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Background: Osteoporosis is a common degenerative disease with high
incidence among aging populations. However, in regular radiographic
diagnostics, asymptomatic osteoporosis is often overlooked and does not
include tests for bone mineral density or bone trabecular condition. Therefore,
we proposed a highly generalized classifier for osteoporosis radiography based on
the multiscale fractal, lacunarity, and entropy distributions.

Methods: We collected a total of 104 radiographs (92 for training and 12 for
testing) of lumbar spine L4 and divided them into three groups (normal,
osteopenia, and osteoporosis). In parallel, 174 radiographs (116 for training and
58 for testing) of calcaneus from health and osteoporotic fracture groups were
collected. The texture feature data of all the radiographs were pulled out and
analyzed. The Davies–Bouldin index was applied to optimize hyperparameters of
feature counting. Neighborhood component analysis was performed to reduce
feature dimension and increase generalization. A support vectormachine classifier
was trained with only the most effective six features for each binary classification
scenario. The accuracy and sensitivity performance were estimated by calculating
the area under the curve.

Results: Interpretable feature trends of osteoporotic pathological changes were
depicted. On the spine test dataset, the accuracy and sensitivity of binary classifiers
were 0.851 (95% CI: 0.730–0.922), 0.813 (95% CI: 0.718–0.878), and 0.936 (95%
CI: 0.826–1) for osteoporosis diagnosis; 0.721 (95% CI: 0.578–0.824), 0.675 (95%
CI: 0.563–0.772), and 0.774 (95% CI: 0.635–0.878) for osteopenia diagnosis; and
0.935 (95% CI: 0.830–0.968), 0.928 (95% CI: 0.863–0.963), and 0.910 (95% CI:
0.746–1) for osteoporosis diagnosis from osteopenia. On the calcaneus test
dataset, they were 0.767 (95% CI: 0.629–0.879), 0.672 (95% CI: 0.545–0.793),
and 0.790 (95% CI: 0.621–0.923) for osteoporosis diagnosis.

Conclusion: This method showed the capacity of resisting disturbance on lateral
spine radiographs and high generalization on the calcaneus dataset. Pixel-wise
texture features not only helped to understand osteoporosis on radiographs better
but also shed new light on computer-aided osteopenia and osteoporosis
diagnosis.
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1 Introduction

Nearly 50% of women and 20% of men suffer from osteoporotic
fractures in their lifetime (Office of the Surgeon General (US), 2004;
Yamamoto et al., 2020). Asymptomatic osteoporosis often remains
overlooked or misdiagnosed until a low-trauma trunk fracture
occurs, which leads to hospitalization (Tu et al., 2018). A total of
8.9 million fractures inflicted by osteoporosis occur worldwide each
year, causing a significant burden on social health and the economy
(Johnell and Kanis, 2006). The widely accepted method of screening
for osteoporosis, which involves assessing bone mineral density
(BMD) through dual-energy X-ray absorptiometry (DXA), is
unable to reach the majority of the high-risk population. This is
not only due to DXA’s low availability and cost but also the concern
of the X-ray dosage and the low screening rate of <10% in the US
(Amarnath et al., 2015). While in China, only 4.3% of women
aged ≥50 years have undergone testing, even less women in rural
areas are subjected to test, accounting for only 1.9% (National
Health Commission of China, Epidemiological investigation of
osteoporosis in China, 2018). In addition, acute respiratory
distress syndrome such as COVID-19 and glucocorticoid therapy
could lead to osteoporosis directly and indirectly (Tang, 2022).
Overall, there is a need for an easy-to-use screening tool for
osteoporosis.

With the advance in machine learning (ML) (Hassouni et al.,
2017), especially deep learning (DL) (Areeckal et al., 2018a; Tecle
et al., 2020; Yamamoto et al., 2020; Zhang et al., 2020), radiographic
images can be used to diagnose osteoporosis, whereas the multilayer
architecture of DL models result in several shortcomings. First, the
interpretability of a model is expected. Whether we can replace
physician intelligence with a DL model trained from a labeled
dataset largely depends on its interpretability for clinicians
(Smets et al., 2021). Nevertheless, the state-of-the-art DL studies
lack solid clinical implications (Smets et al., 2021). Second, the
reliability of multilayer DL models relies on the quantity and the
quality of the whole labeled dataset. For complex DL model training,
thousands of well-defined images are commonly required to avoid
overfitting and inconsistent prediction (Scanlan et al., 2018; Xiao
et al., 2020). In practice, diagnosing and disclosing the essential
difference between health and osteoporotic bone trabecular
structure on a limited sample size is a big challenge.

