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Background: Vogt-Koyanagi-Harada (VKH) disease is a common and easily
blinded uveitis entity, with choroid being the main involved site. Classification
of VKH disease and its different stages is crucial because they differ in clinical
manifestations and therapeutic interventions. Wide-field swept-source optical
coherence tomography angiography (WSS-OCTA) provides the advantages of
non-invasiveness, large-field-of-view, high resolution, and ease of measuring and
calculating choroid, offering the potential feasibility of simplified VKH classification
assessment based on WSS-OCTA.

Methods: 15 healthy controls (HC), 13 acute-phase and 17 convalescent-phase
VKH patients were included, undertaken WSS-OCTA examination with a scanning
field of 15 × 9mm2. 20 WSS-OCTA parameters were then extracted from WSS-
OCTA images. To classify HC and VKH patients in acute and convalescent phases,
two 2-class VKH datasets (HC and VKH) and two 3-class VKH datasets (HC, acute-
phase VKH, and convalescent-phase VKH) were established by the WSS-OCTA
parameters alone or in combination with best-corrected visual acuity (logMAR
BCVA) and intraocular pressure (IOP), respectively. A new feature selection and
classification method that combines an equilibrium optimizer and a support
vector machine (called SVM-EO) was adopted to select classification-sensitive
parameters among the massive datasets and to achieve outstanding classification
performance. The interpretability of the VKH classification models was
demonstrated based on SHapley Additive exPlanations (SHAP).

Results: Based on pure WSS-OCTA parameters, we achieved classification
accuracies of 91.61% ± 12.17% and 86.69% ± 8.30% for 2- and 3-class VKH
classification tasks. By combining the WSS-OCTA parameters and logMAR
BCVA, we achieved better classification performance of 98.82% ± 2.63% and
96.16%±5.88%, respectively. Through SHAP analysis, we found that logMARBCVA
and vascular perfusion density (VPD) calculated from the whole field of view
region in the choriocapillaris (whole FOV CC-VPD) were the most important
features for VKH classification in our models.

OPEN ACCESS

EDITED BY

Matthew A. Reilly,
The Ohio State University, United States

REVIEWED BY

Bo Lei,
Henan Provincial People’s Hospital, China
Chan Zhao,
Peking Union Medical College Hospital
(CAMS), China

*CORRESPONDENCE

Peng Xiao,
xiaopengaddis@hotmail.com

Jin Yuan,
yuanjincornea@126.com

†These authors have contributed equally
to this work and share the first authorship

RECEIVED 01 November 2022
ACCEPTED 20 April 2023
PUBLISHED 02 May 2023

CITATION

Xiao P, Ma K, Ye X, Wang G, Duan Z,
Huang Y, Luo Z, Hu X, Chi W and Yuan J
(2023), Classification of Vogt-Koyanagi-
Harada disease using feature selection
and classification based on wide-field
swept-source optical coherence
tomography angiography.
Front. Bioeng. Biotechnol. 11:1086347.
doi: 10.3389/fbioe.2023.1086347

COPYRIGHT

© 2023 Xiao, Ma, Ye, Wang, Duan, Huang,
Luo, Hu, Chi and Yuan. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 02 May 2023
DOI 10.3389/fbioe.2023.1086347

https://www.frontiersin.org/articles/10.3389/fbioe.2023.1086347/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1086347/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1086347/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1086347/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1086347/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1086347/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2023.1086347&domain=pdf&date_stamp=2023-05-02
mailto:xiaopengaddis@hotmail.com
mailto:xiaopengaddis@hotmail.com
mailto:yuanjincornea@126.com
mailto:yuanjincornea@126.com
https://doi.org/10.3389/fbioe.2023.1086347
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2023.1086347


Conclusion: We achieved excellent VKH classification performance based on a
non-invasive WSS-OCTA examination, which provides the possibility for future
clinical VKH classification with high sensitivity and specificity.

KEYWORDS

Vogt-Koyanagi-Harada (VKH), wide-field swept-source optical coherence tomography
(WSS-OCTA), feature selection and classification, equilibrium optimizer (EO), support
vector machine (SVM)

1 Introduction

Vogt-Koyanagi-Harada (VKH) disease is a T-cell-mediated
multisystem autoimmune disease targeting melanocyte-containing
organs (Ei Ei Lin Oo et al., 2020). The incidence of VKH varies
among populations worldwide with a common occurrence in
Hispanics (mestizos), Asians, Native Americans, Middle
Easterners, and Asian Indians (Read et al., 2001). It causes not
only ocular manifestations such as bilateral granulomatous
panuveitis, chorioretinitis, and exudative retinal detachment (Ei
Ei Lin Oo et al., 2020), but also multiple extraocular
manifestations, including the central nervous system, auditory,
and cutaneous abnormalities (O’Keefe and Rao, 2017). According
to the multimodal ocular vascular imaging approach, VKH is
clinically manifested in four phases, specifically prodromal, acute,
convalescent, and chronic recurrent phases (Luo et al., 2021). The
prodromal phase starts rapidly, often with cold symptoms, and
develops into the acute phase quickly. Early diagnosis, timely
initiation of treatment, and appropriate and adequate therapy are
key to optimal VKH management, while delayed diagnosis and
initiation of appropriate therapy may lead to an increased risk of
disease chronicity, complications, and visual impairment (Ei Ei Lin
Oo et al., 2020). For example, the acute phase, if not adequately
treated, can progress to the chronic recurrent stage (Agarwal et al.,
2020). In contrast, with appropriate treatment such as
corticosteroids, the disease will transition to the convalescent
phase after several weeks to months. Because of the different
treatment regimens and dosages in the acute and convalescent
phases, it is important to accurately identify and classify VKH,
especially in these two phases, so that patients with VKH can be
given the proper and suitable treatment to recover and avoid chronic
symptoms.

