to Scl
(Li et al., 2005; Bourhis et al., 2011). If the bound receptor is
higher than a user-defined threshold value (Supplementary Table
S1), Ob differentiate into lining cell and MSC differentiate into
lining cell if they meet the condition mentioned above. MSC and
Ob have also the TGF-β1 receptor on their surface, and if that
receptor is highly bound then they can proliferate more
frequently. Pre-Ot differentiate into Ot if the voxel they reside
in is at least 50% full of mineralized matrix (Franz-Odendaal

et al., 2006). The hematopoietic stem cells (HSC) are present in
the marrow space, they can move, proliferate, undergo apoptosis
and differentiate into pre-Oc if their RANK receptors are highly
bound to RANKL (Nelson et al., 2012; Warren et al., 2015). Pre-
Oc are motile and can differentiate back into HSCs if the RANK
receptor is not highly bound. Moreover, they can differentiate
into Oc if there are at least three osteoclastic cells (pre-Oc or Oc)
in their neighborhood. Oc resorb bone towards the bone surface,
with the direction defined by the gradient of the mineral
concentration. We calibrated the original implementation of
the mineralization kinetics by Tourolle (2019) to have more
stable formation rates for simulations of bone remodeling over
4 weeks. We modeled the mineralization kinetics of the matrix in
each voxel by changing its mineral concentration to reach its
osteoid concentration. The mineralization of a single voxel
follows this equation:

mn+1 � mn + rmineral · sinh on −mn( )2[ ] · sgn on −mn( ) · dtcells−RDD

wheremn is the mineral concentration in the voxel at the iteration n,
on is the osteoid concentration in the voxel at the iteration n, rmineral

is the mineralization rate, sgn is the sign function and dtcells−RDD is
the timestep for modeling the cellular behavior and the reaction-
diffusion-decay step (RDD). With this mineralization rule, the
mineral concentration can increase over the iterations if there is
a higher concentration of osteoid than the mineral concentration in
that voxel, therefore the upper limit of the mineral concentration
with this mineralization rule is the osteoid concentration at that
voxel. However, the osteoid can increase if there are any osteoblasts
in that neighborhood that can release osteoid around themselves.
Therefore, given a voxel, if there is more osteoid than mineral, the
mineral concentration will increase and if there is more mineral than
osteoid, the mineral concentration will decrease. In this way, when
Ob release osteoid, there is a delay in bone formation because
osteoid leads to a change in the mineral concentration through
the mineralization process. In this model, if pre-Ot becomes Ot
because themineral concentration is at least 0.5, that voxel where the
cell is present is considered bone, but its mineral concentration does
not jump to 100%.

To simulate trabecular bone remodeling, we modeled TGF-β1,
RANKL-RANK-OPG, and LRP5/6-Scl signaling pathways at the
receptor-ligand level and the Ob, lining cell, Oc, pre-Oc, Ot, pre-Ot,
MSC, HSC at the cellular level.

Application of the model to simulate bone
remodeling in mouse vertebrae

The overview of the simulation model can be seen in Figure 1B.
Each voxel has a value of bone mineral density from 0 to 1,160 mg
HA/cm3 and this value is converted to grayscale values ranging from
0 to 1 with linear scaling. We considered the grayscale bone density
values from 0.5 to 1 as bone tissue. The minimum value of
0.5 corresponds to a bone density value of 580 mg HA/cm3

which is the same threshold value employed previously for the
postprocessing of the original corresponding in vivo data (Scheuren
et al., 2020a).

The mechanical signal was obtained using the micro-finite
element analysis (micro-FE). For this purpose, we assumed bone
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tissue to be an isotropic, homogenous material. The bone tissue and
marrow voxels of CV6 vertebrae were converted to Young’s
modulus values (14.8 GPa and 2 MPa, respectively) and were
assigned a Poisson’s ratio of 0.3 as performed previously by
Webster et al. (2008). At the proximal and distal ends of the
micro-FE model, two cylindrical discs were added to simulate the
presence of the intervertebral discs (IVD) (Webster et al., 2008). The
nodes at the proximal end of the micro-FE mesh were set to have
0 displacements in all directions, while a displacement of 1% along
the longitudinal axis of the micro-FE model was set for the nodes at
the distal end. From this analysis, the strain energy density (SED, in
MPa) was computed, from which EFF was derived (Pistoia et al.,
2002) after rescaling to match the forces applied in vivo, which
amounts to 4 N for physiological loading in the sham-loaded group
(Christen et al., 2012). EFF was used for defining the mechanical
signal of the cells (Pistoia et al., 2002; Tourolle et al., 2021) in the
single-cell mechanomics: each cell produced an amount of cytokines
or unmineralized tissue or resorbed (un)mineralised tissue,
following a specific mechanomics curve with a sigmoidal shape
to represent the anabolic (osteoid), anti-catabolic (OPG), catabolic
(RANKL, osteoid, mineral), anti-anabolic (Scl) response to the
mechanical signal (Supplementary Material S1.1). For each
cytokine-cell production, the Hill curve was defined for both
marrow and bone cells with a specific maximum value, Hill
coefficient and mechthres which is the value of the mechanical
signal corresponding to half of the maximum value produced by
a cell. These values were defined specimen-specific in order to take
into account the variability of the mechanical environment between
different animals.

The definition of the Hill parameters was calibrated to have a
higher production of cytokines in regions where the local
mechanical signal, Gaussian-dilated (sigma 2.5, support 7.5) EFF
(ε), is relatively higher or lower for anabolic, anti-catabolic cytokines
or catabolic, anti-anabolic cytokines, respectively. The mechthres for
bone cells is defined for every vertebra as follows: mechbonethres �
0.95*median(ε | bone) where ε|bone is the local mechanical signal in
the trabecular region of the given vertebra. The mechanomics for the
marrow cells that can release products into the volume is defined
using this mechanostat threshold: mechmarrow

thres �
0.45*median(ε|marrow) where ε|marrow is the local mechanical
signal in the trabecular region of the marrow of the given
vertebra. In particular, ε|marrow is the Gaussian dilated EFF in the
trabecular marrow voxels and is used as input of the mechanomics
function for the osteoclasts, determining howmuch bone is resorbed
based on the signal. Analogously, ε|marrow is used as input of the
mechanomics function for the osteoblasts and lining cells,
determining how much cytokines and osteoid are added to the
specific voxel. This sample-based definition was adopted to take into
account the intrinsic variability in the strain distribution across
different samples due to different trabecular bone microarchitecture.
The definitions of mechbonethres and mechmarrow

thres were empirically
estimated to discriminate cytokine production in regions of high
and low strain relative to the spatial strain distribution of the given
sample. Therefore, they were not derived from an estimation of a
general mechanostat valid for all samples. We used the mechanical
strain to drive the response through regulation of the RANKL-
RANK-OPG axis and Scl-LRP5/6 axes which regulate the cell
differentiation of the cells. Hence, the formation and resorption

responses depend on the strain distribution meaning that in highly
loaded regions, formation will be higher than resorption and vice
versa.