Indeed, diagnostic reasoning is derived from the first principle
(Reiter, 1987). According to pathophysiology, the osteoporotic
fracture risk is aroused by the loss of bone tissue (Cosman et al.,
2014; Smets et al., 2021). From the microarchitectural point of view,
individual 3D trabecular plates of bone are lost as a microscopic
representation of bone loss, leaving an architecturally weakened
structure with significantly reduced mass (Smets et al., 2021).
Referring to histomorphometry, the 3D trabecular bone structure
changes correlate with the 2D fractal descriptor of their projections
(Scanlan et al., 2018). Further research has demonstrated that the
self-similarity parameter of the 3D fractal character holds an
influencing factor of 0.5 on its 2D projection. In prior studies
(Jennane et al., 2001; Yger, 2014; Palanivel et al., 2020), textual

features such as fractal or lacunarity inferred from
histomorphometry were successfully accounted for osteoporosis.
However, most of them focused on homogeneous features such
as fractal dimension measured by fractal Brownian motion (fBm)
(Harrar et al., 2013; Hassouni et al., 2017), which could not describe
a heterogeneous texture pattern. Studies on microarchitecture have
shown the episodic nature of osteoporotic lesions (Greenwood et al.,
2018; Hussain and Han, 2019). The subtle trabecular architectural
changes induce a negligible difference in spatial dispersion patterns,
especially in the osteopenia stage (Jennane et al., 2001). Therefore,
an interpretable and pixel-level detection method can be a reliable
tool to identify osteoporotic characterization on radiographs at an
early stage, providing a better understanding of the pathological
process of osteoporosis via texture features. Thus, to the best of our
knowledge, no work has been devoted to pairwise feature
comparison and classification across normal, osteopenia, and
osteoporosis on spine X-ray images.

In this study, we analyzed clinical lateral vertebral lumbar spine
radiographs. The whole soft tissue around the tummy, intestinal gas,
and even the patient’s waist belt are all superimposed in spine
radiographs. In parallel, calcaneus radiographs from the textural
characterization of a bone (TCB) challenge dataset were also
investigated since these images have a clean bone texture with
less routine clinical exam coverage. To distinguish osteoporotic
radiographs from healthy ones in two different lesion sites, we
customized the image enhancement process for those special
artifacts and synthesized multiscale pixel-wise fractal distribution,
multiscale pixel-wise entropy distribution, and global lacunarity.
The six most influential features out of 11 were selected to train
support vector machine (SVM) classifiers to achieve high
generalization, which could differentiate normal, osteopenia, and
osteoporosis cases. In the process of classifier construction, we
aimed to

i) Interpret pixel-wise feature trends to better understand
osteoporosis’s pathogenesis and train a feature-based SVM
classifier for each osteoporotic binary classification scenario

ii) Evaluate the classification performance on a triple-class
problem, normal, osteopenia, and osteoporosis, for
the clinical dataset, and a binary class problem for the TCB
dataset

iii) Compare the proposed classifier to the other two kinds of
models, the other feature-based classifiers in the TCB
ranking, and the latest DL-based classifiers

2 Methodology

The description of the entire operating procedure fromX-rays to
diagnosis can be represented by flowchart modules (Figure 1). For
different image sources, identical manipulation steps were taken.
Those steps included image preparation, enhancement, feature
extraction, scale selection, feature selection, SVM training, and
validation. However, due to different intrinsic artifacts introduced
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in image acquisition, differential processing parameters and
hyperparameters were applied.

2.1 Data acquisition and partition

Two different kinds of radiograph data were collected. One was
the lateral radiograph of the lumbar spine from clinical dataset (IRB
code: SH9H-2021-T94-2.) of Shanghai Ninth People’s Hospital.
Informed consent from patients was exempted due to the
retrospective nature of this study. The inclusion criteria were 1)

osteopenia and osteoporosis in women aged ≥50 years. They were
identified as postmenopausal by radiologists; 2) all subjects had
undergone lateral lumbar spine radiography and DXA examinations
within 1 month without any other bone treatments in between.
According to BMD results (Cosman et al., 2014), all subjects’
radiographs were categorized into three groups which were the
normal group (n = 44) with −1 < T-score, the osteopenia group (n =
28) with −2.4 ≤ T-score ≤ −1, and the osteoporosis group (n = 32)
with T-score ≤ −2.5.

The other was a lateral calcaneus radiograph from the TCB
challenge dataset (Overview, 2022). It was a region of interest (ROI)
image set in the trabecular bone of the calcaneus for the evaluation of
osteoporosis diagnostic methods. The data used in this study
included those of 87 healthy and 87 osteoporotic (with fracture)
subjects.

For clinical data, we semi-manually labeled the ROI for the
following texture analysis. We utilized MathWorks MATLAB
9.11.0.1769968 to program our labeling tool. Operation steps
were as follows: 1) We selected the approximate center of L4 in
the original DICOM image and took the point of central focus
chosen as the center to crop a sub-view (512*512) of the whole
image. 2) In the new cropped lateral view of L4, wemanually selected
the four corners of vertebral laminae to define the L4 posture. 3) We
intercepted the central 2/3 part of the two diagonal. The four
breakpoints were taken as the ROI vertexes. The selection and
the final ROI of an L4 lateral radiograph are shown in Figure 2.

For the TCB data, 29 subjects were randomly selected from both
the control and osteoporosis group. A total of 58 subjects were
combined and subjected to the blind test set, in which the health to
osteoporosis ratio was 1: 1. For TCB challenges, the ratio of the

FIGURE 1
Image process and classification flowchart. Image data from
both TCB and clinical went through the same procedure even though
different parameters were applied for different cases.

