
Relative instability ratios of bone
wall defects in trochanteric hip
fractures: A finite element analysis

Ao-Lei Yang1,2†, Wei Mao1,2†, Shi-Min Chang1* and You-Hai Dong2*
1Department of Orthopedic Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China,
2Department of Orthopaedics, Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China

Background: For decades, medial and lateral wall fragments of trochanteric hip
fractures were considered two pivotal factors that could influence the stability of
postoperative femur-implant complex. However, most studies seemed to
misunderstand the concept of the posteromedial fragment and equated it with
the medial wall, which overlooked vital roles of the anteromedial wall. Roles of the
posterior coronal bone fragment were also highlighted in some research. However,
influences of the bone walls above the trochanteric fracture instability are yet to be
investigated and quantified by means of finite element analysis.

Methods: Eight trochanteric fracture fixationmodels with different wall defects were
constructed. Outcome indicators were the von Mises stress of the implant models,
the maximum/minimum principal strain, the risky tensile/compressive volume and
the volume ratios of the bonemodels, the femoral head vertex displacement, and the
fracture surface gap. Based on these indicator values, the relative instability ratios
were computed.

Results: Outcome indicators, absolute values, and nephograms of all models
showed the same upward and concentrating trends with exerted hip contact
loads shifting from static walking to dynamic climbing. Similarly, these indicators
also exhibited the same trends when the eight models were solved in sequence.
Moreover, the relative instability ratio of the medial wall (100%), particularly the
anteromedial part (78.7%), was higher than the figure for the lateral wall (36.6%).

Conclusion: The anteromedial wall played relatively pivotal stabilizing roles in
trochanteric hip fractures compared with the posteromedial wall and the lateral
wall, which indicated that orthopedic surgeons should attach more importance to
the anteromedial cortex support in an operating theatre.
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1 Introduction

Trochanteric hip fractures, accounting for a significant proportion
of hip fractures, are not always caused by a single fracture line
occurring within the intertrochanteric zone defined by the latest
2018 revision of the Arbeitsgemeinschaft fur Osteosynthesefragen
(AO/OTA) classification system (Bhandari and Swiontkowski,
2017; Meinberg et al., 2018). On the contrary, there are clinically
far more fracture lines than single ones that spilt up the
intertrochanteric region into more fragments, which more often
than not augment the instability of the trochanteric fractures
(Zhang et al., 2020). Moreover, up to 50%–60% of the trochanteric
fractures are classified as unstable (Wu et al., 2019), and the condition
will directly determine surgical treatments and intramedullary or
extramedullary fixation. According to a consensus reached by
recent research and proposed as the guideline by the AO/OTA
classification (2018), intramedullary fixation systems [e.g., the
proximal femoral nail anti-rotation (PFNA, Depuy Synthes,
United States), the Gamma nail 3 (Stryker, Mahwah, New Jersey),
and the intertrochanteric antegrade nail (InterTAN, Smith & Nephew,
Memphis, Tennessee)] are recommended as primary protocols for
unstable fractures to minimize potential complications (Müller et al.,
1990; Zhang et al., 2013; Meinberg et al., 2018; Fu et al., 2020; Lee et al.,
2020; Yapici et al., 2020).

With the rapid development of and innovation for surgical
instruments, ideas, procedures, and patient-centered care,
surgeons can now rigorously formulate individual treatment and
try their utmost to diminish unstable elements for better prognoses
of their patients. Simultaneously, that mandates orthopedic
clinicians ascertain every subtle risk factor initially and pay
more attention to them over the whole therapeutic course.
Obviously, according to the 1990 and 2018 guidelines in the
AO/OTA classifications, two vital factors have been designated:
the posteromedial fragment with its extension downwards and the
lateral wall fragment with its thickness < 20.5 mm (Müller et al.,
1990; Meinberg et al., 2018). However, none of these were
surgically highlighted nor fixed in many trochanteric fractures
with the use of intramedullary fixation (Liu et al., 2015; Puram
et al., 2017; Wu and Tang, 2019; Chang et al., 2022; Yang et al.,
2022), from which some researchers concluded that the medial
walls were of minor importance in the fracture stability.