The model was implemented according to the following
multiscale temporal discretization. The cellular behavior
described above was simulated with a 40-min time step (dtcells-
RDD). Following the simulations obtained by Tourolle (2019), this
value turned out to be sufficiently similar to the values observed
experimentally about motility and activity of the bone cells. The
proteins and other present chemical substances in the simulation
were simulated to React, Diffuse, Decay (RDD; Figure 1C) with the
same time step for the cells dtcells-RDD, subdivided into 10 equal
temporal substeps of 4 min through Strang splitting (Strang, 1968).

Compared to the reference model, a new parallelized approach
has been used where the chemical substances and the cells have been
subdivided into subdomains. The model computes the spatio-
temporal evolution of the cells and signaling pathways and RDD
with the timestep dtcells-RDD in parallel across the subdomains. The
micro-FE analysis of the vertebra is computed for updating the
mechanical signal perceived by the cells with a predefined update
interval of 8 h (dtmicro-FE), which is higher than dtcells-RDD to
simulate a memory mechanism in the perception of the new
mechanical signal during the 12 iterations of the cellular behavior
until the subsequent micro-FE step.

Model generation

The trabecular region was automatically obtained for each
sample as described previously (Marques et al., 2023) comprising
a lattice of up to 200 × 200 × 300 voxels of the same resolution of in
vivo data, hence 12 million voxels. In a first step, the greatest
connected component (GCC) of the vertebra was defined. The
bone phase of the trabecular region (bone mineral density greater
than 580 mg HA/cm3), was then used for setting the initial mineral
and osteoid concentrations to 1. The marrow of the trabecular
region was seeded randomly with MSCs and HSCs, with a density of
1.25 x 107 cells/mL for each of these 2 cell types. Ob and Oc were
seeded randomly occupying a portion of the bone surface. The
binding sites of the cells were modified to make the multicellular
system closer to a real state, where the cells’ receptors are partially or
fully bound. Ot were seeded using an exponential distribution to
have more osteocytes embedded deeper in bone rather than close to
the bone surface. The seeding of all cells in a cross-sectional slice can
be seen in Figure 1D. The cytokines were calibrated after running
simulations and checking whether the cells would reside and be
active in corresponding biochemical regions, e.g., Oc resorb bone
and lining cells are present mainly in low strain regions whereas Ob
release osteoid primarily in high strain regions. The summary of the
initial concentrations is presented in Supplementary Table S2.

The model started running without changes to the bone
microarchitecture for 48 iterations (corresponds to 2 days), see
Figure 1B, to enable a more adequate spatial arrangement of the
cells and cytokines. This pre-processing step is needed because the
micro-CT image used as input contains only information regarding
the bone microarchitecture. The final configuration after this
initialization is illustrated in Figure 1E, where for simplicity
reasons only the surface cells, the RANK binding site occupancy
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for osteoclasts and preosteoclasts and the spatial RANKL
distribution in the trabecular region are shown. The model then
continued running with changes to bone microarchitecture for
5 days to enter the active bone remodeling phase and to reduce
the dependency of the initial data, where the distributions of the
cells, proteins and receptors were affected by uncertainty or absence
of such input data. The result of this phase was considered as the
initial state for the homeostatic as well as for the simulations where
the maximum amount of OPG, RANKL and Scl produced by
osteocytes are changed.

Design of simulations

In this study, we simulated homeostatic remodeling and we
performed a one-variable-at-a-time sensitivity analysis of protein
expression, where we tested the effects of different production values
of RANKL, OPG, and Scl by osteocytes and computed the
corresponding static and dynamic bone morphometry data. For
each condition different from homeostatic, one parameter was
increased or decreased at a single time-point and all the other
parameters were kept constant. This approach was used
regardless of the simulated animal. Each condition was simulated
using in vivo data of five CV6 vertebrae. The output of the
homeostatic condition was compared against the in vivo data and
against the simulated conditions of higher and lower production
values of OPG, RANKL and Scl separately.

First, homeostatic remodeling was simulated with a set of
41 parameters that were kept constant regardless of the simulated
animal (Supplementary Table S1). The parameters were optimized
for a balanced spatiotemporal evolution of the cytokines, cell
differentiation, bone formation and bone resorption. They range
from the frequency of random movement of the cells, thresholds
regulating the differentiation of the cells, binding site numbers,
osteoblast and osteoclast polarization factors, osteoblast and
osteoclast cluster size, proliferation and apoptosis rates of cells
(especially osteoblasts, MSC, HSC), mechanostat coefficients, the
maximum single-cell production rate of cytokines, diffusion and
decay coefficients for the cytokines, and mineralization rate. The
motility parameters are presented as probability values of movement
of one voxel per dtcells-RDD in a range of 0–1. The Ob and Oc
polarization coefficients are values that represent the tendency of
these cells to add osteoid or resorb bone, respectively, towards the
gradient of the mineral concentration from their position (Tourolle,
2019). The competitive reaction RANKL-RANK-OPG requires the
definition of the forward and backward binding coefficients for the
RANKL-RANK and RANKL-OPG complexes, whereas the simple
receptor-ligand kinetics LRP5/6-Scl requires the definition of the
forward and backward binding coefficients for the complex LRP5/
6-Scl.

To achieve anabolic, anti-anabolic, catabolic and anti-catabolic
responses, the variations of the levels of OPG, RANKL and Scl were
tested separately by changing the maximum production of OPG,
RANKL and Scl by a single Ot (βOPGOt ; βRANKL

Ot ; βSclOt ) in the
simulations using the values reported in Supplementary Tables
S3–5. Starting from the baseline value reported in Supplementary
Table S1, these higher and lower values were obtained by adding or
subtracting the rescaled standard deviation of the serum

concentrations levels reported by Shahnazari and colleagues
(Shahnazari et al., 2012).

