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Robust skin lesion segmentation of dermoscopic images is still very difficult.
Recent methods often take the combinations of CNN and Transformer for
feature abstraction and multi-scale features for further classification. Both
types of combination in general rely on some forms of feature fusion. This
paper considers these fusions from two novel points of view. For abstraction,
Transformer is viewed as the affinity exploration of different patch tokens and can
be applied to attend CNN features in multiple scales. Consequently, a new fusion
module, the Attention-based Transformer-And-CNN fusion module (ATAC), is
proposed. ATAC augments the CNN features with more global contexts. For
further classification, adaptively combining the information from multiple scales
according to their contributions to object recognition is expected. Accordingly, a
new fusion module, the GAting-based Multi-Scale fusion module (GAMS), is also
introduced, which adaptively weights the information from multiple scales by the
light-weighted gating mechanism. Combining ATAC and GAMS leads to a new
encoder-decoder-based framework. In this method, ATAC acts as an encoder
block to progressively abstract strong CNN features with rich global contexts
attended by long-range relations, while GAMS works as an enhancement of the
decoder to generate the discriminative features through adaptive fusion of multi-
scale ones. This framework is especially good at lesions of varying sizes and shapes
and of low contrasts and its performances are demonstrated with extensive
experiments on public skin lesion segmentation datasets.
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1 Introduction

Skin cancer is listed as one of the fastest-growing cancers in the world (Jemal, 2017) and
dermatologists usually identify lesions visually from dermoscopy images captured by
dermoscopy. However, manual identification is usually tedious and time-consuming.
Therefore, automatic skin lesion segmentation is badly needed in clinical practice, which
can assist dermatologists in further analysis.

Skin lesions often have a vast variety of lesion shapes and sizes and are often with low
contrasts (Figure 1). It means both global and local contexts are important for an effective
feature abstraction, which is also why some methods (Wu et al., 2022; Zhang et al., 2021; Xu
et al., 2021; Chen et al., 2021) combine both convolution neural network (CNN) and
Transformer (Vaswani et al., 2017): CNN gets features with rich local information while
Transformer captures the long-range relationships. They often fuse the two types of feature
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serially (Chen et al., 2021), or after the last stage of the Transformer
branch (Zhang et al., 2021; Xu et al., 2021; Wu et al., 2022).

However, such fusions may not utilize the Transformer
effectively. Transformer in principle computes the affinities as
attention for long-range relationships. The size and shape
variations are significant symbols of lesions (Figure 1), which
means a more effective fusion of them can be obtained if
applying Transformer as an augmentation to different scales at
different encoding stages during the progress of CNN. This
progressive boost is very important, especially when facing the
low-contrast appearances of lesions.

Therefore, we argue that the better way is to take the
Transformer as a progressive attention tool to enhance the long-
range information gradually and consequently the feature responses
of lesions will be significantly enhanced. Accordingly, a new feature
fusion module, the Attention-based Transformer-And-CNN fusion
module (ATAC), is proposed. It can fulfill the attention-based fusion
progressively in multiple scales which is different from the
traditional fusion applied in tandem or after the last stage.

Effectively decoding from the strong features is also important
for a successful segmentation, where the fusion of features from
different scales is often considered an effective idea. Recent studies
show that different scales may have different weights in fusion and
features at suboptimal scales may reduce segmentation accuracy
(Chen et al., 2016; Shi et al., 2018), e.g., large scales are more
important for bigger lesions. Recent methods (Xu et al., 2021;
Dai et al., 2022) fuse the multi-scale features with weights
computed from several additional convolutions and thus increase
the computation complexity.

We prefer a light-weighted scheme to fuse the multi-scale
features. Considering that a gating mechanism is effective in
filtering the features with fewer parameters, this paper proposes a
newmulti-scale fusionmodule, the GAting-basedMulti-Scale fusion
module (GAMS), to aggregate the multi-scale features adaptively by
the weights from gating.