But there were also some studies arguing that it was a
misunderstanding to simply equate the posteromedial wall and
the medial wall. They also demonstrated that it was the
anteromedial wall that played a pivotal function and hence
anatomically divided the medial wall into the anteromedial
wall and the posteromedial wall (Chang et al., 2018; Chen
et al., 2020; Zhang et al., 2020; Shao et al., 2021). Moreover,
roles of the posterior coronal fragments have also attracted more
investigations recently. However, controversy arose about which
were the more significant unstable elements between the medial
wall and the lateral wall and between the anteromedial wall and
the posteromedial wall with or without intramedullary fixation
(Müller et al., 1990; Nie et al., 2017; Chang et al., 2018; Meinberg
et al., 2018; Chang et al., 2020; Chen et al., 2020).

Although the AO/OTA (2018) highlighted the lateral wall
thickness and put it as a standard to evaluate whether a
trochanteric fracture was stable, some researchers remained
skeptical about the significance level of the lateral wall (Nie et al.,

2017; Wu and Tang, 2019; Chang et al., 2022). With the prevalence of
the intramedullary fixation used for unstable trochanteric fractures,
which was also recommended by the AO/OTA (2018), Chang et al.
(2022) put forward a conception of a “metal lateral wall”. This meant
the intramedullary nail could take over most roles of the actual lateral
wall, even if the lateral wall broke during or after the operation.
Moreover, some researchers still further demonstrated that it was the
anteromedial wall and not the posteromedial wall that played the
pivotal stabilizing role (Nie et al., 2017; Chen et al., 2020; Zhang et al.,
2020).

Therefore, in this study, influences of the bone walls on
trochanteric fracture instability were explored and quantified with
contribution ratios by means of the finite element analysis.

2 Methods and materials

Two patients’ (a 73-year-old man: 174 cm, 70 kg, 23.12 kg/m2 and
a 72-year-old woman: 170 cm, 70 kg, 24.22 kg/m2) historical
computed tomography (CT) images (slice thickness, 1.0 mm) of
bilateral femurs were gathered from a data archive of the Fifth
People’s Hospital of Shanghai. Both patients had the same dual-
energy x-ray absorptiometry (DEXA) test value with
T-Score = −2.0 and were in a healthy state without fracture histories.

2.1 The fracture models

The gathered data of CT images were input to Mimics Research
21.0 (Materialise N.V., Leuven, Belgium) to construct three-
dimensional femur models, including two left femur models and
two right femur models. Next, the constructed entire femur models
were imported into 3-Matic Research 13.0 (Materialise N.V., Leuven,
Belgium) to further establish trochanteric fracture models.

With this software, the corresponding eight distinct models
were constructed according to the three-dimensional mapping of
trochanteric fracture lines, as shown in Figures 1A, B (Li et al.,
2019; Zhang et al., 2020). The basic fracture line was set as an
irregular curve. The lateral wall area and the corresponding defect
were also referred to the definition of Haq et al. (2014), while the
medial wall area and the corresponding defect were set as the
region within 2 cm above and below the lesser trochanter, which
was an important zone when testing stress with its deep dense
calcar femoral (Kuzyk et al., 2012; Chang et al., 2020; Lee et al.,
2020). Moreover, based on the fundamental fracture model, the
defect depth of both the medial wall and the lateral wall were set as
half of the distance between their respective cortex to the femoral
shaft axis. Then the medial wall and the lateral wall were cut by the
projection line of the femoral shaft axis into the anterior medial
(AM) wall and the posterior medial (PM) wall, and the anterior
lateral (AL) wall and the original posterior lateral (PL) wall,
respectively, as displayed in Figure 1D–H. However, the upper
region of the original PL wall defect model was more involved in
realistic trochanteric fracture fragments (Li et al., 2019).
Therefore, the region was also removed to establish the current
PL wall defect model, as shown in Figure 1I. In addition, the
posterior coronal bone (PML) defect model was constructed by
cutting the PM wall and the PL wall as well as the rest of the
posterior bone between them, as exhibited in Figure 1C.
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2.2 The PFNA models

Dimensions of an intramedullary fixation kit of titanium alloy,
PFNA (length: 200 mm and an angle: 125°), including an
intramedullary (IM) nail, a helical blade, and a locking screw, were
obtained from the manufacturer (Depuy Synthes, United States), as
shown in Figure 2C. Then the primary file was also input to 3-Matic
software to reach the element congruity of the implants with the
counterpart of the fracture models before their final assembly.