FIGURE 2
The four vertexes of the outer open quadrilateral selected
manually were the four endpoints of endplates’ projection. Then, the
dark region cut from the central 2/3 part of the two diagonal of the
outer quadrilateral was computed as ROI.
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training set to test set was 2: 1. The mapping between image ID and
subject group in the blind test set was saved for classification result
assessment.

2.2 Image enhancement

We performed a similar image enhancement operation for both
TCB and clinical datasets using different parameters. Due to bone
thickness variation in an image or heterogeneous soft tissue
projection, X-ray exposure imbalance occurred in a single image
of trabecular bone. First, we flattened the ROI with the MATLAB
function imflatfield with radii 20 for the TCB set and radii 10 for the
clinical set. Second, considering the X-ray scatter caused by soft
tissue, we used the dehazing method imreducehaze to suppress this
blurry artifact for bone imaging. The intensity was 0.05 for the TCB
set and 0.1 for the clinical set. Third, we adjusted the gray value
window width and window level for both TCB and clinical set to
make the highest 0.1% pixels saturate and the lowest 0.1% cut-off in
each image. Those original images were named as raw images
(Figures 3A, H and Figures 4A, H, O), while those enhanced
images were named as clean images (Figures 3B, I and 4B, I, P).

Because of clinical images, different projection conditions were
applied to different patients, i.e., each radiograph had its respective
source-to-image distance (SID) and source-to-object distance
(SOD). We unified the image scale diversity. There were two
brands of digital radiography (DR), GE Healthcare, and
Carestream Healthcare, from which these clinical images were
taken. Those DICOM images from the GE Healthcare had both
SID and SOD, whereas images from the CarestreamHealthcare only
had SID. We draw those scatter points from SID to SOD of all GE
Healthcare images and linearly interpolate missing values between
them.We applied interpolation values for those images with no SOD
parameters (Figure 5).

2.3 Feature extraction

2.3.1 Pixel-wise fractal dimension (FD)
As Peleg et al.’s (1984) extension on Mandelbrot’s (1994)

definition of fractal dimension, when a gray-level image was
viewed as a hilly terrain surface, whose height from the ground
level is proportional to the image gray value, the area of the fractal
surface is displayed according to the power function of measure scale
or rather scaled pixel size. Then, the hilly terrain surface was
characterized by textural fractal dimension (Creutzberg and
Ivanov, 1989). The transformed relationship is shown as follows
(Creutzberg and Ivanov, 1989; Enkins et al., 2018):

FIGURE 3
Fractal and entropy features of the TCB dataset. The first column
was the analysis of a typical case of the healthy group and the second
column was the analysis of a typical case of the osteoporosis group. In
the first row, (A, B) the raw image from the healthy dataset and
the enhanced image after preprocess are shown, respectively. (H, I)
The same case for the osteoporosis group. In the second row, (C, J)
log–log fitting residual histograms of pixel-wise FD calculation with
binning size 0.005 (ln (gray value)2) are shown. The pixels laid on the
right side of the red line would be excluded from FD counting. In the
third row, (D, K) FD heat maps are shown. In the fourth row (E, L) FD
histograms with binning size 0.005 are shown. For each histogram,
the red lines indicate the mode values of FD distributions, two pink

(Continued )

FIGURE 3 (Continued)
lines indicate the ±standard deviation, and two cyan lines
indicate the superior and inferior 0.1% quantiles. In the fifth row (F, M)
entropy heat maps are shown. In the sixth row (G, N) entropy
histograms with binning size 0.001 are shown; the red lines
indicate the mode values of FD distributions, two pink lines indicate
the ±standard deviation, and two cyan lines indicate the superior and
inferior limits of the whole distribution.
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FIGURE 4
Fractal and entropy features of clinical L4 lateral radiograph dataset. Three columns from (A, B–G), from (H, I–N), and from (O, P–U) depict typical
cases in normal, osteopenia, and osteoporosis individually. In the first row, (A, B), (H, J), (O, P) a comparison between the raw image and clean image from
each group is shown. In the second row, (C, J, Q) log–log fitting residual histograms with binning size 0.005 [ln (gray value)2] are shown. In the third row,
(D, K, R) FD heat maps are shown. In the fourth row, (E, L, S) FD histograms with binning sizes of 0.005 are shown. For each histogram, the red lines
indicate the mode values of FD distributions, two pink lines indicate the ±standard deviation, and two cyan lines indicate the superior and inferior 0.1%
quantiles. In the fifth row, (F, M, T) entropy heat maps are shown. In the sixth row (G, N, U) entropy histograms with binning size 0.005 are shown; the red
lines indicate the mode values of FD distributions, two pink lines indicate the ±standard deviation, and two cyan lines indicate the superior and inferior
limits of the whole distribution.
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FD � 2 − Δ ln SA( )
Δ ln R( ) . (1)

In Eq. 1, FD means the fractal dimension. SA means the surface
area of the image gray value, and it was the mass we wanted to
measure in various scales. R stands for the rescaled pixel size. The
mechanism of a typical radiographic image mainly is about X-ray
attenuation projection on a flat panel detector. All anatomies
involving bone and soft tissues that X-ray passed through would
be superimposed into the image. The superimposed soft tissue
visibly affected the bone texture gray value. So, we employed the
blanket method, which was robust against gray-level changes (Lopes
and Betrouni, 2009). To further acquire pixel-wise local FD
distribution in a single image, we adapted the modified blanket
method (MBM) (Enkins et al., 2018) as our final implementation.