Morphometry and visualization

Static morphometric parameters analyzed were bone volume
fraction (BV/TV), specific bone surface (BS/BV), bone surface
density (BS/TV), trabecular thickness (Tb.Th), trabecular spacing
(Tb.Sp), and trabecular number (Tb.N). We computed them for
each day of the simulation. Dynamic parameters were mineral
apposition rate (MAR), mineral resorption rate (MRR), bone
formation rate (BFR), bone resorption rate (BRR), mineralizing
surface (MS), and eroded surface (ES). They were computed by
overlaying the images with a time interval of 2 weeks as analyzed in
recent publications (Scheuren et al., 2020a; b), using the image
processing language (XIPL (Hildebrand et al., 1999)). Static
parameters between different datasets were compared as percent
changes by normalizing the values to the initial value of the
morphological parameter of interest while dynamic parameters
were compared as absolute values.

The trabecular 3D bone microarchitecture was visualized using
ParaView (Kitware, Version 5.10; Clifton Park, NY). The formed,
quiescent and resorbed (FQR) regions in the in vivo images were
obtained after registration of the acquired images and their
overlap. The FQR regions in the in silico images were directly
obtained by overlapping the images at different time points.

Cluster analysis

Cluster analysis employed the data from the simulation of
homeostatic bone remodeling after the selection of a
representative animal from the five mice. We determined the
formation, quiescence and resorption events in the whole
trabecular region by overlapping the last time point of the
simulation (t = 28 days) against the first time point (t = 0 days).
A label was assigned to each individual osteocyte based on the closest
remodeling event, namely, “Formation”, “Resorption” or
“Quiescence”. The label “Multiple” was assigned when multiple
events had the same distance to the same osteocyte.

In this analysis, effective strain calculated at the first time point
was used to classify the levels of mechanical signal where the
osteocytes reside. The voxels with mechanical signal higher than
the 75th percentile were labeled as “high”, the voxels with
mechanical signal lower than the 25th percentile were labeled as
“low” and the voxels in between were labeled as “medium”. Then, a
representative cross-sectional section with thickness of five voxels
(52.5 μm) was extracted from the trabecular bone region. The
section was selected to show a sufficient amount of bone and
spatial variability in effective strain. From this region, the
osteocytes, the protein levels, and the mechanical signal in the
osteocytes’ positions were used for the subsequent steps.

The cluster analysis adopted in this study employed the protein
levels of RANKL, OPG and Scl at the first time point of the
simulation. The protein levels were obtained from the 3D
positions where the osteocytes reside, similarly to the mechanical
signal. The k-means clustering was set with a fixed seed to allow
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reproducibility; it was applied to the data (Sculley, 2010), with a
number of clusters ranging from 1 to 10, and a curve with 10 inertia
values was obtained. The knee of such curve was used for assigning
the clusters to the osteocytes available in the section (Satopää et al.,
2011). Cluster labels were assigned to corresponding osteocytes such
that each osteocyte has one label for cluster, one for remodeling, and
one for mechanical signal.

Using the labels previously assigned for each osteocyte to
describe the closest remodeling event, the probability of the
remodeling events was computed including the osteocyte
distributions within each cluster. Similarly, the probability of
high, medium, and low levels of the mechanical signal was
computed.

Software platform

A hybrid C++/Python code (Python Language Reference,
Version 3.8) that expanded from the original implementation of
the model was used to perform the simulations (Tourolle, 2019). The
implementation is made available through Python bindings with
pybind11 (Jakob et al., 2017). Taking advantage of the other
packages used for image processing, analysis and parallelization,
we used Python as the front-end. In particular, we used the mpi4py
package for managing the MPI parallel distributed computing
interface in Python (Dalcin et al., 2011). We employed
distributed and shared parallel computing paradigms (OpenMP
and MPI) due to the high number of variables used in the
simulations. The subdivision in subdomains was carried out to
minimize the volume of data from one subdomain to the other
(Supplementary material S1.2). We used the MPI parallel version of
an algebraic multigrid solver, AMGCL, to solve the diffusion
problem of the cytokines into the volume (Demidov, 2019). The
Swiss National Supercomputing Center (CSCS, Lugano,
Switzerland) computational platform (Piz Daint, a Cray XC40/
50 model) was used for running the simulations. Each node has
36 cores which can be scheduled to work in a customized way
regarding memory and parallelization of tasks. The parallel solver
for the spatio-temporal step of the cells and cytokines required eight
nodes to have enough memory and sufficient speedup. For these
resources, we use four MPI tasks for each node and nine OpenMP
threads. Additionally, the micro-FE analysis of the vertebra models
were solved using two nodes using ParOsol, a parallel solver
designed for micro-FE analysis based on micro-CT images (Flaig
and Arbenz, 2011). The number of nodes was chosen to have a good
trade-off between computational time and speed-up of the code.
These two solvers were combined to obtain a suitable environment
for solving the interconnected mechanical environment and the
tissue, cellular and signaling pathways with a resolution of 10.5 um.

Statistical analysis

Statistical analysis was performed in R (R Core Team (2022), R
Foundation for Statistical Computing, Vienna, Austria). The R
lmerTEST package (Kuznetsova et al., 2017) was used to perform
the linear mixed model. The linear mixed-effects models account for
“intra-correlations” between the simulations and in vivo repeated

measurements. The model is described in two parts: fixed effects and
random effects. The random effects part accounts for the intra-
correlations of repeated measures in vivo samples and in silico
simulations or the high/medium/low production level of OPG,
RANKL and Scl. The fixed-effects part accounts for the impact of
various covariates over time on outcomes on an average level of the
dynamic and static bone morphometric parameters. Furthermore,
the likelihood ratio test was performed to assess the goodness of fit of
three nested models based on the ratio of their likelihoods. All the
nested model equations are in the Supplementary Section
(Supplementary Material S1.3). The significance level between the
groups (in vivo data/in silico simulation or high/low, high/basal,
basal/low) was calculated using pairwise comparisons with Tukey’s
post hoc correction for multiple comparisons. The significance level
for the interaction between time and group was calculated using
repeated measures ANOVAwith the linear-mixed model. The mean
and the standard error of the mean were plotted and p-values
smaller than 0.05 were considered significant (Lenth, 2022).