At present, the classification of VKH mainly focuses on clinical
manifestations, supplemented by auxiliary examinations such as
fluorescein angiography (FA), indocyanine green angiography
(ICGA), and optical coherence tomography (OCT) (Li et al.,
2021). The FA and ICGA have long been used as validation tools
for the classification and evaluation of VKH, however, both are time-
consuming, invasive, and non-quantitative, and also have potential
dye-related risks (Qian et al., 2021). The enhanced depth imaging
OCT (EDI-OCT) and swept-source OCT (SS-OCT) are non-
invasive, more affordable techniques for assessing choroidal
thickness and morphology (Urzua et al., 2020). Moreover, it has
been shown that SS-OCT is superior to EDI-OCT, providing higher
resolution andmore measurable images and accurate qualitative and
quantitative assessment of retinal and choroidal changes (Chee et al.,
2017). The SS-OCT angiography (SS-OCTA) provides not only the
advantages of SS-OCT such as non-invasive and high resolution but
also the advantages of tissue penetration, visualizing and

quantitatively measuring the retinal and choroidal vascular
system with high repeatability and reproducibility, making it
increasingly important and widely used in the field of uveitis
(Liang et al., 2021). Several studies have used SS-OCTA to
demonstrate choroidal retinal microvascular changes in VKH
disease (Karaca et al., 2020; Liang et al., 2020; Fan et al., 2021).
Compared with SS-OCTA, wide-field SS-OCTA (WSS-OCTA) can
obtain a larger field of view and extract more vascular features, and
thus is gradually being applied in VKH studies (Qian et al., 2021; Ye
et al., 2021). However, to the best of our knowledge, there is no
classification study or criteria for VKH based on the WSS-OCTA.

In addition, WSS-OCTA can extract many features, such as up
to 20 features in our previous work (Ye et al., 2021), which help to
analyze microvascular alterations in VKH patients. However, for
VKH classification, high-dimensional features like these may
contain not only relevant features but also irrelevant and
redundant features, which can reduce VKH classification
performance. Feature selection is one of the effective ways to
reduce dimensionality, which helps to reduce the risk of
overfitting, improve the generalization ability of the model and
save computational effort because only a fewer features are
calculated (Shilaskar and Ghatol, 2013). On the other hand,
machine learning methods, such as support vector machines
(SVM), logistic regression (LR), random forests (RF), K-nearest
neighbors (KNN), and decision trees (DT), are widely used for
classification and prediction of ophthalmic diseases, such as myopia
and keratitis (Tang et al., 2020; Herber et al., 2021), glaucoma,
uveitis, cataract, and age-related macular degeneration (Lin et al.,
2020; Standardization of Uveitis Nomenclature SUN Working
Group, 2021b; Ting et al., 2021), and recently also for VKH
classification (Standardization of Uveitis Nomenclature SUN
Working Group, 2021a; Chang et al., 2021), because of their
good classification performance in small datasets. These classifiers
are often trained with hyperparameters, which need to be optimized
to obtain the best classification performance. Therefore, considering
these two aspects, this paper attempts to achieve accurate VKH
classification based on a small number of WSS-OCTA features by
simultaneously performing the selection of numerous WSS-OCTA
features, hyperparameter optimization of the classifier, and VKH
classification. In short, this paper aims to investigate a simplified and
accurate VKH classification method based on WSS-OCTA
unimodal imaging. To achieve this, this paper proposes a new
feature selection and

Classification method by combining an equilibrium optimizer
(EO), a metaheuristic algorithm with strong search power
(Faramarzi et al., 2020), and an SVM, named SVM-EO, to build
accurate two-class (healthy control and VKH) and three-class
(healthy control, acute-phase, and convalescent-phase VKH)
VKH classification models. To verify the feasibility and validity
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of the method, two feature combination schemes were tested in this
paper, namely, pure WSS-OCTA features and combined two basic
clinical characteristics and WSS-OCTA features.

2 Methods

2.1 Subjects

This single-center study was conducted at the Zhongshan Eye
Center in China and in accordance with the Declaration of Helsinki,
and all participants signed informed consents. Table 1 gives a
detailed information of the patients included, which was reported
in our previous publication (Ye et al., 2021). The classification of
VKH disease was made by experienced ophthalmologists in strict
accordance with the revised classification criteria (RDC) developed
by the First International Workshop on Vogt-Koyanagi-Harada
(VKH) disease (Read et al., 2001). The acute VKH group and the
convalescent VKH group were divided according to disease
progression. For example, inclusion criteria for the acute VKH
group were patients who were initially diagnosed or treated with
systemic corticosteroids for less than 2 weeks and excluded severe
exudative retinal detachment, severe anterior chamber
inflammation, or vitreous opacities, whereas patients with
convalescent VKH were those who had been treated with
systemic corticosteroids for more than 3 months and did not
have acute fundus inflammation. The healthy controls were
included in the absence of ocular or systemic disease and
matched for age and number of cases to the VKH group. In
addition, some ophthalmic examinations were performed for all
participants, including the logarithm of the minimum angle of
resolution of best corrected visual acuity (BCVA) measured with
a Snellen chart (logMAR BCVA), bilateral intraocular pressure
(IOP), slit lamp microscopy, indirect fundus ophthalmoscopy,
and FA examinations.