2.3 The fracture fixation and finite element
models

With 3-Matic software, the revised PFNAmodel and each fracture
model were then implemented into the assembly in accordance with
clinical standards. To maintain the intra-group consistency of the
implant positions, in each model the IM nail was identically located in
the intermediate region inside the femoral canal while the helical blade
was anchored in the intermediate-inferior region within the femoral
head. This was a critical procedure that ensured that the tip-apex
distance (TAD) of each model was 15 mm. After the establishment of
every fracture fixation model, holistic volume elements were remeshed
and modified; the final mesh quality check of all models met the

software-provided criterion about the homogeneous property of all
volume elements of each model.

For each model, the material assignment was exercised in Mimics
software, in which mapping approaches of CT-Hounsfield unites and
grey values were used to convert the matched voxels into the bone
density (ρ) and the elastic modulus (E) of the corresponding volume
mesh (Morgan et al., 2003; Taddei et al., 2007). Formulae in the
guidebook of Mimics about the bone material assignments were as
follows: ρ = 131 + 1.067 HU (kg/m3); E = −331 + 4.56 ρ (MPa).
Moreover, the Poisson’s ratio of the bone was set as 0.3, and the
Poisson’s ratio and the elastic modulus of the implants of titanium
alloy were set as 0.35 and 105,000 MPa, respectively (Goffin et al.,
2013).

Each material-assigned model in 3-Matic software was then
discretized into ten-node tetrahedral elements of the solid-185
volume. All materials were presumed to be homogeneous, linearly
elastic, and isotropic (Hawks et al., 2013). Using standard deviation
caused from repeating all steps, including manual adjustments of the
surface/volume mesh, of each FE model three times, mean element
numbers of the implant model and the eight fracture fixation models
were 46,094 ± 805, 167,430 ± 3,104 (the basic fracture), 143,340 ±
2,340 (the M wall defect), 143,986 ± 2,315 (the AM wall defect),
145,434 ± 2,214 (the PM), 145,286 ± 2,615 (the L), 150,920 ± 2,235
(the AL), 146,404 ± 2,803 (the PL), and 143,452 ± 2,185 (the PML).

FIGURE 1
The diagram exhibited the constructed eight fracturemodels based on one left femur (also the following figures). (A,B) indicated different perspectives of
the basic fracture model. (C–I) indicated the posterior coronal bone defect model, the medial, the anteromedial, the posteromedial, the lateral, the
anterolateral, and the posterolateral wall defect model, respectively.
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Next, all disposed finite element (FE) models were imported to
ANASYS Workbench (ANSYS Inc., version 2021 R1) to proceed with
further simulation.

2.4 Friction, loading, and boundary conditions

Contact interaction between every part of each FE model were set
to be frictional in order to approach the reality, and the surface friction
coefficients between the bone-bone, the bone-implant, and the
implant-implant were set as 0.46, 0.42, and 0.2, respectively (Hsu
et al., 2007; Eberle et al., 2010; Lee et al., 2016). The loading conditions

were adopted with two kinds of common cycle gaits, namely walking
and climbing stairs, and under each of them, static and dynamic hip
contact loads were simulated and exerted on the head load contact
surfaces of all FE models, as exhibited in Figure 2A. The static hip
contact loads in normal walking and climbing cycle gaits were set as
follows as to a person weighing 70 kg (Heller et al., 2005; Taheri et al.,
2011; Ramos et al., 2016; Cun et al., 2020): the hip joint contact load in
the walking gait [(x,y,z) = (647, 236, −1,351)] and in the climbing gait
[(x,y,z) = (711, 436, −1,393)], which were 2 times and 2.1 times body
weight, respectively. Meanwhile, the dynamic hip contact loads in the
two cycle gaits were adopted with curves, as shown in Figure 3
(Chalernpon et al., 2015; Zeng et al., 2020; Jiang et al., 2022).

FIGURE 2
The load, boundary conditions, and the PFNAmodel were exhibited. (A) showed the load surface, onwhich the static walking and climbing hip loads were
exerted. (B) showed the static load site and direction and the FE model fixed site. (C) showed the PFNA model.

FIGURE 3
The load curves of dynamic walking and climbing stairs cycle gaits.
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Furthermore, the distal end of the FEmodel was fully constrained both
in translation and rotation as the boundary condition in all models, as
displayed in Figure 2B (Heller et al., 2001; Heller et al., 2005).