We used a mathematical model to disclose the relationship
between the surface area and rescaled pixel size rather than changing
the whole image resolution. Former studies have shown that we
could take pixels as columns and their side area could be equivalent
to the image surface area (Peleg et al., 1984; Enkins et al., 2018).
Horizontal and vertical gradient were calculated with convolution
kernel [1 −1, 0] and [0, −1, 1]T, respectively. When we got those two
perpendicular direction gradients, it was easy to express the surface
area as follows:

SA p, r( ) � ∑
‖p−q‖2 < r

Gx q( )∣∣∣∣ ∣∣∣∣ + ∑
‖p−q‖2 < r

Gy q( )∣∣∣∣ ∣∣∣∣. (2)

In this equation, SA(p, r) represents the 3D topological surface
area of an image at current scale. The parameter p represents the
p-th pixel. The parameter r means the radii of a measuring disk in
which a local FD value was counted. The physical size of a measuring
disk was constant for all rescaled pixel sizes. So, when the rescaled
pixel size turned to be bigger, the corresponding r expressed with
rescaled pixel would be smaller. |Gx(q)| and |Gy(q)| represent the
absolute values of the horizontal and vertical gradient at pixel q.
Here, q represents any pixel whose distance to the pixel p is less than
r. As described in the original MBM, the whole image would
resemble at a different resolution to rescale the pixel size. For
example, all pixels in the same binning patch would have the
same pixel value when physical pixel-wise FD was counted.
Namely, in Figure 6, all physical pixels inside the pink double-
line square region had the same resample value. Nevertheless, in this
study, we have made several improvements to the original MBM
procedure to obtain a more reliable FD.

First, local surface areas were measured in different binning
patches which were centralized at each pixel. When we calculated
the local FD of the p-th pixel, the surface of a disc-shaped
neighborhood of the p-th pixel, shown in Figure 6, would be
measured on different scales. After the physical radii of the
neighborhood disk were predefined, a serial of continuously
changing rescaled disc radii meant a serial of corresponding
pixel binning was taken for a constant physical neighborhood
size. In Figure 7, the disk radii changed from 0 to 4. Here, all
different sizes of pixel binning centralized at the p-th pixel were
taken in the side neighborhood disk. In Figure 6, different color
cells distributing around the p-th pixel demonstrated how to
centralize at the p-th pixel. The gray cell stood for the physical
pixels. The blue cells were rescaled pixels with the binning size 3.

Blue cells and orange cells indicated the disc neighborhood of the
pixel p on a different scale, and they had approximately equal
measure regions. So, instead of the original MBM using the whole
image multi-resolution, here, different rescaled pixel sizes were
all centralized at each pixel and generated pixel-wise FD precisely
located at each pixel.

Second, in an image, sporadic pixels which did not characterize
fractal significantly would be excluded for FD counting. Due to the
influence of imaging noise and superimposed artifacts of
radiographs, sporadic pixels’ neighborhoods did not characterize
fractal features so well that a few pixels had a relatively high residual
value in the residual histograms in Figures 3C, J for the TCB dataset
and Figures 4C, J, Q for the clinical dataset. To figure out those
pixels, all residuals from the straight-line fitting of the surface area
against scaling factors were cached and sorted. The residual
distribution could be checked in a log–log histogram with
binning size 0.005 [ln (gray value)2] in Figures 3C, J, 4C, J, Q.
The absolute majority of fitting residuals was close to zero, so we
remained with those pixel FDs with 80% of the smallest residuals for
further statistics and abolished the other pixels. In Figures 3C, J, 4C,
J, Q, those FD values corresponding to the left side of the red line
remained, and values on the right side were abolished. We could
draw the FD heat maps from these reserved pixel-wise FDs, Figures
3D, K, 4D, K, R, and histogram, Figures 3E, L, 4E, L, S, with binning
size 0.005.

Third, more FD distribution features were detected by
introducing the FD histogram of the whole image. In Figures
3E, L, 4E, L, S, it is easy to find that the FD distribution shape was
basically a single peak but asymmetric in both the control and
osteoporosis groups, so we calculated the mode value instead of
the mean. Regarding the hackly distribution around the peak, we
applied a sliding window (window width = 0.011, moving step =
0.001) to calculate an average value on the histogram and took the

FIGURE 5
SOD value fitting. Snowflakes, triangles, and circles marked SID
against SOD from normal, osteopenia, and osteoporosis groups,
respectively. It is a ground breaking uniformization of X-ray projection
scale transformation for scale-related feature counting.
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maximum as the mode value. In addition, FD standard deviation, FD
skewness, FD kurtosis, and the Shannon entropy of FD rescaled to 16-
bit unsigned integer were all counted as features.

2.3.2 Differential box-counting (DBC) lacunarity
Although some studies suggested that FD and lacunarity may

be correlated in some cases (Smith et al., 1996), lacunarity is by
no means redundant. Some patterns are more distinguishable by
their lacunarity (Karperien et al., 2011). Especially in our study,
the image texture is neither an ideal fractal topological structure
nor a disclosed graph, so the lacunarity feature deserves to be
tried. The lacunarity of a set implicates the distribution character
of mass. A well-accepted approach to calculating lacunarity is as
follows:

Λ r( ) � ∑M M2Q M, r( )
∑M MQ M, r( )[ ]2 �

σ2 r( )
μ2 r( ) + 1, (3)

whereQ M, r( ) � n M, r( )
N

.