Results

To study trabecular bone remodeling, we ran our micro-MPA
model on five CV6 vertebrae from mice obtained using micro-CT
imaging. Using high-performance computing, the computational
capability and the efficiency of the computational code were
increased, allowing the simulation of thousands of cells and RDD
of proteins in a complete trabecular volume. A simulation of 4 weeks
took usually 3–6 h on a supercomputer. Longer durations resulted
from bigger trabecular volumes (TV) or when the finite-element
analysis required more iterations for converging to a numerical
solution. A single cell and RDD step took usually up to 10 seconds,
whereas solving a single micro-FE analysis took less than a minute.
Our in silicomicro-MPAmodel simulated the presence of bone cells
and their interaction with the local mechanical environment, the
interaction between them and how osteoblasts and osteoclasts add
and resorb bone, employing the same isotropic voxel resolution of
the 3D micro-CT image. First, we report the results of homeostatic
remodeling compared to the in vivo data. Then, to demonstrate that
the osteocytes can regulate the other cells’ activity, we report the
results obtained after the individual manipulation of the maximum
production levels of OPG, RANKL and Scl by the osteocytes. The
significance achieved for each statistical test is reported in the
Supplementary Tables S6–S9.

Homeostatic remodeling

The simulations were compared to the in vivo data of sham
loading animals to investigate to which extent single-cell
mechanomics of the mechanical signal can simulate homeostasis.
Figure 2 shows the in vivo and the in silico data of homeostatic bone
remodeling. In Figure 2A, the individual normalized trabecular bone
volume fraction (Norm. BV/TV) is shown for the complete original
dataset, illustrating high variability within the group and for each
animal over time. Conversely, the in silico data of Norm. BV/TV
were more stable after the initial remodeling phase. The values of ε
are shown in Figure 2B with regions of high and low mechanical
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signal perceived by the osteocytes. In vivo data shows that bone
formation and bone resorption occur throughout the bone
microarchitecture, whereas in the in silico results only bone
formation occurs more widely in the trabecular region, see
Figure 2C. Indeed, bone resorption is more localized at the top
of the trabecular region where there are more regions of medium to
low mechanical signal compared to the bottom of the trabecular
compartment (Figure 2B). In this regard, to emulate the loading
condition induced in vivo, IVD were added to the in silicomodel and
the simulated compressive force was applied to the proximal IVD
while fixing the distal IVD. This setting enabled computing a
realistic estimation of the mechanical signal (Webster et al.,
2008), based on EFF, along the entire trabecular
microarchitecture that could be leveraged in the micro-MPA to
drive remodeling responses accordingly. Moreover, from visual
inspection, bone formation and bone resorption can alternate
with each other in the same local region over time in vivo,
whereas they showed little spatial turnover in silico. The static
trabecular bone parameters are shown in Figure 2D. BV/TV was
not significantly different in silico compared to the in vivo data on
average while it showed significant changes when the interaction

with time is considered (n.s. between groups and p < 0.01 for the
interaction time-group). Tb.Th changed over time in a similar way
between the simulated data and the in vivo data and these two
groups had a similar average (n.s. between groups and for the
interaction time-group). While Tb.Sp and Tb.N remained
relatively constant over time in vivo, in silico we observed a
significant decrease and an increase in Tb.Sp and Tb.N,
respectively (p < 0.05 and p < 0.001 between groups, respectively,
and p < 0.0001 for the interaction time-group). Additionally, we also
observed an increase in BS/BV and BS/TV in silico but in vivo these
values remained closer to their initial value (p < 0.01 and p <
0.05 between groups, respectively, and p < 0.0001 for the interaction
time-group). MAR obtained from the simulations was significantly
lower than the in vivo values (p < 0.01 between groups) and MRR
was much higher in silico compared to the in vivo data (p <
0.001 between groups); the values of MAR and MRR developed
differently between the in silico and the in vivo groups (p < 0.001 and
p < 0.05 for the interaction time-group, respectively). The simulation
results captured the BFR average value over time (n.s. between
groups) but its temporal evolution was significantly different
compared to the in vivo data (p < 0.01 for the interaction time-

FIGURE 2
The in vivo data and the comparison against the in silicomodeling of homeostasis. (A) The normalized bone volume fraction (Norm. BV/TV) for the
complete group of mice in vivo (left, n = 10) and for the group of mice analyzed in silico (right, n = 5). (B)Mechanical signal in the trabecular region for the
representativemouse (number 5). (C) Bone formation (orange), quiescence (gray) and resorption (purple) events images over time in vivo and in silico. (D)
Static and dynamic bonemorphometry values for the in vivo and in silico groups. In these plots, only the same selection ofmice was plotted for both
the in vivo and in silico data (n = 5). (#p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 for the interaction time*group determined by two-way
ANOVA).
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group). BRR had similar values in vivo and in silico (n.s. between
groups) with a similar trend over time (n.s. for the interaction time-
group). Conversely, MS and ES were lower in the simulations
compared to the in vivo data (p < 0.0001 between groups). MS
presented a different temporal progression (p < 0.05 for the
interaction time-group) while ES did not show a significantly
different temporal evolution (n.s. for the interaction time-group).

Single-cell mechanomics cluster analysis

In total, 3,571 Ot were analyzed from one trabecular cross-
section of a mouse caudal vertebra, where Figures 3A–C shows Ot
and their associated protein levels of RANKL, Scl and OPG
embedded within the local mechanical environment of trabecular
bone, respectively. From these sections, higher values of RANKL and
Scl were observed in regions with lower EFF whereas higher values of
OPG were found in regions of higher EFF. The frequency of the
high, medium, and low mechanical signal associated with Ot is
shown in Figure 3D. The total probability of labeling high, medium,
or low mechanical signal in Cluster one was higher compared to
Cluster 2 and 3 due to the high number of Ot in Cluster 1. In Cluster
1, the highest probability of highmechanical signal within the cluster
was detected, while the highest probability of low mechanical signal

within the cluster was detected in Cluster 2. The frequency of the
closest bone remodeling events to Ot is shown in Figure 3E. Similar
to Figure 3D, the probability of closest bone remodeling in Cluster
one was higher compared to Clusters two and three due to the high
number of Ot in Cluster 1. The highest probability of bone
formation, bone resorption and bone quiescence was observed in
Cluster 1. Intermediate and lowest probabilities of bone formation
and resorption in Cluster three were obtained, respectively.
Conversely, intermediate and lowest probabilities of bone
resorption and formation were obtained in Cluster 2, respectively.