2.2 WSS-OCTA image acquisition and
feature extraction

All WSS-OCTA images were acquired by an experienced
technician using the PLEX Elite 9000 device (Carl Zeiss Meditec
Inc., Dublin, CA, UNITED STATES OF AMERICA) with a central
wavelength of 1,060 nm and a speed of 100,000 A-scans per
second to perform a 15 × 9 mm2 scan centered on the fovea of
each eye. The PLEX Elite 9000 device has an active eye-tracking
system with its auto-focus function to minimize the effects of eye

aberrations when taking images. Poor quality WSS-OCTA images
with a lot of motion artifacts or incorrect segmentation were
excluded. All WSS-OCTA images were automatically segmented
using the built-in software to generate superficial vascular plexus
(SVP), deep vascular plexus (DVP), and choriocapillaris (CC), as
shown in Figure 1 for an example. Then, four kinds of features were
extracted from three slabs, namely, foveal avascular zone (FAZ),
vascular perfusion density (VPD), vascular length density (VLD),
and flow void (FV) across regions and layers parameters. The FAZ
features included the area of the FAZ (AFAZ) and the acyclicity
index (AI, the ratio of the FAZ perimeter to the perimeter of a circle
of equal area) (Karaca et al., 2020) in SVP. To calculate the VPD, the
ratio of vascular area to the total region of interest (ROI) (Triolo
et al., 2017), 7 ROIs were selected, including the macular region in
SVP, DVP, and CC, the peripapillary region in SVP, and the whole
field of view (FOV) region in SVP, DVP, and CC, and thus a total of
7 VPD features were calculated, namely, macular SVP-VPD,
macular DVP-VPD, macular CC-VPD, peripapillary SVP-VPD,
whole FOV SVP-VPD, whole FOV DVP-VPD, and whole FOV
CC-VPD. VLD is the length of vessels per unit area (Uji et al., 2017),
allowing for a more sensitive classification of small blood vessels and
capillaries. Similarly, 5 ROIs were first selected, namely, the macular
region in SVP and DVP, the peripapillary region in SVP, and the
whole FOV in SVP and DVP, and finally 5 VLD features were
obtained, including macular SVP-VLD, macular DVP-VLD,
peripapillary SVP-VLD, whole FOV SVP-VLD, and whole FOV
DVP-VLD. The FV in CC was determined by thresholding the areas
lacking flow information (Spaide, 2016). FV variables, including FV
area ratio (FVAR), the number of FV areas larger than 1,000 um2

(FV1000), and the average size of the FV (FVAS), were calculated
separately for the macular region and the peripheral region in CC, so
altogether six FV features were extracted, which were macular CC-
FVAR, macular CC-FV1000, macular CC-FVAS, peripheral CC-
FVAR, peripheral CC-FV1000, and peripheral CC-FVAS. In brief,
20 WSS-OCTA features were extracted, including 2 FAZ features
and 18 vascular features. A detailed description of the image
processing including removing artifacts and extraction of OCTA
parameters was given in our previous work (Ye et al., 2021). In
addition, each feature was standardized for eliminating the effects of
different feature magnitudes and accelerating convergence.

2.3 Feature selection and classification

To classify VKH disease accurately and objectively using as few
parameters as possible, we adopted a feature selection and
classification method combining EO and SVM (Figure 2), called

TABLE 1 The detailed information of the patients included (Ye et al., 2021).

Healthy controls Acute-phase VKH Convalescent phase VKH p-value

Number of eyes/patients 30/15 20/13 30/17

Age (years) 34 (26–58) 34 (27–53) 36 (29–43) 0.971a

Sex (male/female) 5/10 8/5 9/8 0.302b

Notes: Patients’ ages are presented as Median (P25-P75).
aKruskal–Wallis test.
bChi-square test.
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SVM-EO, to achieve feature selection, SVM hyperparameter
optimization, and classification simultaneously, which were
implemented in MATLAB 2020b (MathWorks Inc., Natick, MA,
United States). EO was used to update the feature subset and SVM

hyperparameters, and SVM was applied to classification and
construct the fitness function for EO.

2.3.1 Equilibrium optimizer
Faramarzi et al. (2020) proposed EO inspired by the control

volume mass balance model used to estimate the dynamic and
equilibrium states. The mass balance equation is generally described
using a first-order differential equation, and is calculated as:

C � Ceq + C0 − Ceq( )F + G

γV
1 − F( ) (1)

where V is the control volume, C is the concentration inside the
control volume, Ceq is the concentration at equilibrium, G is the
mass generation rate inside the control volume, F is the exponential
term coefficient, γ is the flow rate, and C0 is the initial concentration
of the control volume.

The EO is mainly based on Eq. 1 for iterative optimization
searching, where C represents the newly generated current solution,
C0 represents the solution obtained in the previous iteration, andCeq

represents the best solution currently found by the algorithm. The
implementation process of EO is briefly described as follows. First,
each variable requiring optimization is initialized randomly based
on the upper and lower bounds. Then EO enters the main iteration
process to update the solution and memory saving. Specifically, the
equilibrium state pool Ceq consisting of five candidate solutions is
constructed to improve the global search capability of the algorithm
and avoid getting trapped in low-quality local optimal solutions. The
coefficient F is updated for better balancing the global search and
local search and the mass generation rate G is calculated to enhance
the local search capability, see Eqs 2, 3. Thus, the current solution C
is updated based on Eq. 4. Next, the fitness value of each member of
the current solution is compared with that of the previous iteration

FIGURE 1
Examples of three slabs for three classes of participants. SVP, superficial vascular plexus; DVP, deep vascular plexus; CC, choriocapillaris.

FIGURE 2
Flow chart of the feature selection and classification method
combining EO and SVM. EO, equilibrium optimizer; SVM, support
vector machine; VKH, vogt-koyanagi-harada.
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and covered if it has a better fitness value to achieve memory saving.
The above iterative process is repeated until the iteration ends and all
optimal variables are output.