Simultaneously, the mesh convergence was tested in ANSYS to
evaluate the validity and veracity of each FE model. Additionally, each
model had been constructed and simulated three times in order to
reduce errors as much as possible. After the solution of each model,
outcome indicators were set as follows: von Mises stress (VMS) of the
implant models, including the IM nail and the helical blade;
maximum/minimum principal strain, tensile/compressive volume,
and volume ratios of the bone models; and the displacement
distance of the FE model head vertex toward the distal femur and
the fracture surface gap of each FEmodel. These were then determined
and analyzed.

2.5 The relative instability ratios

Owing to little previous study or guidelines on how to measure the
stability of the trochanteric fracture-implant complex, a novel concept,
namely relative instability, was put forward to indirectly assess the
significance of each trochanteric fracture wall defect. However, a
substantial amount of research concluded that, although no linear
relation between these indicator absolute values mentioned above and
instability of the corresponding models was inferred, the FE model
indeed went toward a yielding failure with the local indicator values
gradually increasing (Goffin et al., 2013; Lee et al., 2016; Nie et al.,
2020; Lewis et al., 2021; Mohammad et al., 2022). Therefore, for each
indicator outcome above all FE models, the highest absolute value was
supposed to be relatively the most unstable with a relative instability
ratio of 100%, while its opposite pole was relatively stable with 0%.
Then the relative instability ratios of the other models were calculated
as to where their values stood from the lowest value to the highest
value. In the last step, these ratios of each model were statistically
analyzed.

3 Results

The outcome indicators of each FE model all showed the same
increasing trends in absolute values and/or a gradually concentrating
tendency in nephograms with the exerted hip contact loads shifting
from the static walking gait to the dynamic climbing stairs gait.
Similarly, almost all these indicators also exhibited the same
upsending tendencies when the FE models were solved in sequence
from the basic fracture line model, the PL wall defect model, the AL,
the PM, the L, the PML, the AM, to the M wall defect model.

3.1 The vonMises stress of the implantmodels

In all cases, the peak VMS values and the nephogram
concentrating sites of the IM nail models and the helical blade
models showed a common area at the conjunction of each pair of
the IM nail and the blade, especially the superior spot of the lateral
hole of the IM nail model and the blade model spot contacting the
inferior spot of the medial hole of the corresponding IM nail model.
Furthermore, the peak VMS value, 220.13 MPa, of all IM nail models
occurred in the medial wall defect model under the dynamic climbing

hip loads. Simultaneously, the peak value of 458.36 MPa of all helical
blade models was also generated in the same model, as shown in
Figures 4–6. However, none of these peak values exceeded the yielding
stress of 750–900 MPa for the implants of titanium material
(Sitthiseripratip et al., 2003; Levadnyi et al., 2017).

3.2 The maximum and minimum principal
strain of the bone models

The femur bone model elements with the peak maximum
(tensile) principal strain above 0.9% and/or the minimum
(compressive) principal strain below −0.9% are often interpreted
as high-risk locations for the fracture yielding (irreversible
deformation) and failure (Kopperdahl and Keaveny, 1998;
Panyasantisuk et al., 2016). In addition to the maximum/
minimum principal strain, the volumes and the volume ratios of
the risky regions were also calculated and analyzed. In the current
study, values of the peak maximum principal strain, the risky
tensile bone volume, the volume ratio and the peak minimum
principal strain, the risky compressive bone volume, and the
volume ratio occurred in the medial wall defect model under
the dynamic climbing hip loads, which were 22.8%, 46,084 mm3,
17.3% and −19.4%, 50,700 mm3, and 18.8%, respectively.
Furthermore, the risky yielding regions were marked as dark
grey in the strain distribution nephograms, and the
corresponding value trends were exhibited in Figures 7–10.
From the facet of the strain distribution nephograms, the risky
tensile bone more likely appeared at the fracture surface with
extension toward the blade anchorage region while the risky
compressive bone was more likely at the blade anchorage region
with extension toward the medial and inferior femoral cortex.

3.3 The femoral head vertex displacement and
the fracture surface gap of the FE models

The femoral head vertex displacement of the FEmodels toward the
distal femur (z-axis) ranged from 4.91 ± 0.25 to 6.59 ± 0.59 mm, while
the fracture surface gaps ranged from 0.073 ± 0.006 to 0.478 ±
0.02 mm. The mean values and trends of these indicators were
shown in Figures 6C, D.