Using the in silico tools, we obtained a trabecular bone section
where bone remodeling events can be shown along with Ot present
in the first time point, see Figure 3F, color-labeled with the cluster
number. SomeOt were present in resorbed bone, therefore in the last
time point of the simulation they were no longer present. On the
other hand, bone resorption was observed to remove some
connections in the trabecular microarchitecture whereas bone
formation tended to deposit bone in layers. The clustering
procedure classified Ot based on the protein levels but not
relative to their positions. Therefore, Ot of the same cluster may
be found in two or more different regions in the section. For
example, Ot in Cluster 3 were found in eight different locations.
Non-etheless, the majority of Ot were classified as a “connected”
group.

FIGURE 3
Cross-section of trabecular bone with osteocytes and their protein levels, mechanical environment and bone remodeling from the simulation of
homeostatic bone remodeling using single-cell mechanomics. (A) (B), and (C) show trabecular bone colored with the mechanical signal (EFF = effective
strain) and osteocytes (as dots, n = 748) with Receptor activator of nuclear factor κβ ligand, sclerostin (Scl) and osteoprotegerin (OPG) levels, respectively.
RANKL, Scl andOPG are shown in shades of reds, greens and blues, respectively. (D) Absolute frequency of levels of mechanical signal in the section
divided per cluster. Yellow = high label, gray =medium label, light blue = low label. (E) Absolute frequency of closest bone remodeling events (Formation,
Quiescence, Resorption or Multiple if more than an event is closest) to the osteocytes in the section divided per cluster. (F) K-means clustering of
osteocytes and bone remodeling in the cross-section.
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Sensitivity analysis of protein expression

First, the variation of OPG levels produced by the osteocytes led
to a change in bone remodeling activity from the cells, see Figure 4.
The main effect of the spatial characterization of the remodeling
regions was a higher or lower catabolic activity in the distal end of
the CV6 when OPG was reduced or increased respectively, see
Figure 4A. This cell activity was reflected in the Norm. BV/TV with
lower values when OPG was lower and higher values when OPGwas
higher (p < 0.01 for the group comparison high OPG-basal OPG,
basal OPG-low OPG and p < 0.0001 for the interaction time-group),
see Figure 4B. Norm. Tb.Th. showed no significant difference for the
interaction time-group, however the values computed with lower
OPG were significantly lower than the values using high and basal
OPG levels (p < 0.05 for the group comparison high OPG-low OPG
and basal OPG-low OPG). Norm. BS/BV showed an inverse
relationship with the OPG levels (p < 0.01 and p < 0.05 for the
group comparison high OPG-basal OPG and basal OPG-low OPG,
respectively). In addition, Norm. BS/BV showed different curves
over time (p < 0.05 for the interaction time-group). Norm. BS/TV,
Norm. Tb.Sp and Norm. Tb.N were not affected by the changes in
OPG levels (n.s. between groups and for the interaction time-group).
BFR was not significantly affected by the variations in OPG with a

similar slightly decreasing trend over time among the three levels.
The BRR and ES showed a similar variability of Norm. BS/BV, with
lower values when OPG was higher and higher values when OPG
was lower (p < 0.01 for the group comparison high OPG-low OPG
and p < 0.05 for the other group comparisons). The significance of
these changes was observed for both BRR and ES over time between
groups data (p < 0.05 for the interaction time-group). MS showed
significantly different values between groups (p < 0.05), however
only the comparisons of high OPG-basal OPG and basal OPG-low
OPG showed significant differences between the groups (p <
0.01 and p < 0.05, respectively). MAR and MRR did not show
differences among the groups when the OPG production level was
changed in the simulations. These results suggest that OPG
produced by the osteocytes can inhibit the osteoclasts’
recruitment and the consequent amount of resorption by the
available osteoclasts. In addition, the number of osteoclasts also
influenced the number of active osteoblasts, as shown by the
variability of the MS. The net effect of these changes has an
impact on the static parameters, primarily on Norm. BV/TV
where the homeostatic balance is lost with alterations of the OPG
levels.

Second, the variation of RANKL levels produced by the
osteocytes led to a different bone remodeling activity from the

FIGURE 4
In silico results of variations of themaximum single cell production level of osteoprotegerin (OPG) by osteocytes. (A) Biweekly FQR regions of results
obtained with higher and lower OPG productions levels for the representative mouse (number 5). Bone formation in orange, quiescence in gray, and
resorption in purple. (B) Static and dynamic bonemorphometry parameters of the results of the simulations of the same group ofmice (n= 5) under three
different production levels of OPG, starting from the same initial condition of the basal level. High = higher production level of OPG, Basal = basal
production level of OPG as in the homeostatic configuration, low = lower production level of OPG. (#p < 0.05, ##p < 0.01, ###p < 0.001, ####p <
0.0001 for the interaction time*group determined by two-way ANOVA).
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osteoblasts and osteoclasts, see Figure 5. Similar to the variations
observed for OPG, we observed primarily a lower or higher catabolic
activity when RANKL in the distal end of the CV6 was reduced or
increased respectively, see Figure 5A. This cell activity was reflected
in the Norm. BV/TV, Norm. Tb.Th. with lower values when RANKL
was higher and higher values when RANKL was lower (p < 0.001 for
the group comparison high RANKL-low RANKL, p < 0.01 and p <
0.05 for the group comparison high RANKL-basal RANKL
respectively, p < 0.01 and n. s. for the group comparison basal
RANKL-low RANKL respectively, p < 0.0001 for the interaction
time-group), see Figure 5B. Norm. BS/TV did not respond
differently to higher or lower RANKL values over time and the
average values over time were not statistically significantly different
(n.s. between groups and for the interaction time-group). Norm. BS/
BV, Norm. Tb.N and BRR and ES were lower when RANKL was
lower and they were higher when RANKL was higher (p <
0.05 between groups, for all possible group comparisons and for
the interaction time-group; detailed significances in Supplementary
Table S8). Norm. Tb.Sp was not affected by the changes in RANKL
over time and its average value was not affected (n.s. between groups
and for the interaction time-group). The changes in RANKL had an
impact on BFR, with higher or lower values when RANKL was
higher or lower, respectively (p < 0.01 between groups and for the

interaction time-group). The only comparison which did not show a
significant difference in BFR was between high and basal levels of
RANKL. BRR was also affected by the changes in RANKL in a
similar way (p < 0.001 for the group comparison high RANKL-low
RANKL and basal RANKL-low RANKL, p < 0.05 for the group
comparison high RANKL-basal RANKL, and p < 0.001 for the
interaction time-group). MAR and MRR did not show differences
among the groups with changing RANKL production levels. These
results suggest that RANKL promoted the osteoclasts differentiation
by the changes of ES which in turn led to changes in resorption. The
changes in the Ob recruitment are reflected in the extent of the
formed surface by the Ob. The change in the formed surface had a
cumulative effect on different values of BFR. The net effect of these
changes had an impact on the static parameters, with the parameters
starting to differ from the basal condition earlier compared to OPG,
thus augmenting the separation from the homeostatic condition.