The two fusion modules ATAC and GAMS lead to a new skin
lesion segmentation method. Built on the popular U-Net
(Ronneberger et al., 2015) structure, it takes ATAC as an
encoder block for the effective abstraction of features from
both global and local contexts while adopting GAMS as an
enhancement to the decoder for robust exploration of the
multi-scale features. Experiments show that this method can
accurately locate the lesions of different lesion shapes and
sizes and low contrasts.

The main contributions can be summarized as follows.

• A novel CNN and Transformer fusion module, ATAC, which
takes Transformer features as affinity estimation to attend
CNN features for progressively boosting the global contexts.

• A novel multi-scale fusion module, GAMS, which takes
weighted contributions from multi-scale features by gating
to fuse information from different contexts.

• A new encoder-decoder-based skin lesion segmentation
network for single images, which integrates both ATAC
and GAMS as the encoder block and decoder enhancement
separately and thus can reach robust segmentation of skin
lesions without the affection of size and shape variations and
low contrasts.

FIGURE 1
Some typical cases in dermoscopic images for skin lesion segmentation. (A) Large variety in sizes; (B) large variety in shapes; (C) hair occlusion; (D)
low contrast between lesions and backgrounds.
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2 Related work

2.1 Skin lesion segmentation

Traditional skin lesion segmentation methods are mainly
based on manually defined traditional features, such as color
(Azad et al., 2015; Ashour et al., 2018), shape (Riaz et al., 2018;
Silveira et al., 2009), and threshold (Garcia-Arroyo and Garcia-
Zapirain, 2019; Pereira et al., 2019), which are not robust and
stable. Nowadays many CNN-based methods have been explored
for skin lesion segmentation (Yuan and Lo, 2017; Goyal et al.,
2020; Yuan et al., 2017; Bi et al., 2017). The popular way is the
U-Net (Ronneberger et al., 2015) based idea (Taghanaki et al.,
2019; Zhang et al., 2019; Azad et al., 2019; Jha et al., 2020). For
example, DoubleU-Net (Jha et al., 2020) uses two U-Net
architectures in sequence. Azad et al. (2019) encoded densely
connected convolutions into the bottleneck of the encoder-
decoder.

More recently, Transformers (Vaswani et al., 2017;
Dosovitskiy et al., 2020) have been demonstrated
extraordinary capabilities for skin lesion segmentation (Wu
et al., 2022; Zhang et al., 2021; Xu et al., 2021; Wang J. et al.,
2022, 2021; Reza et al., 2022; Cao et al., 2022). For example, Wang
J. et al. (2022), Wang et al. (2021) used boundary information to
address ambiguous boundary problems of skin lesion
segmentation. Chen et al. (2021) combined CNN and
Transformer serially, which may miss some important
information required by the successive modules.

Parallel adaption of both CNN and Transformer is also
proposed (Wu et al., 2022; Zhang et al., 2021; Xu et al., 2021).
Possible fusion methods include concatenation (Wu et al., 2022) and
some attention-inspired mechanisms, such as convolution-based
attention (Zhang et al., 2021) or direct attention-based supervision
(Xu et al., 2021). However, all these fusions happen after the last
stages of the Transformer branch and thus may not fully explore the
rich contexts from the multi-scale features robustly.

FIGURE 2
The pipeline of the proposed method. Building on the U-Net and incorporating both CNN and Transformer, it includes two new fusion modules,
ATAC and GAMS, into the encoder and decoder respectively for progressively boosting the feature during abstraction and adaptively combining the
features for classification respectively. Note: PVT stands for PVT v2, which supplies the Transformer features to ATAC.

FIGURE 3
Three different fusion schemes. (A) Serial fusion; (B) Last-stage Fusion; (C) Attentive fusion. Note: 1) CNN and Transformer can change their orders in
the serial fusion; 2) ⊘ in (B) represents the fusion operation.
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2.2 Multi-scale feature aggregation

Some nature image orientedmethods (Zhao et al., 2017; Chen et al.,
2018; Lin et al., 2017) first extract multi-scale features by pyramid
pooling module (PPM), pyramid atrous convolutions, or feature
pyramid network (FPN) and then combine these features to predict
segmentation results. For skin lesion segmentation, researchers usually
first extract multi-scale features by atrous convolution or standard
convolution and then fuse them using concatenation or element-wise
addition (Zhang et al., 2019; Liu et al., 2019; Cui et al., 2019). Recently,
Xu et al. (2021) and Dai et al. (2022) fused multi-scale features by
learned weights which are computed by additional convolutions.
However, their methods increase the training parameters and
consequently the computational complexity.