F � a1sign r − 0.5( ) e−γt − 1[ ]
t � 1 − Ite

Ite max
( )a2 Ite

Itemax

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

G � 0.5γ1 Ceq − γC( )F, γ2 ≥GP
0, γ2 <GP

{ (3)

C � Ceq + C − Ceq( )F + G
γV

1 − F( ) (4)

where a1 and a2 are constant, γ is a random vector between [0,1], Ite
and Ite max are the number of current iterations and total iterations,
γ1 and γ2 are random numbers between [0,1], and GP is the
generation probability.

2.3.2 Support vector machine
SVM is a binary linear classifier that tries to minimize structural

risk (Ma et al., 2019). It classifies two classes of samples by
constructing the optimal hyperplane to maximize the sample
intervals, which is a convex quadratic programming problem and
the final mathematical model is:

min
1
2
W‖ ‖2 + α∑M

i�1
εi

s.t.labi WTfeati + b( )≥ 1 − εi
εi ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(5)

where α is the penalty factor, ε is the slack variable,M is the number
of training samples, (f eati, labi) is the i th sample, and (W , b) is the
hyperplane parameter. To build a three-class VKH classification
model, the one-versus-one method was adopted for the SVM to
achieve multi-classification. In addition, the radial basis function
(RBF) kernel was used to achieve nonlinear classification because it
has only one hyperparameter, bandwidth β, and has been shown to
perform well (Caramia et al., 2018). Therefore, to establish accurate
SVM classification models for diagnosing VKH, the penalty factor α
and bandwidth β were simultaneously optimized.

2.3.3 Combined EO and SVM to classify VKH
The combination of EO and SVM maximizes the powerful

search capability of EO and the excellent classification
performance of SVM to efficiently detect VKH. First, initialize
the input constants (V � 1; a1 � 2; a2 � 1; Ite max � 100,;
GP � 0.5) and the parameters for optimization as:

C0
i,j �

αl + γj αu − αl( ), j � 1
βl + γj βu − βl( ), j � 2
Fl + γj Fu − Fl( ), j> 2

⎧⎪⎨⎪⎩ (6)

where C0
i,j represents the initial value of the j th (j � 1, 2, 3, . . . , J)

dimension of the i th (i � 1, 2, 3, . . . , I) member of the population, I
and J are the number of population members and the sum of the
number of features and SVM hyperparameters, γj is a random
number between [0, 1], and [αl, αu], [βl, βu], and [Fl, Fu] represent
the upper and lower bounds of α, β, and features and take the values
of [0.001,1000], [0.001,1000], and [0,1]. Then, if the number of the

current iteration is less than the total number, the main iteration
process is performed, whereupon the selected features and two SVM
hyperparameters are updated. Notably, for the current feature
Ci,j (j> 2), if the calculated Ci,j is greater than 0.5, then Ci,j is
taken as 0, indicating that this feature is discarded. Conversely,Ci,j is
1, meaning that the feature is selected and all features corresponding
to Ci,j � 1 consist of the current feature subset.

Further, VKH classification was performed using SVM with
updated hyperparameters based on the current feature subset, whose
classification performance was stably evaluated using the five-fold
cross-validation method. In detail, each class of samples in this
feature subset was randomly divided into 5 folds according to the
participants approximately equally, respectively, and then each fold
of all classes was combined separately to form a 1-fold data subset
containing all classes. Each 4-fold data subset was used to train the
SVM model, and the remaining 1-fold was used to test the trained
SVM model. And the average classification error Errorrow obtained
after 5 iterations was applied to construct the fitness function as:

Fitnessi � φErrori + 1 − φ( )Numi

J − 2
(7)

whereFitnessi is the fitness value of the i thmember of the population,
φ is the coefficient that balances the classification performance and the
number of features (φ � 0.98), andNumi is the number of the current
feature subset. After that, the fitness value of each member of the
current solution (population) was compared with that of the previous
iteration for memory saving. After the main iteration, the best feature
subset and the optimized SVM hyperparameters were output and
used for SVM classification. To comprehensively assess the final VKH
classification performance, sensitivity, specificity, accuracy, the
receiver operating characteristic (ROC) curve and the area under
the curve (AUC) were used as evaluation metrics and classification
results based on five-fold cross-validation were given in the form of
mean ± standard deviation (SD).

2.4 Global and local interpretability of the
VKH classification models

Although the optimal feature subset and the best classification
performance could be obtained by the SVM-EO method, the
corresponding 2-class and 3-class VKH classification models are
black-box models and lack interpretability. SHapley Additive
exPlanations (SHAP) is a Shapley value-inspired additivity
explanatory model based on game theory (Lundberg and Lee,
2017). SHAP assigns an importance value to each feature for a
particular prediction, quantifying the magnitude and direction
(positive or negative) of the feature’s influence on the prediction,
so it is possible to interpret the outputs of any machine learning
model. And its interpretable performance has been widely proven
and applied (Wang et al., 2021; Baptista et al., 2022; Nohara et al.,
2022; Onsree et al., 2022). Therefore, we used the SHAP package in
Python to achieve global and local interpretability of the best VKH
classification models. Specifically, the classification model that
achieved the best classification performance in the five-fold cross-
validation was interpreted, and we used the kernel explainer in the
SHAP package because it is model-independent and works with any
model. The SHAP summary plot (Lundberg et al., 2020) was applied
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for global interpretability, displaying the feature importance of all
features. The longer the bar corresponds to each feature, the more
important this feature is. The SHAP force plot (Lundberg et al.,
2018) was used to achieve local interpretability, showing how the
prediction of a single sample was generated. The combined effect of
all features pushed the model’s predictions from the base value (the
average prediction across all samples) to the final model output (f(x),
the predicted value in this example). The features that pushed the
prediction up and down were shown in red and blue respectively,
and the wider the color area, the greater the impact of the feature.