Finally, the variation of Scl levels produced by the osteocytes led
to a different bone remodeling activity from the osteoblasts and
osteoclasts compared to what was observed for the variations of
RANKL and OPG before, see Figure 6. In the proximal end of the
CV6 we observed primarily higher or lower anabolic activity of the
osteoblasts when Scl was reduced or increased respectively, see
Figure 6A. Therefore, bone formation was affected, and a similar

FIGURE 5
In silico results of variations of the maximum single cell production level of receptor activator of nuclear factor kB ligand (RANKL) by osteocytes. (A)
Biweekly FQR regions of results obtained with higher and lower RANKL productions levels for the representative mouse (number 5). Bone formation in
orange, quiescence in gray, and resorption in purple. (B) Static and dynamic bone morphometry parameters of the results of the simulations of the same
group of mice (n = 5) under three different production levels of RANKL, starting from the same initial condition of the basal level. High = higher
production level of RANKL, Basal = basal production level of RANKL as in the homeostatic configuration, low = lower production level of RANK. (#p <
0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 for the interaction time*group determined by two-way ANOVA).
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effect was observed in the Norm. BV/TV with lower values when Scl
was higher, see Figure 6B. Indeed, the variations of Scl were
statistically significant for Norm. BV/TV when comparing high
and low Scl values as well as high and basal Scl values (p < 0.01).
However, their curves were not significantly different over time (n.s.
for the interaction time-group). The statistical findings for Norm.
BV/TV also apply to Norm. Tb.Th which slightly decreased over
time and stabilized afterwards with a high Scl level whereas it
increased when Scl was basal or lower (p < 0.05 for the group
comparisons high-low and high-basal). Conversely, Norm. BS/BV
and Norm. BS/TV increased over time. The statistical significance of
the variations for Norm BS/BV was the same as of Norm. BV/TV
(except for p < 0.05 for the group comparison high Scl-basal Scl),
whereas Norm BS/TV showed differences only in the group
comparison high-basal (p < 0.05). Interestingly, no increase in
the Norm. BV/TV was observed for lower values of Scl. The
temporal evolution of Norm. Tb.Sp and Norm. Tb.N did not
present significant differences between the variations of Scl (n.s.
for the interaction time-group); Norm. Tb.N was not affected on
average by different levels of Scl (n.s. between groups) while Norm.
Tb.Sp was only affected by higher values of Scl when compared to
basal values of Scl (p < 0.05 for the group comparison high Scl-basal

Scl). BFR showed a significant variability due to Scl (p <
0.05 between groups) but only in the comparisons high-low and
high-basal. Also, MS was affected by the variations of Scl in a more
evident way (p < 0.01 for the group comparison high Scl-basal Scl
and p < 0.05 for the other group comparisons). Scl did not change
how bone was deposited by osteoblasts and this outcome was visible
from the absence of variability in MAR with different Scl values (n.s.
between groups and for the interaction time-group). BRR, MRR and
ES did not show differences when Scl levels changed, nor its effect
was significantly visible over time (n.s. between groups and for the
interaction time-group). The changes in Scl levels had a net effect on
the Norm. BV/TV less visible compared to the changes in OPG and
RANKL levels, with a temporal separation from the homeostatic
range of values similar to the OPG case.

Discussion

The proposed in silicomicro-MPAmodel successfully simulated
trabecular bone remodeling to evaluate the static and dynamic
morphometry of the trabecular bone microarchitecture. We
demonstrated that our model can simulate a homeostatic

FIGURE 6
In silico results of variations of the maximum single cell production level of sclerostin (Scl) by osteocytes. (A) Biweekly FQR regions of results
obtained with higher and lower Scl productions levels for the representative mouse (number 5). Bone formation in orange, quiescence in gray, and
resorption in purple. (B) Static and dynamic bonemorphometry parameters of the results of the simulations of the same group ofmice (n= 5) under three
different production levels of Scl, starting from the same initial condition of the basal level. High = higher production level of Scl, Basal = basal
production level of Scl as in the homeostatic configuration, low = lower production level of Scl. (#p < 0.05, ##p < 0.01, ###p < 0.001, ####p <
0.0001 for the interaction time*group determined by two-way ANOVA).
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response similar to that observed with in vivo data. Although some
morphological aspects were not captured by the simulations, our
model showed adaptation towards a normalized trabecular bone
fraction in all samples. Furthermore, the variability observed in vivo
was also partially reflected in our simulations. Non-etheless, these
differences must be understood in the context of a novel multiscale
micro-MPAmodel of trabecular bone remodeling that demonstrates
for the first time physiological behavior of the cells, where group
averages of key static morphometric parameters (trabecular bone
volume fraction and thickness) follow in vivo data. Capturing the
static parameters with in silico models has been proven to be
challenging and the most frequent parameter to be captured was
BV/TV (Schulte et al., 2013b; Levchuk et al., 2014; Levchuk, 2015).
This parameter did not show significant differences on average
between the in silico and the in vivo values, whereas Tb.Sp and Tb.N
were different in our simulations compared to the in vivo data. Our
simulations showed a similar evolution pattern of the static bone
morphometric parameters across the samples in the second half of
the simulation, meaning that it was capable to simulate similar bone
changes for a group of samples with limited variability in the output.
The single-cell activity and the signaling pathways were additional
information modeled and they could be further tuned to capture the
spatiotemporal evolution of the bone microarchitectures. With this
model, it is possible to test hypotheses or translate findings from
other studies to improve the fidelity and the match against
experimental data, e.g., considering fluid flow inside the
lacunocanalicular network improves prediction of bone
remodeling (van Tol et al., 2020). This study might be
considered a step further in modeling the action of single cells
and the signaling pathways compared to models of bone remodeling
based on systemic ordinary differential equations (ODEs) where the
spatial information of the cells is missing (Buenzli et al., 2012;
Pastrama et al., 2018; Martin et al., 2019). With this model, it will be
possible to quantitatively investigate the mechanobiological
properties at the cellular and protein levels that are associated
with ageing in mice and in the future to use the 3R principles to
replace, reduce and refine such animal models.