3 Methods

Overall, our proposed framework (Figure 2) takes the U-shaped
encoder-decoder structure. The encoder adopts ATAC as a building
block, which gradually fuses the Transformer and CNN features for
feature abstraction. The decoder consists of the normal decoder and
its enhancement GAMS. The normal decoder is skipped and
connected from the encoder as the typical U-Net, while GAMS
takes the features from the decoder for adaptive fusion.

The CNN features of images input to the encoder are attended
by the Transformer features stage by stage. Gradually, globally
augmented CNN features can be obtained. Then the normal
decoder is applied to fulfill the final classification (Prediction 1),
while the multi-scale decoder features are also input to GAMS so
that effective features aggregated by adaptive fusion are generalized
(Prediction 2). The final prediction is based on the results from both
predictions.

The four-stage PVT v2 (Wang W. et al., 2022) supplies the
Transformer features to ATAC. The normal decoder is made up of
up-sampling and two 3 × 3 convolution, as the decoder of UNet
(Ronneberger et al., 2015).

Now let’s discuss the details of ATAC and GAMS.

3.1 The attention-based transformer-and-
CNN fusion module

3.1.1 Why progressive attention?
Generally, CNN is good at capturing features with rich local

details, while Transformer can capture long-range dependence vital
to distinguish the target from the background. Therefore, to
aggregate information on features from both CNN and
Transformer, there are two typical ways of fusion (Figures 3A,B).
One can be called serial fusion which treats either CNN or
Transformer as neighboring branches and then serially fuses their
features. The other can be called last-stage fusion which treats the
CNN and Transformer as two parallel branches and fuses their
features finally after the last stage of the Transformer branch.

However, serial fusion may not obtain robust features after the
second branch because of the possible information loss brought by the
filtering effect of the first branch. The last-stage fusion tries to keep all
information from the two branches. But the combination after the last
stages of the Transformer branch may mess up the information from
different scales of the Transformer and cannot effectively utilize it. A
more efficient utilization of Transformer features is expected.

Transformer is different from CNN in computing the
features. Transformer is configured with the multi-head self-
attention for learning the long-range dependencies of image
patches. This attention mechanism means that Transformer
actually captures the patch affinities globally. The multi-scale

FIGURE 4
The structure of ATAC. Pooling represents the regular max-pooling operation with the pooling size 2. Maxpool and AvgPool represent max-pooling
operation and average-pooling operation along the channel axis respectively.
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Transformer branch supplies rich affinity information from
different scales and thus can be used to boost the CNN
features progressively as the general attention mechanism for
more robust exploration and fusion. Therefore, a novel fusion
method called attentive fusion can be obtained (Figure 3C).

Let’s revisit the principle of the multi-head self-attention
mechanism in Transformer.

Given a set ofN tokens T � t1, t2, . . . , tN{ }where tn ∈ Rd is the d-
dimension feature vector of the nth token (n = 1, . . . , N). The multi-
head self-attention of Transformer first computes the query Qi, key
Ki and value Vi of the i-th head of all p heads by a linear layer L(·),

Qi � L T( ), Ki � L T( ), Vi � L T( ). (1)
Then it computes the attention matrix Ai ∈ RN×N, representing
affinities between tokens,

Ai � S QiKi
T��

ds

√( ) (2)

where S represents Softmax and ds is the column dimension ofQi, Ki

and Vi. After, the feature map of the ith head, Hi ∈ RN×ds , can be
computed as

Hi � AiVi. (3)

The final feature map L is obtained by a linear layer after
concatenating K all head feature maps,

L � L K H1, . . . , Hp( )( ). (4)

This principle shows that Transformer essentially models the
patch affinity. Therefore, its features can be treated as affinities
whose global information can be utilized to boost CNN features.