2.5 Comparison and statistical analysis

We compared the classification performance based on pure
WSS-OCTA features and based on clinical characteristics and
WSS-OCTA features for two- and three-class VKH diagnoses,
respectively. We ran the proposed SVM-EO method 30 times
and considered the best classification performance as the final
VKH classification performance. The statistical analysis was
conducted in SPSS 24 (SPSS Inc., Chicago, IL, United States).
The Mann-Whitney U test was performed to assess differences in
classification performance due to different features and classes.
Statistical significance was set at p ≤ 0.05.

3 Results

3.1 Dataset

In this study, 20 eyes of 13 VKH patients in the acute phase,
30 eyes of 17 VKH patients in the convalescent phase, and 30 eyes of
15 age-matched healthy controls were included and analyzed. Four
datasets were formed based on 2 clinical characteristics (IOP and
logMAR BCVA) and 20 WSS-OCTA features for building two- and
three-class VKH classification models, as follows: Dataset1: a two-
class dataset consisting of 20 WSS-OCTA features; Dataset2: a two-
class dataset composed of all 22 features; Dataset3: a three-class
dataset made up of 20 WSS-OCTA features; Dataset4: a three-class
dataset comprising all 22 features.

3.2 Two-class VKH classification results
based on Dataset1 and Dataset2

We compared the average and best two-class VKH classification
results obtained by the SVM-EO method based on Dataset1 and

Dataset2. According to Table 2, the sensitivity, specificity, and
accuracy obtained based on Dataset2 were significantly better
than those acquired using Dataset1 concerning the average
results. In terms of the best results, the sensitivity, specificity, and
accuracy obtained based on Dataset2 were also superior to those
gained with dataset1, although there was no significant difference, a
smaller standard deviation was achieved. The best AUC obtained
using Dataset2 was also markedly higher than that achieved by
Dataset1 (Figure 3A), although there was no significant difference
(p = 0.421). There are 7 eyes misidentified in Dataset1 (Figure 3B),
while only one eye is misidentified in Dataset2 (Figure 3C). In terms
of the features selected, the best feature subset obtained with
Dataset1 contained 5 features, which were AFAZ, whole FOV
DVP-VLD, macular SVP-VPD, peripheral CC-FVAR, and
macular CC-FV1000, while the best feature subset gained from
Dataset2 consisted of 4 features, namely, logMAR BCVA, macular
DVP-VLD, whole FOV SVP-VPD, and whole FOV CC-VPD.

3.3 Three-class VKH classification results
based on Dataset3 and Dataset4

For the average classification performance, the sensitivity and
specificity of the HC, acute-phase VKH, and convalescent-phase
VKH classes gained from Dataset4 were significantly outperformed
by those.

Obtained with Dataset3 (p < 0.001, Table 3). The average overall
accuracy obtained using Dataset4 was also significantly more
favorable than that achieved with Dataset3 (p < 0.001). From the
best three-classification results, the sensitivity of the HC class and
the specificity of the convalescent-phase VKH class based on
Dataset4 were significantly greater than those of Dataset3 (p <
0.05). Unexpectedly, the.

Best sensitivity of the HC class derived for Dataset3 was poorer
than its average sensitivity, which may be since the proposed
method used the overall error for constructing the fitness
function, and although the sensitivity of this class is lower, the
sensitivity of the other two classes is much higher, which
phenomenon leads to higher overall accuracy (lower overall
error). In addition, the sensitivity and specificity of the other
categories from Dataset 4 were excellent compared to those of
Dataset3, but not significantly different. Although the best overall
accuracy obtained using Dataset4 is not significantly better than
that obtained based on Dataset3, the former has a smaller standard
deviation. The AUCs of HC, acute-phase VKH, and convalescent-
phase VKH classes acquired from Dataset4 (Figure 4B) were
clearly outstanding than those expressed from Dataset3

TABLE 2 Average and best two-class VKH classification results obtained by using the proposed SVM-EO method.

Dataset Sensitivity (%) Specificity (%) Accuracy (%)

Average Best Average Best Average Best

Dataset1 89.30 ± 5.62 94.36 ± 8.24 82.27 ± 7.06 86.67 ± 21.73 86.66 ± 5.40 91.61 ± 12.17

Dataset2 95.60 ± 1.62 98.00 ± 4.47 99.46 ± 2.96 100.0 ± 0.0 97.19 ± 2.09 98.82 ± 2.63

P <0.001 0.548 <0.001 0.310 <0.001 0.222
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(Figure 4A), although they were not significantly different
(p-values of 0.310, 0.690, 0.310, respectively). As far as detailed
misidentifications are concerned, the misidentifications of the
classification model obtained with Dataset3 are concentrated
between HC and convalescent-phase VKH, and sporadically
between acute-phase and convalescent-phase VKH (Figure 4C),
while in Dataset4 only three convalescent-phase VKH eyes were
misidentified as HC eyes (Figure 4D). Regarding the selected
features, the best feature subset obtained with Dataset3 included
13 features, specifically AFAZ, AI, peripapillary SVP-VLD,
macular DVP-VLD, macular SVP-VPD, whole FOV SVP-VPD,
peripapillary SVP-VPD, whole FOV DVP-VPD, peripheral CC-
FVAR, macular CC-FV1000, peripheral CC-FV1000, macular CC-
FVAS, and peripheral CC-FVAS, whereas the best feature subset

retrieved from Dataset4 contains only 6 features, comprising
logMAR BCVA, AFAZ, peripapillary SVP-VLD, macular SVP-
VPD, macular DVP-VPD, and whole FOV CC-VPD.