In Eq. 3, Λ(r) is the lacunarity, a function of measure unit r. On
the right of the first equal sign, M means the mass of a square area
r × r. The probability Q(M, r) means the number of boxes n(M, r)
with size r and massM dividing the total number of boxesN in the
whole image described in the equation. The mean-square of M
divided by its square mean was the lacunarity. The simplified
expression is on the right.

In this study, we took the differential box-counting (DBC)
algorithm to calculate M at scale unit r (Sarkar and Chaudhuri,
1994; Conci and Campos, 1996; Li et al., 2009). Yet, considering the

influence of the initial position of the array of counting boxes, we
took an average of all possible initial positions. The average
lacunarity, �Λ, is calculated in the following equation. γ implicates
the possible initial position, and G equals the number of all possible
initial positions, and Λγ is the whole image lacunarity Λ at the initial
position γ.

�Λ � ∑G
γ�1Λγ

G
. (4)

2.3.3 Pixel-wise entropy
Shannon entropy quantifies the amount of uncertainty involved

in the value of a random variable or the outcome of a random
process (Shannon, 2001). Numerous studies validated that focus on
measuring the complexity of a chaotic system using information
entropy were reliable (Costa and Goldberger, 2015; Humeau-
Heurtier, 2016). Nevertheless, most of them were limited in
studying unidimensional datasets. Here, we attempted to extend
the entropy calculation to conduct a 2D osteoporotic radiography
texture analysis.

vp � max Iq( ) −min Iq( ), (5)
where q ∈ q | ‖ p − q ‖2 ≤ r{ },
Hl � −∑n

i�1
P vi( )log2P vi( ). (6)

To get robust random value observations, we reused the DBC
method in computing lacunarity to count differential value instead
of absolute value. First, we set a measuring scale representing a small
neighborhood of the p-th pixel in the image ROI with radii r. The
difference between the maximum and minimum gray level inside
the pixel’s small neighborhood was taken as an observation of the
local random measure at that pixel. In Eq. 5, vp is the measure
observation at the p-th pixel and q is a pixel inside the small
neighborhood of the p-th pixel. Second, we set a big
neighborhood, a disc-shaped statistic field, as the local entropy
evaluation range, in which observations at every pixel’s small
neighborhood were counted to calculate Shannon entropy. When
we took the disc-shape statistic field with n pixels inside and moved
it as a sliding window to cover the whole image. Then, the local
entropyHl was calculated by Eq. 6, in which n is the total number of
pixels in the big neighborhood of the p-th pixel and P(vi) is the
probability of the observation vi. In Figures 3F, M, and Figures 4F, M,
T the pixel-wise entropy heatmap of the whole image were shown.
Furthermore, for each of them, a histogram can be generated in
Figures 3G, N and Figures 4G, N, U demostraiting osteoprotsis
pathological progress.

After the statistic slide window moved over the whole image, an
entropy heat map and its histogram (binning size 0.005) were
achieved. The entropy histogram extracted four related features
involving mode value, standard deviation, skewness, and kurtosis.

2.4 Scale parameter selection

Any classification problem can be solved as a pairwise binary
classification problem. In the following section, we only discuss the

FIGURE 6
Orange cells and gray cells indicate the original pixels in an
image. The center orange cell was the pixel p. One example of
rescaled pixels centralized at pixel p was the innermost blue square.
This sample rescaled pixel was composed of nine original
physical pixels.

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Cui et al. 10.3389/fbioe.2023.1054991

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1054991


binary classification performance, in both the TCB challenge case
and our clinical bone fragility grading case.

Concerning the scale factor’s impact on the outcome of
classification, an optimized scale had to be selected rationally. For
FD calculation, we had to decide the finest measure resolution (the
smallest scaled pixel size) and the maximum measure range (the
biggest scaled pixel size) pixel scale to fit a straight line from the scaled
pixel to the surface area. The optimized FD fitting scale was expected
to best divide the normal group and the other observed groups. The
diversity scale size r in lacunarity calculation, together with the various
measure scales and counting scale in entropy statistic, would all lead to
a different performance in the classification job.

We employed the Davies–Bouldin index (DBI) (Davies and
Bouldin, 1979), a cluster distance index, to evaluate scale factors’
performance in class separations. DBI estimated the class cohesion
based on the distance from the feature points in a class to its centroid
and the separation based on the distance between centroids. The
ratio of cohesion to separation was the DBI value (Arbelaitz et al.,
2013). The smaller the DBI, the better the class was separated. The
definition formula of the DBI is as follows:

DBI C( ) � 1
K

∑
ck∈C

max
cl∈C∖ck

S ck( ) + S cl( )
‖ ck − cl ‖{ }, (7)

where S ck( ) � 1
ck| | ∑

xi∈ck

‖ xi − ck ‖ .