Consequently, to better benefit from Transformer, the proposed
attentive fusion is installed as the Transformer attended module ATAC
to boost the long-range relations inside the CNN features from different
stages and thus progressively dig up significant large-scale contexts. This
design fits well with lesions: Their varying sizes and shapes need global
contexts to capture, especially considering their possibly low contrasts.

3.2 The structure of ATAC

ATAC is designed as follows (Figure 4). First, the feature maps F
is 3 × 3 convoluted twice for extracting CNN feature Fc, and then
regular max-pooling (pooling size is 2) is applied to integrate
features as Fp ∈ Rc×h×w (c, h, w represent channel dimension,
height and width of feature map respectively),

FIGURE 5
The structure of GAMS.

FIGURE 6
Comparison of the DSC curves under different thresholds on ISIC 2018 and PH2.
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Fp � P C3×3 C3×3 F( )( )( ), (5)
where C3×3 and P indicate 3 × 3 convolution and regular max-
pooling operation respectively.

At the same time, the corresponding scale Transformer features
Ft ∈ Rc×h×w from the PVT v2 are first mapped to the features
Wm ∈ R1×h×w and Wa ∈ R1×h×w by max-pooling Mm and
average-pooling Ma along the channel axis for integrating
information across all channel dimensions, which can be effective
in highlighting informative regions. Then they are added to get the
fused features W ∈ R1×h×w

W � Ma Ft( ) +Mm Ft( ). (6)
Then, the attention is applied. Here, fused Transformer features

W are embedded into CNN features Fp by element-wise
multiplication to get enhanced CNN features Ff. Here, Fp and W
have the same width and height, so the element-wise multiplication
is broadcasted along each channel.

Ff � W ⊙ Fp, (7)
where ⊙ indicates Hadamard product. The output features Fo is
finally obtained by 1 × 1 convolution of Ff.

FIGURE 7
Features from the general ablation study.

FIGURE 8
Features from the ablation study on the fusion methods in ATAC.
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3.3 The GAting-based multi-scale fusion
module

Contexts from different scales may have different influences
on object perception. For example, their large scales are more
important for bigger lesions and vice versa. It is better to have
a weighting scheme to automatically utilize such differences.
Considering gating is a very multi-scale filter for such a purpose, this
paper introducesGAMS (Figure 5) to improve the feature discrimination.

In GAMS, the input featuremaps are first rescaled to the same scale
as Si(i ∈ {1, . . . , n}) by bilinear upsampling (In our experiment, n is set
to four according to the four stages of the normal decoder). Then 1 × 1
convolution C1×1 is applied to reduce the depth of the features to 1.
Afterwards, the mapped features are fused by concatenating as ~S,

~S � K C1×1 S1( ), C1×1 S2( ), . . . , C1×1 Sn( )( ). (8)
Then, the gating map W can be obtained by activation
function Softmax S,

W � S ~S( ). (9)

W in Eq. 9 is further divided into W1, W2, . . . , Wn as the
corresponding weights for the n scales. These weights are used to
weighted all input features, which are further convoluted by 1 × 1 as
the aggregated output features O,

O � C1×1 ∑n
i�1

Wi ⊙ Si⎛⎝ ⎞⎠. (10)

3.4 Loss function

The overall loss is set to be the weighted average of the losses
from both predictions as shown in Figure 2,

Lall � λLGAMS + 1 − λ( )LNormal, (11)
where: 1) λ denotes the weight (λ = 0.2 in the experiment); and
2) LGAMS and LNormal are the losses from GAMS and the normal
decoder respectively. Each loss Li (i ∈ {GAMS, Normal}) is estimated
by the combination of both weighted binary cross-entropy (WBCE)
and weighted Intersection over Union (WIOU),

Li � lwIOU p, p̂( ) + lwBCE p, p̂( ), (12)
where: 1) p and p̂ indicate the ground truth and prediction
respectively; and 2) lwIOU(·) and lwBCE(·) denote the WBCE and
WIOU losses respectively.