3.4 Comparison of the proposed method
with the previous VKH classification
methods

The above results revealed that the scheme combining clinical
characteristics and WSS-OCTA features could obtain better
performance of two- and three-class VKH classification, so we
took the performance obtained by this scheme as the final VKH
classification performance. Given that this is the first study of VKH

FIGURE 3
Best ROC curves and confusion matrices for two-class VKH classification with the SVM-EOmethod based on Dataset1 and Dataset2 using the five-
fold cross-validation. (A) Best ROC curves. (B) Confusion matrix based on Dataset1. (C) Confusion matrix based on Dataset2.

TABLE 3 Average and best three-class VKH classification results obtained by using the feature selection and classification method.

Dataset Class Sensitivity (%) Specificity (%) Overall accuracy (%)

Average Best Average Best Average Best

Dataset3 HC 86.53 ± 4.02 80.29 ± 12.86 80.63 ± 4.66 91.00 ± 10.25 82.79 ± 2.41 86.69 ± 8.30

Acute-phase VKH 80.41 ± 9.18 96.00 ± 8.94 82.97 ± 2.49 83.41 ± 9.88

Convalescent-phase VKH 79.85 ± 5.76 86.95 ± 12.68 84.62 ± 3.57 86.36 ± 8.60

Dataset4 HC 99.56 ± 1.15 100.0 ± 0.0 90.41 ± 2.31 93.56 ± 9.83 93.88 ± 1.37 96.16 ± 5.88

Acute-phase VKH 94.55 ± 3.97 100.0 ± 0.0 93.82 ± 1.39 95.00 ± 7.45

Convalescent-phase VKH 88.26 ± 2.94 89.33 ± 15.35 97.55 ± 1.61 100.0 ± 0.0

P HC <0.001 0.032 <0.001 0.690 <0.001 0.095

Acute-phase VKH <0.001 0.690 <0.001 0.095

Convalescent-phase VKH <0.001 0.841 <0.001 0.032
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FIGURE 4
Best ROC curves and confusion matrices for three-class VKH classification with the proposed method based on Dataset3 and Dataset4. (A) Best
ROC curve for Dataset3. (B) Best ROC curve for Dataset4. (C) Confusion matrix based on Dataset3. (D) Confusion matrix based on Dataset4.

TABLE 4 Average and best three-class VKH classification results obtained by using the feature selection and classification method.

Paper Classification Sensitivity
(%)

Specificity
(%)

AUC Accuracy
(%)

Yang et al. (2018) HC vs. VKH 94.6 92.2 0.934 -

Chen et al. (2020) HC vs. active VKH - - 0.999 -

HC vs. inactive VKH - - 0.902 -

Standardization of Uveitis Nomenclature SUNWorking Group
(2021a)

Early-stage VKH - - - 92.3

Late-stage VKH - - - 88

Chang et al. (2021) HC vs. VKH - - 0.808 -

Active VKH vs.
inactive VKH

- - 0.958 -

This paper HC vs. VKH 98.00 ± 2.00 100.0 ± 0.0 0.983 ± 0.039 98.82 ± 1.18

Healthy control 100.0 ± 0.0 93.56 ± 4.39 0.955 ± 0.101 96.16 ± 2.63

Acute-phase VKH 100.0 ± 0.0 95.00 ± 4.39 1.0 ± 0.0

Convalescent-phase VKH 89.33 ± 6.86 100.0 ± 0.0 0.967 ± 0.075
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classification based on WSS-OCTA features and feature selection
using SVM-EO to our knowledge, the classification performance
was compared with previous methods for VKH classification based
on other imaging features and machine learning. According to
Table 4, the most outstanding VKH classification performance

was achieved using WSS-OCTA features and the proposed SVM-
EO method, both for distinguishing VKH and HC and for
identifying acute VKH, convalescent VKH and HC, which
demonstrated the effectiveness and superiority of the proposed
method.

FIGURE 5
Global and local interpretability plots for SHAP-based 2- and 3-class VKH classification models. (A–B) Summary plots of feature importance for 2-
and 3-class VKH classification models. (C–D) Local interpretability force plots for 2- and 3-class VKH classification models (The value of each feature is a
standardized value).
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3.5 Interpretable results for 2- and 3-class
VKH classification models

The best features for the 2- and 3-class VKH classification have
been given in the foregoing results, and the impact and contribution
of these features to the VKH classification are presented here.
Figures 5A, B revealed the contributions of each feature to the
best 2- and 3-class VKH classification models. Overall, logMAR
BCVA and whole FOV CC-VPD were the two most important
features for the classification of VKH, whether two or three
classifications. And the role of logMAR BCVA was far more
important in both the 2-class task and the HC and convalescent-
phase VKH categories in the 3- class task. Partially, the importance
of each feature in each category may not be consistent with that of
the overall classification task. For example, whole FOVCC-VPDwas
the most important feature for acute-phase VKH, not logMAR
BCVA, the most important feature for three-class VKH
classification. Figures 5C, D present some examples of the
contributions made by each feature for the individual predictions
from the best 2-class and 3-class VKH classification models. In the
2-class VKH classification, all features contributed to pushing up the
HC class, while only macular DVP-VLD and whole FOV CC-VPD
pushed up the VKH class, and logMAR BCVA had the largest effect
in both the HC and VKH classes, but in the opposite direction.
Similarly, logMAR BCVA had the largest effect in all classes in the 3-
class VKH classification, but in the HC class with the acute-phase
VKH and convalescent-phase VKH classes in the inverse direction.
Whole FOV CC-VPD and AFAZ pushed up the predicted values in
all classes, especially whole FOV CC-VPD also pushed up the HC
and VKH classes in the 2-class VKH classification. These results
confirmed the role of the selected optimal feature combinations in
VKH classification, facilitating an interpretable and intelligent
classification of VKH consistent with clinical diagnostic logic.