Tb.N, Tb.Th and Tb.Sp could be dependent on the single-cell
movement, apposition and resorption rates by osteoblasts and
osteoclasts as well as by the mineralizing and eroded surface. The
single-cell movement was modeled with migration towards regions
of higher or lower strains for the osteoblasts and osteoclasts,
respectively. Such migration can lead to bone formation and
bone resorption patterns that can alter the morphology of the
microarchitecture and the extent of the remodeled surface to
adapt to the local perceived strains. Further, the mineral
apposition and resorption rates had to be higher to reduce the
difference between in silico and in vivo bone formation and
resorption rates. Eventually, trabecular parameters would be
affected by these changes resulting from more accentuated local
remodeling. If MAR, MRR, MS and ES were closer to the in vivo
values, the static trabecular parameters could have better followed
the corresponding in vivo values. However, this aspect should be
further inspected because, for example, the in silico model of
Levchuk and others captured Tb.N, Tb.Th and Tb.Sp despite a
significant discrepancy in dynamic parameters (Levchuk et al.,
2014), while the model of Schulte and others for ovariectomy
and loading captured some dynamic parameters and BV/TV but

not Tb.N, Tb.Th and Tb.Sp (Schulte et al., 2013b). In the model
presented, the regulation of the dynamic parameters was not trivial
because the mineralizing and eroded surfaces were not easy to
capture due to the complex interplay between the mechanical
environment, the mechanomics and the subsequent cascade in
the signaling process to regulate osteoblasts and osteoclasts
activity. The remodeled regions were rather large in silico
compared to in vivo which were more scattered throughout the
trabecular volume. Thus, the trabecular remodeling by the single
cells was less localized in silico.

Our proposed cluster analysis of the osteocytes was different
compared to previous experimental approaches, where the
osteocytes were obtained only at the end of the study (Trüssel,
2015; Paul, 2020; Scheuren, 2020). In those approaches, the
backward correlation of bone remodeling events with the final
osteocyte population can show only the final distribution of the
osteocytes. Conversely, the clustering analysis applied here allowed
the selection of a section of interest and the study of the osteocyte
population available at the beginning of the study. The clustering
analysis identified one cluster (Cluster 1) where the cells showed a
higher probability of high mechanical signal and bone formation
events. Cluster two was characterized by higher levels of RANKL
and Scl, a higher probability of low mechanical signal and higher
probability of bone resorption within the cluster. Taken together,
these findings confirmed the regulation of the pathways from tissue
to cell scales, in alignment with the current observations that high
mechanical signal is associated with lower expression of RANKL and
Scl (Robling et al., 2008; Galea et al., 2020), higher expression of
OPG (You et al., 2008) and higher bone formation (Schulte et al.,
2013a).

We demonstrated OPG inhibits excessive osteoclastic bone
resorption as it was observed previously (Kramer et al., 2010;
Cawley et al., 2020). Cawley et al. (2020) showed OPG to be
secreted by osteoblasts whereas Kramer et al. (2010) found
osteocytes to be the cells mainly producing OPG. Our analysis
highlighted osteocytes are the cells responsible for the production of
RANKL and the subsequent recruitment of osteoclasts and increase
of bone resorption, as it was shown in previous studies (Nakashima
et al., 2011; Xiong et al., 2015). In our study, osteocytes were also
identified as sources of sclerostin inhibiting the osteoblastic activity
and therefore reducing bone formation. This finding was
experimentally obtained also by Van Bezooijen et al. (2004),
where sclerostin protein was found to be expressed by osteocytes
and not by osteoclasts in cortical and trabecular bone. Further, they
also observed the inhibitory effect of sclerostin on osteoblasts,
confirming its importance for regulating bone formation
(Winkler et al., 2003; Li et al., 2008; Colucci et al., 2011).

We observed that affecting the catabolic response would also
imply a change in the anabolic activity. This aspect was evident from
the variations of RANKL and OPG which had a direct impact on the
osteoclasts’ activity and subsequently affecting the osteoblasts’
activity. Besides, the anti-anabolic response would also imply a
subsequent change in the catabolic activity, as it was seen from
the variations of Scl which inhibited osteoblasts and a consequent
slower resorption activity. The variations in the RANKL, OPG and
Scl did not lead to proportional changes in MS because of the
dynamic equilibrium the cells can reach, meaning that the levels of
cytokines can result in a non-linear response in the amount of
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mineralized surface. These findings agree with the coupling between
bone formation and bone resorption events as observed in vivo. Our
in silico model represented bone formation mostly occurring over
time in the same region where the strains were high, until the
osteoblasts de-differentiated into lining cells or became embedded
into the osteoid and differentiate into preosteocytes. On the other
hand, bone resorption started from regions where strains were low,
which also had higher RANKL, leading to more prominent
recruiting of osteoclasts. TGF-β1 is thought to be responsible for
coupling bone resorption and bone formation (Raggatt and
Partridge, 2010; Kasagi and Chen, 2013; Weivoda et al., 2016;
Durdan et al., 2022) and osteoclasts resorb bone in regions of
low strains. MSCs proliferated closer to osteoclasts due to the
presence of TGF-β1 being released upon resorption in these
regions of low strains. In addition, in such regions, sclerostin was
also produced by osteocytes to inhibit bone formation by the
osteoblasts. Therefore, the osteoblastic differentiation of such
cells was inhibited and MSCs would directly differentiate into
lining cells instead of osteoblasts in these regions of low strains.

It is not yet fully understood when the osteoclasts stop resorbing
bone (Filgueira, 2010), but it is assumed that this happens when the
mineral phase of the bone underneath is degraded to a certain extent
(Kanehisa and Heersche, 1988). Currently, this mechanism is not
reproduced directly in the in silico model. However, our model can
produce realistic osteoclast cell behavior. These cells have been
shown to alternate bone resorption and migration on the bone
surface known as pit mode (Delaisse et al., 2021). In our in silico
model, osteoclasts stopped being active, and therefore resorptive,
when they were not in a cluster or if they died by apoptosis or due to
lack of bound RANK receptors. Further, the resorption rate of
mineral and collagen by osteoclasts was considered the same.
This is the case when osteoclasts resorb bone while moving on
the bone surface known as trench mode (Delaisse et al., 2021).
Conversely, these rates are usually different when osteoclasts resorb
bone in pit mode, with solubilization of mineral being faster than the
evacuation of collagen fragments (Delaisse et al., 2021). The
modelling of these events might be an oversimplification of how
osteoclasts stop being active and it does not represent the same
frequency of interruption of bone resorption by osteoclasts.