4 Experiments

4.1 Setup

The system is built by PyTorch with a single NVIDIA GeForce
GTX 2080Ti GPU. The epoch is 100 and Adam is the optimizer
with an initial learning rate of 10–4. For PH2, the batch size is set
to 8. And for the other three datasets, the batch size is set to 16. All
images are re-sized to 256 × 256 as input with various dataTA
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augmentations, including vertical and horizontal flip, and
random rotation.

The proposed method is evaluated on four public skin lesion
segmentation datasets, ISIC 2018 (Codella et al., 2019), ISIC
2017 (Codella et al., 2018), ISIC 2016 (Gutman et al., 2016) and
PH2 (Mendonça et al., 2013), where the dataset division for ISIC
2017 is the same as the previous study (Reza et al., 2022) with those
of the other three following the setting in FAT-Net (Wu et al., 2022).
Details of four datasets used in our experiments are described below.

• ISIC 2016 is provided by the international skin imaging
collaboration (ISIC). There are a total of 1279 RGB skin
lesions images, of which 900 are used for training and
379 are used for testing.

• ISIC 2017 is also provided by ISIC, which includes 2000 RGB
skin lesion images as the training set with masks for
segmentation. We randomly divide the original dataset into
a training set, validation set, and testing set in a ratio of 7:1:2.

• ISIC 2018 is also collected by ISIC, which contains 2594 RGB
skin lesions images. Like the ISIC 2017 data set division, we
use 1815 samples for the training set, 259 samples for the
validation set, and 520 samples for the testing set.

• PH2 is provided by the dermatology service of hospital
Pedro Hispano, Matosinhos, Portugal, which includes
200 RGB skin lesions images. Like ISIC 2017 and ISIC
2018 data set division, we randomly divide them into
140 images as the training set, 20 images as the
validation set, and 40 images as the testing set.

The proposed method are compared with some state-of-the-
arts methods, including eight CNN-based models (U-Net
(Ronneberger et al., 2015), AttU-Net (Schlemper et al., 2019),
CPFNet (Feng et al., 2020), DAGAN (Lei et al., 2020), MCGU-Net
(Asadi-Aghbolaghi et al., 2020), (Asadi-Aghbolaghi et al., 2020),
SBPS (Lee et al., 2020), iFCN (Öztürk and Özkaya, 2020) and
CKDNet (Jin et al., 2021)) and three Transformer-based models
(TransUNet (Chen et al., 2021), FAT-Net (Wu et al., 2022) and
TMUNet Reza et al. (2022)). Among CNN-based models, U-Net
and AttU-Net are basic medical image segmentation frameworks.
DAGAN, iFCN, and CKDNet are specially designed for skin
lesion segmentation. CPFNet, MCGU-Net, and SBPS are
excellent segmentation networks in recent years, solving the
problems of large size and structure variation and boundary
ambiguities, which can be applied to various types of medical
images. Among Transformer-based models, TMUNet and FAT-

Net fuse CNN and Transformer features at the last stage, while
TransUNet fuses CNN and Transformer features serially.

4.2 Evaluation metrics

Five widely used metrics are employed to quantitatively evaluate
the segmentation performances, including the Sensitivity (SE)
(Yerushalmy, 1947), (Yerushalmy, 1947), Specificity (SP)
(Yerushalmy, 1947), Intersection over Union (IoU) (Everingham
et al., 2015), Dice Similarity Coefficient (DSC) (Dice, 1945), (Dice,
1945)and Accuracy (ACC) (per a la Normalització, 1994). They are
defined as:

SE � TP

TP + FN
, (13)

SP � TN

TN + FP
, (14)

IoU � TP

TP + FP + FN
, (15)

DSC � 2 · TP
2 · TP + TP + FN

, (16)

ACC � TP + FN

TP + TN + FP + FN
, (17)

where: 1) TP (True-Positive) represents the number of pixels that
are correctly classified as lesions; 2) TN (True Negative)
represents the number of pixels that are correctly classified as
backgrounds; 3) FP (False Positive) represents the number of
pixels which are falsely classified as lesions; and 4)FN (False
Negative) represents the number of pixels which are falsely
classified as backgrounds.