4 Discussion

In the past, many studies have focused on and confirmed
microvascular changes in VKH disease based on OCTA (Uji
et al., 2017; Karaca et al., 2020; Liang et al., 2020; 2021; Fan et al.,
2021; Luo et al., 2021; Qian et al., 2021; Ye et al., 2021), however,
no further OCTA-based classification models or criteria for
VKH have been developed. In this paper, two two-class (VKH
vs. HC) and three-class (HC vs. acute-phase VKH vs.
convalescent-phase VKH) VKH datasets were established
based on 2 clinical characteristics and 20 WSS-OCTA features
including the FAZ, VPD, VLD, and FV features. The SVM-EO
method was then used to simultaneously screen for VKH-
sensitive features and optimize the hyperparameters of the
SVM for effective VKH classification. To the best of our
knowledge, this is the first VKH classification study based on
WSS-OCTA features and with feature selection and
classification by the SVM-EO method for enabling efficient
performance. The results demonstrated.

That more efficient and stable classification performance of two-
and three-class VKH with the combined clinical characteristics and
WSS-OCTA features than with the pure WSS-OCTA features, and
outperformed previous VKH classification studies.

Compared with previous studies, our proposed VKH
classification method has differences and advantages both in
terms of examination method and classification algorithm. In
terms of the examination method, the current VKH classification
relies on various imaging techniques or metabolomics. Previously,
imaging techniques such as FA, ICGA, EDI-OCT, and SS-OCT were
used extensively as auxiliary examinations and classifications for
VKH (Hedayatfar et al., 2019; Urzua et al., 2020; Li et al., 2021).
Based on clinical findings and these auxiliary examinations, several
classification criteria for VKH have been proposed, such as RDC, the
Classification Criteria for VKH Disease (DCV) (Yang et al., 2018),
and the Standardization of Uveitis Nomenclature (SUN) criteria
(Standardization of Uveitis Nomenclature SUN Working Group,
2021b). RDC overcomes the shortcomings of the Sugiura (Sugiura,
1978) and AUS criteria (Snyder and Tessler, 1980), and uses FA and
ultrasonography findings as useful adjuncts, which is frequently
used in clinical practice. The DCV takes into account unique clinical
features and ancillary tests (OCT, B-scan ultrasonography, EDI-
OCT, ICGA, and FA) and has achieved better AUC, negative
predictive value, and sensitivity than RDC (Yang et al., 2018).
The SUN criteria for VKH disease (fundus photographs, FA, and
OCT) has many factors similar to DCV, but eliminates nonspecific
exclusions with regionally relevant ones and does not include EDI-
OCT findings (Standardization of Uveitis Nomenclature SUN
Working Group, 2021a). In short, these criteria require complex
clinical investigations and various imaging examinations, most of
which are tedious, difficult to repeat, and invasive (e.g., ICGA and
FA). Metabolomics-based analysis methods were also applied for
VKH classification. Chen et al. (2020) used plasma metabolomics to
identify significant differences in plasma metabolic phenotypes of
VKH patients and identified diagnostic biomarkers for VKH disease.
Chang et al. (2021) used urine metabolomics to identify predictive
urine biomarkers for VKH disease. However, the VKH classification
based on metabolomic analysis remains in laboratory research, and
it is an expensive and time-consuming examination. Thus, a
simplified and precise classification algorithm is needed and will
be more conducive to VKH classification (Herbort et al., 2021).
Using a simplified, rapid, and non-invasive imaging examination
likeWSS-OCTAwith extracted disease-specific vascular parameters,
along with common and easily measurable clinical characteristics
(IOP and logMAR BCVA), we aim to develop a repeatable, easy-to-
conduct VKH diagnostic method.

In addition, an advanced and efficient feature selection and
classification method called SVM-EO was adopted to screen
sensitive parameters and accurately classify VKH, which is the
second particular advantage of this paper. Either imaging
examinations combined with clinical characteristics or
metabolomics leads to a large number of features, some of which
are irrelevant, redundant and potentially reducing VKH
classification performance, and therefore there is a necessity for
feature selection of the extracted features. For example, Chang et al.
(2021) identified 35 differential metabolites based on projection
values obtained by principal component analysis (PCA) and
orthogonal projection-discriminant analysis of potential structure
(OPLS-DA) and statistical analysis and then modeled the
classification of VKH by binary LR classifier. Yang et al. (2018)
used latent class analysis (LCA) to screen 21 variables from
37 variables for the development of the best-fitting three-class

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Xiao et al. 10.3389/fbioe.2023.1086347

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1086347


VKH classification model. These methods are well-established and
commonly used statistical analysis-based feature selection methods
in medical practice, not machine learning-based methods, which
may result in not great classification performance. Feature selection
is essentially a global optimization problem, so metaheuristic
algorithms are widely used for feature selection because of their
powerful global search capability (Houssein et al., 2021b). The EO is
a novel metaheuristic algorithm proven to outperform many
classical optimization algorithms, and recent methods combining
EO and machine learning algorithms such as KNN and SVM have
been effectively applied to public datasets (Ouadfel and Abd Elaziz,
2022) and practical problems such as stock market prediction
(Houssein et al., 2021a) and bearing fault identification (Tan
et al., 2021). The classification performance of machine learning
algorithms depends not only on the selected features but also on the
optimality of their hyperparameters. However, the aforementioned
studies either focus on feature selection or hyperparameter
optimization of machine learning algorithms. In this paper,
instead of feature selection or hyperparameter optimization
alone, we integrated an EO and an SVM to simultaneously
screen for the optimal features and hyperparameters to achieve
the best VKH classification performance with the fewest features.