3.4 Relative instability ratios of bone wall
defect models

Owing to the stability of proximal trochanteric fractures being
largely contingent on fragments of the femoral head-neck, the femoral
shaft and implants, including the IM nail, and the helical blade, the
outcome indicators above were all taken into consideration to evaluate
the relative instability ratio of each bone wall defect model. According
to the trends of all indicators, the relative instability of the basic
fracture models was presupposed to be 0%, while the medial wall
defect model was presupposed to be 100%. Then the relative instability
order and ratios, which were exhibited in Figure 11, were as follows:
the basic fracture line model (0%), the PL wall defect model (8.8%), the
AL (15.8%), the PM (21.3%), the L (36.6%), the PML (54.6%), the AM
(78.7%), and the M wall defect model (100%).
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4 Discussion

According to the three-dimensional mapping of trochanteric
fractures lines (Zhang et al., 2020), eight trochanteric fracture
models were constructed and simulated in the current study.
Contrary to most previous relevant finite elements analysis

research, the current study adopted a more realistic irregular curve
fracture line and both static and dynamic hip contact loads, which
were further divided into walking and climbing gait cycles. The
selection of outcome indicators referred to a compelling
biomechanics review (Lewis et al., 2021), which suggested that von
Mises stress was more appropriate and widely utilized to evaluate the

FIGURE 4
The VMS values and nephograms of the IM nails under the dynamic climbing hip loadwere exhibited. (A–H) indicated the basic fracture linemodel, the PL
wall defect model, the AL, the PM, the L, the PML, the AM, and the M wall defect model, respectively. From images (A–H), the peak value of each IM model
gradually increased and the highest one of 220.13 MPa appeared in (H).

FIGURE 5
The VMS values and nephograms of the blades under the dynamic climbing hip load were exhibited. The order was the same as it was in Figure 4. From
images (A–H), the peak value of each blade model gradually increased and the highest one of 458.36 MPa appeared in (H).
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stability of the implant models, while the maximum/minimum
principal strain should be used to assess the bone models.
Therefore, to take more predictive factors into consideration about
the FE model instability, the von Mises stress (i.e., equivalent stress) of

each implant model, the maximum/minimum principal strain, tensile/
compressive volume and volume ratios of each bone model, the
displacement of the femoral head vertex, and the fracture surface
gap were calculated and analyzed.

FIGURE 6
The von Mises stress curves of the IM nails (E1) and the helical blades (E2) were exhibited in (A,B), respectively. The head vertex displacement and the
surface gaps were exhibited in (C,D), respectively. SW, SC, DW, and DC indicated the static walking, the static climbing, the dynamic walking, and the dynamic
climbing, respectively. None indicated the basic fracture model while the others indicated the same as mentioned above.

FIGURE 7
Themaximum principal strain and nephograms of the proximal fracturemodels under the dynamic climbing hip contact loads were exhibited. The order
was the same as it was in Figure 4. From images (A–H), the peak value of each bonemodel gradually increased and the highest one of 0.22824 appeared in (H).
The elements with the values above the cut-off of 0.009 were marked in dark gray.

FIGURE 8
The maximum principal strain, the risky tensile bone volume, and the volume ratio curves of the bone models were exhibited in (A–C), respectively.
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After the holistic analysis, the absolute values of all indicators
above presented nearly the same trends. When it came to a single
model, all absolute values exhibited upward tendencies when the hip
contact loads shifted from static walking, to static climbing, to
dynamic walking, to dynamic climbing. As for all eight models, all
absolute values also manifested increasing trends when the solution of
each model shifted from the basic fracture model, the PL wall defect
model, the AL, the PM, the L, the PML, and the AM, to the M wall
defect model. What’s more, the peak values frequently showed in the
medial wall defect model under the dynamic climbing hip contact
load. That is to say, it was explicit that, when compared with the lateral
wall, the medial wall played a far more significant stabilizing role. This
was also consistent with conclusions of the previous studies that the
role of the lateral wall changed extremely to becoming less important
after the IM fixation was fully utilized (Zhang et al., 2020; Shao et al.,
2021). As for the medial wall, compared with the posteromedial wall,
the anteromedial wall played a predominantly stabilizing role, which
was also a biomechanical demonstration for the theory of the

anteromedial cortex support reduction (Chang et al., 2020; Chen
et al., 2020). It indicated that, with the prevalence of the
intramedullary fixation, orthopedic surgeons should prioritize the
anteromedial wall conditions of trochanteric fractures to begin with
and endeavor to restore their cortex support to gain the most stability
out of the fracture-fixation structures in an operating theatre.