4.3 Ablation studies

4.3.1 General ablation study
First, the general ablation study for the proposed modules and

method for skin lesion segmentation is conducted. U-Net is taken as
the baseline. ATAC and GAMS are added to the baseline as different
configurations which run on the same environment with the same
data augmentations for a fair comparison.

• Baseline The backbone network using U-Net;
• Baseline + ATAC Baseline but replacing its encoder block with
ATAC;

TABLE 2 Quantitative results for the ablation study on the fusion method in
ATAC. The best results are shown in bold.

Method ISIC 2018 PH2

ACC IoU DSC ACC IoU DSC

Concatenation 96.07 83.49 91.00 97.91 93.23 96.50

Addition 96.07 83.27 90.87 97.97 93.40 96.59

Attentive (Ours) 96.24 83.73 91.15 98.14 93.93 96.87

TABLE 3 Quantitative results for the ablation study on the encoder. The best
results are shown in bold.

Method ISIC18 PH2

ACC IoU DSC ACC IoU DSC

CNN encoder 95.50 80.80 89.38 97.22 91.17 95.38

Transformer encoder 96.17 83.61 91.07 97.79 92.99 96.37

Fusion encoder (Ours) 96.24 83.73 91.15 98.14 93.93 96.87
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• Baseline + GAMS Baseline with the additional GAMS in the
decoder;

• Baseline + ATAC + GAMS Our full method.

Table 1 shows that either ATAC or GAMS improves
the performance of the Baseline, demonstrating the
effectiveness of each individual component. Our full
model further obtains about 0.84% or 2.93%
improvements than the model with ATAC or GAMS alone
respectively in IoU on ISIC 2018. Similar observations can
also be found on PH2. The DSC values under various
thresholds are also accumulated (Figure 6), which
demonstrates the performance gains by ATAC, GAMS, and
the full model over Baseline with the full model being the best
among all methods.

The feature maps output by the third stage of the
normal decoder in different configurations are also visualized
(Figure 7). We randomly selected one-channel feature maps for
different configurations, which are uniformly resized to 128 ×
128 for better display. The lesions are of different sizes and shapes
with the smaller ones in low contrast. ATAC can significantly
remove the background distractions because of the global
enhancement from Transformer, while GAMS further
improves the object responses, especially for the smaller
lesion, thanks to its varying weight scheme. Their
combination, i.e., the full model, obtains the best result with
the strongest maps.

4.3.2 Ablation study on the fusion method in
ATAC

The ablation study on the fusion method in ATAC is also
undertaken (Table 2). Two widely used fusion methods,
concatenation and addition, are compared with our proposed
attentive fusion, where multiplication operations of ATAC are
substituted with concatenation or addition separately. The
attentive method achieves the best performances on both ISIC
2018 and PH2 among all methods.

The features abstracted with different fusion operations are also
extracted (Figure 8). The method of feature visualization is the same as
in Figure 7. The responses from attentive fusion are stronger and more
focused than the other two operations, which also demonstrates the
importance of attentive fusion for robust lesion segmentation.

4.3.3 Ablation study on the encoder

To further verify the effectiveness of fusion between CNN and
Transformer features, an ablation study to compare with only CNN
features or only Transformer features in the encoder is also
conducted. We replace ATAC with the encoder block of U-Net
for only using CNN features. And we replace ATAC with the block
of PVT v2 for only using Transformer features. As can be seen in
Table 3, our fused encoder achieves the best performance compared
with CNN or Transformer encoder alone.

FIGURE 9
Qualitative comparison for the ablation study on the encoder.
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In addition, the segmentation results of some representative
images are visualized in Figure 9, including the lesions with
various sizes, irregular shapes, and low contrast. The first and
second rows show that our fusion encoder yields the best
prediction for the smallest or largest lesions. The third row
shows the segmentation results for lesions with low contrast.