The classification results also demonstrate the feasibility and
superiority of the proposed SVM-EO method. First, good VKH
classification performance was achieved based on pure WSS-OCTA
features, and the number of features was effectively reduced (5 and
13 features for 2- and 3-class VKH classification). Surprisingly,
based on the combination of clinical characteristics andWSS-OCTA
features, not only was the best combination of features with a smaller
number of features (4 and 6 features for 2- and 3-class VKH)
obtained, but also the significantly better average VKH classification
performance and the best VKH classification performance with
smaller standard deviations were obtained, both in terms of
sensitivity, specificity, AUC, and accuracy (Tables 2, 3).
Therefore, the combination of clinical characteristics and WSS-
OCTA features was considered to be the optimal solution. Finally,
the comparison with previous VKH classification studies found that
the state-of-the-art VKH classification performance was
accomplished based on this scheme and the SVM-EO method
(Table 4). Notably, although Chen et al. (2020) achieved a higher
AUC between HC and active VKH classes (0.999) than HC class
(0.955), this paper achieved an AUC of 1 for the acute-phase VKH
class in the 3-class VKH classification (Table 4) and no
misidentification between the acute-phase VKH class and the HC
class (Figure 4), indicating that this paper achieved better VKH
classification performance.

In terms of the features screened, except for the AFAZ parameter
(p = 0.055), the selected features were all parameters that proved to
be significantly different between groups (Ye et al., 2021), indicating
that the method of selecting sensitive parameters in this paper is
reliable and valid. This also explains why FV parameters were not
chosen for both 2- and 3-class VKH classification, as we previously
found no significant differences in FV parameters between HC and
convalescent-phase VKH (Ye et al., 2021). The VPD parameters
accounted for half of the number of features screened for VKH
classification, which also supported VPD as a sensitive indicator of
VKH (Liang et al., 2020; Fan et al., 2021). Interestingly, only two of
the screened features in the 2- and 3-class VKH classification

(logMAR BCVA and whole FOV CC-VPD) were identical, the
others were not. The reason for this phenomenon may be that
some features, although easily distinguishable between HC and
VKH, are difficult to distinguish between acute-phase VKH and
convalescent-phase VKH, and vice versa. In addition, as the SVM
classification model is a black box model (Chen and Gao, 2020), the
global and local interpretability of the best 2- and 3-class
classification models based on SHAP was investigated to discover
the contribution of the selected features toward the VKH
classification (Figure 5). Unlike previous studies that highlighted
the correlation between OCTA features and logMAR BCVA (Liang
et al., 2020; 2021; Qian et al., 2021; Ye et al., 2021), here Figure 5
exposes that the logMAR BCVA is the most important feature for
VKH classification, which in turn justifies the impairment of visual
acuity due to the onset and progression of VKH. However, the only
logMAR BCVA is not sufficient for the classification of VKH, as it is
not disease-specific, and many ophthalmic conditions such as
diabetic retinopathy, retinal vein occlusion, and glaucoma can
also cause visual changes and are correlated with the OCTA
features of these diseases (Liang et al., 2021). The key
contribution of WSS-OCTA features to VKH classification in the
model is irreplaceable. On the one hand, these features are disease-
specific. Both high 2- and 3-class VKH classifications were achieved
based onWSS-OCTA features along with an accuracy of 91.62% and
86.69%. On the other hand, combining these features with logMAR
BCVA not only enabled disease-specific classification but also
achieved the best classification performance (98.82% and
96.16%), significantly outperforming them alone. In conclusion,
WSS-OCTA features and clinical characteristics are compatible
with each other and jointly contribute to highly specific and
sensitive VKH classification.

There are some limitations in this paper. Firstly, the number of
VKH patients and HC recruited was relatively low due to the strict
subject inclusion and exclusion criteria, which resulted in a relatively
small sample size. More VKH subjects will be recruited in our future
work to increase the sample size. Moreover, including patients with
other VKH stages will work for establishing a comprehensive
diagnostic model for accurate grading of VKH phases. Secondly,
although various WSS-OCTA features were screened, manually
segmenting OCTA images and computing WSS-OCTA features
were time-consuming and subjective, so automatically
segmenting OCTA images and extracting WSS-OCTA features
based on deep learning and image processing techniques will be
carried out. Finally, conducting a multicenter prospective study of
VKH intelligent classification will be helpful to validate and test the
generalization and real-world classification performance of the VKH
classification model established in this paper.

5 Conclusion

To establish a simplified and feasible VKH classification model,
we carried out a VKH intelligent classification study based on WSS-
OCTA images and clinical characteristics, and adopted a new feature
selection and classification method named SVM-EO to improve the
classification performance. The results showed that outstanding 2-
and 3-class VKH classification performance was achieved. In
addition, we investigated the interpretability of the VKH
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classification model based on SHAP, giving the importance ranking
of the selected features and examples of the contribution of each
feature to the prediction of a single sample, thus achieving VKH
intelligent classification in accordance with clinical diagnostic logic.
However, the modest sample size and artificially calculated WSS-
OCTA features limit the clinical validation and application of this
classification model. In the future, we will expand the sample size
and adopt deep learning methods to achieve automatic
segmentation and feature extraction of OCTA images for real-
world applications of VKH intelligent classification.
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