The parameter C of DBI was the full set of classes to be
separated. K is the number of classes in the full set. For this

study K = 2. S(ck) is the average distance from each scatter
point to the centroid of K and xi is an n-dimensional feature
vector assigned to any point i in class k. ck is the centroid of K.
‖ · ‖ is the euclidean distance.

Via the DBI, we could iterate and clarify which scale size
outperformed in this classification job. For two-class
classification, we iterated some empirical value scale factors and
figured out one or two locally optimized scale sizes for each of those
three feature categories. So far, we had 11 features, which are FD
mode, FD sigma, FD skewness, FD kurtosis, FD entropy, lacunarity
A, lacunarity B, entropy mode, entropy sigma, entropy skewness,
and entropy kurtosis with definitive scale size. Lacunarity A and B
were the best two distinguishable scale sizes.

2.5 Feature selection

We selected six feature dimensions from 11. Feature selection
can not only mean the most effective features to classify bone
fragility grade but also overcome overfitting and level up
generalization performance. Via trialing on the TCB dataset, we
found six feature dimensions that could provide comparable
performance on both the blind test set and the training test. The
best six features were selected via the popular neighborhood
component analysis (NCA) method (Yang et al., 2012). NCA, a
non-parametric method, differs from principle component analysis
(PCA) and linear discriminant analysis (LDA). PCA was influenced
by the scaling of the variables. LDA works only if all class

FIGURE 7
Surface area counting disks. From (A–D) they are disk kernel with corresponding radii from0 to 4. Those disk kernels can help us to restrict a specific
neighbourhood around counting pixel for measurement.
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distributions are Gaussian with one single shared covariance (Raghu
and Sriraam, 2018). In NCA, the goal was to maximize the
prediction accuracy of classification algorithms. On the other
hand, in learning feature weights, a regularization parameter λ
was introduced to learn feature weights to minimize an objective
function that measured the average leave-one-out classification loss
over the training data to expect a better generalization performance.

In NCA, 10 steps were taken. i) We partitioned the labeled
sample set with 11 dimension features into five folders. In each fold,
4/5 of data were assigned to a training set, and the other 1/5 of data
were assigned to a test set; ii) generated a regulation parameter
vector, λ, using the MATLAB command λ values = linespace (0, 2,
20)/n where n is the number of samples of the whole training set; iii)
trained the NCA model with the MATLAB function fscnca for each
λ using the training set; iv) computed the classification loss for the
corresponding test set in the fold using the NCAmodel and recorded
the loss value; v) repeated (iii) for all folds and all λ values; vi) found
the λ value that corresponds to the minimum average loss; vii) fitted

the NCA model with fscnca to all of the data using the best λ value.
Meanwhile, we got the fitting loss and feature weights of this round;
viii) repeated from (i) to (vii) 60 times and recorded all those fitting
losses and corresponding feature weights; ix) sorted the fitting losses
and retained the best-fitting ones and their corresponding feature
weight rankings. The other half of them was abolished; and x) took
each weight ranking as a ballot. Each feature weight ranking had its
ballot score [0, 0, 0, 0, 0, 1, 2, 3, 4, 5, and 6] from the least to the most
significant and summed up the remaining 30 time ballot scores for
each feature. We got the overall ranking for all features. Feature
weight bar chats are shown in Figure 8.

2.6 SVM training

On the training sets for TCB and clinical L4, the six most
significant labeled features of each pair of classes were input into the
SVM classification function fitcsvm. Configure parameters were

FIGURE 8
Feature weights for different cases. (A) For classification between control and osteoporosis in the TCB dataset. (B) For classification between
osteopenia and normal in the clinical L4 dataset. (C) For classification between osteoporosis and normal in the clinical L4 dataset. (D) For classification
between osteoporosis and osteopenia in the clinical L4 dataset.
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listed as follows: “OptimizeHyperparameters,” “all;” “Standardize,”
true; “HyperparameterOptimizationOptions,” struct
(“AcquisitionFunctionName,” “probability-of-improvement,”
UseParallel’, true, “Repartition,” true, “Kfold,” 10,
“MaxObjectiveEvaluations,” 800). Considering that the learning
process is time consuming, we used the command pair parpool
and delete [gcp(“nocreate”)] to embrace the fitcsvm function, which
would be executed in a multi-core CPU in parallel.

2.7 Classifier validation

For the TCB blind test, we estimated receiver operating characteristic
(ROC), area under the curve (AUC), and Matthews correlation
coefficient (MCC) with a 95% confidence interval and 1,000 times
bootstrap. In addition, to use the TCB ranking for reference, we also
calculated accuracy (Acc), sensitivity (Sn), and specificity (Sp).

For the clinical L4 test set, due to the limitation of sample size on
the full dataset, we performed 1,000 times bootstrap. We classified
normal, osteopenia, and osteoporosis in pairs. Interval estimates of
ROC and AUC in between each pair of them were calculated.