It can be seen that both the CNN encoder and Transformer
encoder exhibit over-segmentation, while our fusion encoder
achieves the best performance. The last row proves that our
fusion encoder segments lesions more accurately for irregularly
shaped lesions.

Now, we will discuss the comparisons with the four datasets.

TABLE 4 Statistical comparison of the segmentation results on ISIC 2018. The best results are shown in bold.

Model type Method Year DSC (%) IoU (%) ACC (%) SE (%) SP (%)

CNN U-Net 2015 85.45 77.33 94.04 88.00 96.97

AttU-Net 2019 85.66 77.64 93.76 86.00 98.26

CPFNet 2020 87.69 79.88 94.96 89.53 96.55

DAGAN 2020 88.07 81.13 93.24 90.72 95.88

CKDNet 2021 87.79 80.41 94.92 90.55 97.01

Transformer TransUNet 2021 88.88 81.85 95.94 90.08 97.89

FAT-Net 2022 89.03 82.02 95.78 91.00 96.99

TMUNet 2022 90.59 82.80 96.03 90.38 97.46

Ours 2022 91.15 83.73 96.24 88.75 98.33

TABLE 5 Statistical comparison of the segmentation results on ISIC 2017. The best results are shown in bold.

Model type Method Year DSC (%) IoU (%) ACC (%) SE (%) SP (%)

CNN U-Net 2015 89.64 81.22 96.03 86.22 96.80

AttU-Net 2019 89.26 80.60 95.96 84.31 98.86

CPFNet 2020 90.97 83.44 96.60 86.10 99.21

DAGAN 2020 84.25 75.94 93.04 83.63 97.16

MCGU-Net 2020 89.27 80.62 95.70 85.02 98.55

Transformer TransUNet 2021 91.54 84.39 96.67 90.54 98.19

FAT-Net 2022 91.09 83.64 96.54 88.79 98.47

TMUNet 2022 91.64 84.57 96.60 91.28 97.89

Ours 2022 92.47 86.02 97.04 91.59 98.39

TABLE 6 Statistical comparison of the segmentation results on ISIC 2016. The best results are shown in bold.

Model type Method Year DSC (%) IoU (%) ACC (%) SE (%) SP (%)

CNN U-Net 2015 88.84 81.84 94.66 90.16 96.56

AttU-Net 2019 88.75 81.58 94.14 90.31 96.45

CPFNet 2020 90.23 83.81 95.09 92.11 95.91

DAGAN 2020 90.85 84.42 95.82 92.28 95.68

SBPS 2020 90.42 84.34 94.96 92.43 96.13

Transformer TransUNet 2021 92.12 85.40 95.49 93.69 96.19

FAT-Net 2022 91.59 85.30 96.04 92.59 96.02

TMUNet 2022 92.20 85.54 95.60 92.32 96.89

Ours 2022 93.00 86.92 96.06 92.80 97.35
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FIGURE 10
Visual comparison of the segmentation results on ISIC 2018, ISIC 2017, ISIC2016 and PH2.

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Guo et al. 10.3389/fbioe.2023.1057866

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1057866


4.4 Evaluation on ISIC 2018

4.4.1 Quantitative results
The quantitative results of existing methods are reported by Lin

et al. (2022); Wu et al. (2022); Reza et al. (2022) (Table 4). Our method
achieves the highest scores in all metrics except SEwith a slight decrease.

4.4.2 Qualitative results

Figure 10 shows some visualization results of different methods. As
can be seen, the lesion has low contrast and ambiguous boundary in the
last row of ISIC 2018. The compared methods exhibit under-
segmentation. In addition, FAT-Net and TransUNet can struggle to
localize a complete lesion because of possible information loss brought

by serial fusion and last-stage fusion. Our method benefits from
information fusion at different encoder and decoder stages, which
can boost feature representation, and thus our method achieves
more accurate segmentation results than the compared methods.

4.5 Evaluation on ISIC 2017

4.5.1 Quantitative results
The experimental results of DAGAN and MCGU-Net are

reported by TMUNet (Reza et al., 2022) with the rest results
computed by us according to their released codes (Table 5). Our
method also achieves the highest scores in most metrics. In addition,
compared with the latest method TMUNet, ours is 0.83%, 1.45%,
and 0.44% higher in DSC, IoU, and ACC, respectively.