On a different note, our model did not investigate cortical
remodeling because it was shown that its mechanical control is
different from the control in the trabecular region (Pearson and
Lieberman, 2004) and their mineralization and turnover rates are
different (Lerebours et al., 2020), hence the model could not capture
the changes in cortical bone using the same rules and parameters for
trabecular bone.

For initializing the cytokines in the model, we used values
measured from experimental studies which are closely in line
with the modeled environment. However, it is likely that the
values appropriate for the mouse vertebra at a given age might
differ from the experimental values due to site, age, loading and
phenotypic characterization of the data. This problem has been
identified for in silico models of bone mechanobiology (Checa and
Prendergast, 2009), where simple approaches were adopted to
overcome this lack of information (Perier-Metz et al., 2020;
Borgiani et al., 2021; Perier-Metz et al., 2022). This limitation
might be partially overcome by taking advantage of the
mechanical environment as it was performed by Tourolle et al.

(2021). A more synergistic study where the cytokines are
experimentally obtained from the same site on a regular basis
would help in the calibration of this micro-MPA in silico model.
In addition, the information on the cell densities is scarce and they
might change between different bones, age, sex, and physiological
conditions. Moreover, the cells might be distributed differently in
bone and in the marrow. This aspect is especially relevant for
osteocytes which are not motile in bone, meaning that their
initial distribution is essentially preserved throughout the time of
the simulation, except when they are no longer present due to cell
apoptosis or bone resorption. The initial cell densities and cytokine
distributions will have implications in the estimations of the
proliferation and cell rates as well as the single-cell activity, e.g.,
resorption and cytokine production rates. Consequently, the
amount of unknown initial conditions is very high, and it can
take some time before the simulated cells and cytokines can
reach a realistic spatio-temporal distribution, with minimal
influence of the assumed initial condition. This limitation was
addressed by the additional iterations of the model first without
changes and then with changes to the bone microarchitecture.
However, the number of iterations required for this purpose
could be even higher.

The receptor-ligand kinetics in the context of micro-MPA in
silico models is still very novel and needs further exploration.
Depending on the application, the formulations might differ to
include other aspects like trafficking and intracellular signaling
(Cilfone et al., 2015). Moreover, there might be molecular aspects
that might be lost when using this kind of equation and coefficients
might be recalibrated depending on the environment. Indeed, some
coefficients might be experimentally obtained from analysis of the
interactions betweenmonomers (Nelson et al., 2012), but their usage
might not be straightforward due to the coexistence of other
phenomena like spatial diffusion and movement of the ligands
from one receptor to the other in the proximity of the cell
surface (Erbaş et al., 2019). Furthermore, the cell response is
usually achieved when most of its surface receptors are still
unoccupied (Lodish et al., 1999). It is still difficult to estimate in
vivo the number of surface receptors and the number of occupied
receptors along with an accurate description of the receptor-ligand
kinetics, especially when competitive reactions are involved, e.g., the
RANKL-RANK-OPG axis. Hence, the receptor-ligand kinetics in
bone remodeling remains challenging but crucial. Nonetheless, it is
our belief that the sensitivity analysis of protein expression
presented can encourage more complex approaches such as
uncertainty quantification, for calibration and estimation of more
realistic model parameters (Geris and Gomez-Cabrero, 2016;
Gomez-Cabrero et al., 2016; Viceconti et al., 2019; Hamis et al.,
2021). Ultimately, we expect these could have direct benefits in the
quality of the simulation output.

Conclusion

This study showcases the use of single-cell mechanomics in a
micro-MPA in silico model of trabecular bone remodeling applied
to in vivo data. We were able to reproduce homeostatic bone
remodeling and highlight how tuning the single-cell osteocyte
production rates of OPG, RANKL and Scl further induces
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anabolic, anti-anabolic, catabolic and anti-catabolic responses
from the baseline model. Specifically, OPG and RANKL levels
altered the homeostatic remodeling around the equilibrium value
of the average trabecular bone volume fraction while Scl altered the
final trabecular bone volume fraction at equilibrium. By careful
calibration of biological parameters, we hope that this model can
shed light on bone remodeling and associated diseased states.
Micro-MPA models over several scales will be needed in the
future because only with them it will be possible to unravel
biological processes and their effects realistically. This will
advance the field of bone remodeling and our current
understanding of its mechanisms.
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Glossary

Abbreviation description

AMGCL Algebraic multigrid solver

ANOVA Analysis of variance

BFR Bone formation rate

BRR Bone resorption rate

BS/BV Specific bone surface

BS/TV Bone surface density

BV/TV Trabecular bone volume fraction

CSCS Swiss National Supercomputing Center

CV6 Sixth caudal vertebra

dt Timestep

EFF Effective strain

ES Eroded surface

FQR Formed Quiescent and Resorbed

GCC Greatest Connected Component

HA Hydroxyapatite

HSC Hematopoietic stem cell

IPL Image Processing Language

IVD Intervertebral disc

LRP5/6 Lipoprotein receptor-related protein 5/6

MAR Mineral apposition rate

mechthres and mechthres Value of the mechanical signal leading to a
production level corresponding to half of the maximum production
capacity of a cell

MRR Mineral resorption rate

micro-CT Micro-computed tomography

micro-FE Micro-finite element analysis

micro-MPA Micro-multiphysics agent-based

MPI Message Passing Interface

MS Mineralizing surface

MSC Mesenchymal stem cells

n Number of samples

n.s Not significant

Norm. BS/BV Normalized specific bone surface

Norm. BS/TV Normalized bone surface density

Norm. BV/TV Normalized trabecular bone volume fraction

Norm. Tb.N Normalized trabecular number

Norm. Tb.Sp Normalized trabecular spacing

ParOSol Parallel Octree Solver

PolgA DNA polymerase subunit gamma A

pre-Oc Pre-osteoclast

pre-Ot Pre-osteocyte

OPG Osteoprotegerin

Ob Osteoblast

Oc Osteoclast

ODE Ordinary differential equation

OpenMP Open multiprocessing

Ot Osteocytes

RANK Receptor activator of nuclear factor κβ
RANKL Receptor activator of nuclear factor κβ ligand

RDD Reaction, Diffusion, Decay

Scl Sclerostin

Tb.N Trabecular number

Tb.Sp Trabecular spacing

Tb.Th Trabecular thickness

TGF-β1 Transforming growth factor beta one

β Maximum production value by a single cell

ε Gaussian-dilated effective strain
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