3 Results

As hyperparameters, feature counting scales in pixels were
optimized by choosing the one with the smallest DBI of pixel-
wise FD, global lacunarity, and pixel-wise entropy. For the TCB
dataset, the FD radii range was from 1 to 4, and the entropy
measure radii and count radii were 1 and 6, respectively. Also, the
two optimized lacunarity sizes were 3*3 and 4*4 (Table 1). For the
clinical dataset (Table 2), there were three scenarios. In the
scenario osteopenia vs. normal, the FD radii range was from
1 to 3, the entropy measure radii and count radii were 1 and 9,

TABLE 1 Scale size assessment viaDBI for TCB dataset classification. The red and yellow numbers also in bold stand for the minimum and subminimumDBI of each
kind of feature scale parameter list. The corresponding scale parameters of the red and yellow DBI are the optimized ones.

Scale size assessment via DBI for TCB classification

Radii range 1–3 1–4 1–5 1–6 1–7

FD 4.664 3.26 3.589 5.361 5.245

Measure radii, count radii 1,4 1,5 1,6 1,7 1,8 2, 5 2, 6 2, 7

Entropy 7.741 6.535 6.428 7.035 6.960 10.168 12.968 17.269

Size 2*2 3*3 4*4 5*5 6*6 7*7

Lacunarity 4.045 2.890 2.939 3.151 3.478 3.877

TABLE 2 Scale size assessment via DBI for L4 dataset classification. The red and yellow numbers also in bold stand for the minimum and subminimum DBI of each
kind of feature scale parameter list. The corresponding scale parameters of the red and yellow DBI are the optimized ones.

Fractal dimension

Radii 1–3 1–4 1–5 1–6 1–7 1–8 1–9 2–8 0–3 0–4 0–7

Osteopenia vs. normal 6.215 7.179 7.789 11.006 8.094 7.724 9.552 15.059 8.620 11.044 9.475

Osteoporosis vs. normal 9.524 13.472 11.821 10.014 7.297 7.098 7.455 8.203 10.419 9.178 6.774

Osteoporosis vs. osteopenia 18.335 7.360 14.312 13.597 7.364 5.400 9.681 10.425 13.035 15.143 10.153

Lacunarity

Size 2*2 3*3 4*4 5*5 6*6 7*7

Osteopenia vs. normal 2.915 7.826 34.919 27.391 23.874 22.148

Osteoporosis vs. normal 7.408 10.758 9.849 10.310 7.548 7.900

Osteoporosis vs. osteopenia 2.358 4.367 7.229 7.026 5.512 5.564

Entropy

Measure radii, count radii 1,4 1,5 1,6 1,7 1,8 1,9 1,10 1,11 2,6 2,9

Osteopenia vs. normal 19.557 20.941 14.669 11.817 10.407 9.910 10.471 10.625 10.747 14.478

Osteoporosis vs. normal 6.676 4.697 4.225 4.289 4.496 4.679 5.060 5.728 5.639 6.352

Osteoporosis vs. osteopenia 7.015 5.204 5.117 5.242 5.242 5.937 6.123 6.704 7.070 6.753
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and the two optimized lacunarity sizes were 2*2 and 3*3,
respectively. In the scenario osteoporosis vs. normal, the FD
radii range was from 0 to 7, the entropy measure radii and count
radii were 1 and 6, and the two optimized lacunarity sizes were

2*2 and 6*6, respectively. In osteoporosis vs. osteopenia, the radii
range was from 1 to 4, the entropy measure radii and count radii
were 1 and 7, and the two optimized lacunarity sizes were 2*2 and
3*3, respectively. In tables, those preferred scales were marked in

FIGURE 9
Lacunarity (2*2), FD mode (radii = 1–7), and entropy sigma (measure radii = 1, counting radii = 6) distribution change in (A) normal, (B) osteopenia,
and (C) osteoporosis.

FIGURE 10
Roc interval estimations (confidence interval 95%). (A) TCB training set; (B) TCB test set; (C) test for osteopenia vs. normal; (D) test for osteoporosis
vs. normal; and (E) test for osteoporosis vs. osteopenia.
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red with a straight underscore and orange with a wave
underscore.

Distribution densities of some selected features measured with a
fix scale in normal, osteopenia, and osteoporosis were visualized
(Figure 9). The lacunarity (2*2) of osteoporosis jumped absolutely
out of the range of its value in other cases. However, for the FDmode
value and entropy standard deviation, we observed the changing
distribution trend, but it was not significant.

The six most effective features were selected, and the
effectiveness for classification was ranked by weight (Figure 8).
The six most significant features were prioritized: FD mode, FD
sigma, FD kurtosis, lacunarity (3*3), FD skewness, and entropy
kurtosis for the TCB task. The priority order was FD kurtosis, FD
skewness, FD sigma, entropy sigma, lacunarity (2*2), and lacunarity
(3*3) for osteopenia vs. normal from the clinical L4 dataset. The
priority order was entropy kurtosis, entropy sigma, FD mode,
entropy skewness, entropy mode, and lacunarity (2*2) for
osteoporosis vs. normal from the clinical L4 dataset. The priority
order was FD skewness, lacunarity (3*3), entropy skewness, FD
entropy, lacunarity (2*2), and entropy kurtosis for osteoporosis vs.
osteopenia from the clinical L4 dataset.