TABLE 7 Statistical comparison of the segmentation results on PH2. The best results are shown in bold.

Model type Method Year DSC (%) IoU (%) ACC (%) SE (%) SP (%)

CNN U-Net 2015 89.36 84.10 92.33 91.25 95.88

AttU-Net 2019 90.03 85.82 92.76 92.05 96.40

CPFNet 2020 95.35 91.12 97.25 95.01 98.19

DSNet 2020 91.97 87.15 94.82 96.01 96.08

iFCN 2020 93.21 87.56 96.08 96.13 95.91

Transformer TransUNet 2021 96.02 92.35 97.62 96.84 97.95

FAT-Net 2022 94.40 89.62 97.03 94.41 97.41

TMUNet 2022 92.46 85.97 95.49 93.21 96.45

Ours 2022 96.87 93.93 98.14 97.17 98.54

FIGURE 11
Failure examples of the proposed method.
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4.5.2 Qualitative results

Figure 10 shows that our method obtains more accurate results
than other methods on ISIC 2017. In the last row of ISIC 2017, the
lesion has hair interference. But, apparently, our method is better
than other compared methods. It is due to ATAC can effectively
utilize the long-range contexts from Transformer, which helps to
distinguish different classes.

4.6 Evaluation on ISIC 2016

4.6.1 Quantitative results
The quantitative results of existing methods are reported by

FAT-Net (Wu et al., 2022) except that those of TransUNet and
TMUNet are computed by us according to their released codes
(Table 6). Ours again achieves the highest scores in most
metrics.

4.6.2 Qualitative results

Figure 10 gives some visual results. As shown in the first and second
rows of ISIC 2016, the lesions exhibit a large variation in sizes. But while
credit should be given to the fusion of GAMS in different scales of the
decoding stage, our method can detect lesions more accurately than
other methods, even if they are very small or large.

4.7 Evaluation on PH2

4.7.1 Quantitative results
The quantitative results of existingmethods are fromFAT-Net (Wu

et al., 2022), except for CPFNet, TransUNet, CPFNet, and TMUNet,
which are computed by us according to their codes (Table 7). Our
method again achieves the highest scores for all metrics.

4.7.2 Qualitative results

As can been seen in PH2 of Figure 10 there are many details
around boundary of these lesions. But the boundary obtained by our
method is more accurate and closer to the ground truth than other
methods. This advantage depends on the strong feature
representation capabilities of ATAC.

4.8 Failure cases of the proposed method

Although our method is better than the current mainstream
segmentation methods, some challenges are still not solved.
Figure 11 shows some failure examples. It can be observed that
these lesions have very complex boundary regions (see the first,
third, and sixth columns) and serious noise interference (see the
second, fourth, and fifth column). Our method can basically detect
the lesion locations. But in these complex scenes, our method gets
poor segmentation results because it is difficult to obtain robust
feature representation to distinguish different classes.

5 Conclusion

This paper aims at effective fusion policies for robust skin lesion
segmentation from dermoscopic images and proposes a newmethod. Two
new fusion modules, ATAC and GAMS, are incorporated in its encoder
and decoder for robust feature abstraction and further classification
separately. ATAC acts as the encoder block, which takes the
Transformer to attend CNN for augmentation of global contexts in
different stages. This design makes the abstracted features better fitted
for the size and shape of varying lesions, especially when they are in low
contrast. GAMS works as an enhancement to the normal decoder, which
adaptivelyweights the features ofmultiple scales by gating. Thismodule can
help obtain features characterized for different objects in low complexity
and highly discriminative for robust final inference. Quantitative and
qualitative experiments demonstrate the efficacy of the proposed method.

However, ambiguous boundaries of lesions are still challenging. In
addition, hair covering the lesions may also distract the model and thus
affect the segmentation performances. In the future, we will study those
problems and propose more robust methods accordingly.
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