In addition, the maximum/minimum principal strain nephograms
directly showed the increasingly risky yielding regions around the
fracture surfaces and the bone sites contacting the blades, which could
also be elucidated with the unique force transmission mechanism
within the trochanteric fracture fixation structure. During the initial
post-operative period before the fracture healing, with the continuous
dynamic trade-off of loading and unloading between the bone and the
implant, peripheral loads from the hip would be conducted
simultaneously through the cortex and the bone-blade-IM nail.
Once the cortex discontinued, stress would surge at the sites
around the medial cortex defect and eventually cause the sites to
yield and even cause secondary fractures. However, with the “metal

FIGURE 9
Theminimum principal strain and nephograms of the proximal fracture models under the dynamic climbing hip contact loads were exhibited. The order
was the same as it was in Figure 4. From images (A–H), the least value of each bone model gradually decreased and the lowest one of −0.19356 appeared in
(H). The elements with the values below the cut-off of −0.009 were marked in dark gray.

FIGURE 10
Theminimumprincipal strain, the risky compressive bone volume, and the volume ratio curves of the bonemodels were exhibited in (A–C), respectively.
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lateral wall” role of the IM nail, the discontinued lateral cortex site
might suffer from little stress soar, which further had few influences on
the fracture-fixation construct stability.

As there is no definite consensus on or measurement methods of
“instability of the fracture fixation construct,” the relative instability
ratio was adopted in the current study to assess the significance
priority of each clinical common defect trochanteric wall. The
main unstable elements were set as the outcome indicators above,
and the relative ratios of the different wall defect models contributing
to the instability of the constructs were set as percentages, with the
relatively most stable one occurring in the basic fracture line model
(0%) and the relatively most unstable one occurring in the medial wall
defect model (100%). Noticeably, all relative ratios computed through
the outcome indicator absolute values of the rest of the FE models
showed the same position in the sequence order, as exhibited in
Figure 11. This finding, to some extent, supported the efficacy of the
“relative instability ratio” approach, which was put forward in this
study, to evaluate the significance level of a fracture model, an implant
model, or the assembly model of them. The approach might then
facilitate further studies to make a holistic assessment of their designed
unique models with more convincing conclusion. Interestingly, the
ratios of the AM wall defect model (78.7%) and the PM wall defect
model (21.3%) amounted to the ratio of the M wall defect model
(100%), which did not occur in the group of the L wall defect model,
the AL, nor the PL. We believe this is due to the “metal lateral wall”
role of the IM nail which shared the stability and also the ratio.

There were some strengths of the current study. Firstly, to the
best of our knowledge, this was the first study that aimed to
investigate contribution ratios of the distinct defect walls to
trochanteric fracture instability. Secondly, the material
assignment methods of combining CT-Hounsfield and gray

value allowed every model in the current study to be exactly
simulated with the realistic bone mineral quality. Thirdly, an
irregular curve fracture line and the dynamic hip contact loads
rendered the FE models closer to the real world with more
convincing conclusions. However, some limitations of this study
should also be mentioned. On the one hand, the assumption that
properties of the material were isotropic, homogeneous, and elastic
linearly was just a simplification of the reality. The boundary and
constraint of all models were quite simplified compared with that of
the actual delicate knee joint, while the exerted loads from hip
contact resulted in a dent in actual effects of hip muscles. On the
other hand, the adjacent structures and soft tissues, as well as subtle
interactions between them and femurs, were ignored in the current
study, which might lead to slight differences. Finally, because of the
intrinsic limitations of FEA-related software in simulating changes
of the bone microarchitecture, such as the cancellous bone collapse,
and thermal tensions, and deformability restrictions on each
element unit, further cadaveric experiments should be
performed to draw more accurate conclusion.

5 Conclusion

In the current study, it was demonstrated that the medial wall
played a more vital role in trochanteric hip fracture stability than the
lateral wall. As for the medial wall, it was the anteromedial wall that
undertook the pivotal stabilizing responsibility compared with the
counterpart of the posteromedial wall, which indicated that
orthopedic surgeons should attach great importance to the
anteromedial wall and restore its cortex support in an operating
theatre.

FIGURE 11
The relative instability ratio of eachmodel concerning the six outcome indicators were exhibited, and the correspondingmean values were shown in the
last row.
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