All related ROC interval estimations on the test set are depicted
in Figure 10. The interval estimation classification on L4 is listed in
Table 4. For osteoporosis diagnosis, the AUC, Acc, and Sn (recall)
were 0.851 (95% CI: 0.730–0.922), 0.813(95% CI: 0.718–0.878), and
0.936 (95% CI: 0.826–1), respectively. For osteopenia diagnosis, the
AUC, Acc, and Sn were 0.721 (95% CI: 0.578–0.824), 0.675 (95% CI:
0.563–0.772), and 0.774 (95% CI: 0.635–0.878), respectively. For
osteoporosis diagnosis from osteopenia, the AUC, Acc, and Sn were

0.935(95% CI: 0.830–0.968), 0.928 (95% CI: 0.863–0.963), and 0.910
(95% CI: 0.746–1), respectively.

Our TCB training set and test set were repartitioned, but the
performance was comparable with the other feature-based and SVM
classifiers within the TCB ranking (Table 3). For the training dataset,
the AUC, Acc, and Sn were 0.694 (95% CI: 0.592–0.778), 0.663 (95%
CI: 0.569–0.741), and 0.742 (95% CI: 0.607–0.839), respectively. For
the blind test set the AUC, Acc, and Sn were 0.767 (95% CI:
0.629–0.879), 0.672 (95% CI: 0.545–0.793), and 0.790 (95% CI:
0.621–0.923), respectively. Here, the Acc was slightly higher than
that of the method from the work of Florian et al.

4 Discussion

Unlike most of the previously reported classifiers (Zheng and
Makrogiannis, 2016; Oulhaj et al., 2017; Palanivel et al., 2020;
Omiotek et al., 2021), our study exhibited that a novel classifier
synthesizing pixel-wise fractal, entropy, and global lacunarity can
distinguish three levels of bone mass loss of lumbar spine into
normal, osteopenia, and osteoporosis. In addition, it also showed
high generalization on osteoporosis diagnosis using calcaneus
according to lateral radiographs, which are both routine physical
examinations in a broader sense. For a typical DXA examination
focus, such as the vertebral spine, or non-DXA examination, such as
the calcaneus, the proposed classifier can be successfully applied.
The performance of the proposed classifier was reliable, indicating
whatever the T-score or the fractured state as the golden standard. In
all aforementioned scenarios, Acc is higher than 0.66 and Sn is

TABLE 4 Classification performance of L4 on the clinical dataset.

Scenario AUC Accuracy Precision Sensitivity Specificity F1 score MCC

(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

Osteopenia vs. normal 0.721 0.675 0.732 0.774 0.537 0.757 0.342

(0.578, 0.824) (0.563, 0.772) (0.592, 0.833) (0.635, 0.878) (0.351, 0.720) (0.659, 0.855) (0.114, 0.547)

Osteoporosis vs. normal 0.851 0.813 0.807 0.936 0.690 0.874 0.681

(0.730, 0.922) (0.718, 0.878) (0.679, 0.898) (0.826, 1) (0.483, 0.829) (0.783, 0.932) (0.501, 0.811)

Osteoporosis vs. osteopenia 0.935 0.928 0.964 0.910 0.967 0.943 0.899

(0.830, 0.968) (0.863, 0.963) (0.810, 1) (0.746, 1) (0.829, 1) (0.849, 0.986) (0.699, 0.967)

TABLE 3 Presented classifier with the Acc marked in red was compared with the TCB ranking.

Rank Author TP FP TN FN Sn Sp Acc F1 score

Presented classifiera 16 6 23 13 0.552 0.793 0.672 0.628

1 Yger (2014) 19 10 19 10 0.655 0.655 0.655 0.655

2 Palanivel et al. (2020) 17 12 17 12 0.586 0.586 0.586 0.586

3 Christoph et al. (Ranking, 2022) 24 22 7 5 0.828 0.241 0.535 0.640

4 Jerome et al. (Ranking, 2022) 21 17 12 8 0.724 0.414 0.569 0.62

aThe whole image dataset was repartitioned into a train set and blind test set with the prescribed ratio of 2:1.
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higher than 0.74. This method can be a promising tool to diagnose
osteopenia and osteoporosis on X-ray images for further clinical
application.

Several features trended from normal health to osteopenia and
osteoporosis. We can try to partially explain the physio-pathological
change process of a bone trabecular structure. From Figure 9A,
lacunarity drastically rose in the process of pathological changes
from normal to osteoporosis. It means the image intensity turns
more heterogeneous in the whole image. This phenomenon suggests
some lacunarity measure patches of bone degeneration far different
from the other groups. In Figure 9B, the FD population distribution
of each group mildly declined. This trend could be checked with
median values and lower bounds. Lower FD means the bone mass
loss happened on a considerable scale range. From Figure 9C, we
found that each group’s pixel-wise entropy population’s standard
deviation sigma slightly increased. Median values and upper bound
depicted the increase. From Figures 3G, N, 4G, N, U, we knew the
pixel-wise entropy distribution was unimodal. According to
information theory (Chung et al., 2017), the sigma of unimodal
distribution indicates the population entropy. So, in other words, the
worse the osteoporosis, the higher the global entropy, which is
generally following the entropy law, also named the second law of
thermodynamics (Schneider and Kay, 1994). The osteoporotic
pathogenesis was unprecedentedly depicted through the 2D
projection entropy. The entropy could be taken into account as a
new osteoporosis biomarker.

The classifier performance was comparable to other latest
reports. The state-of-the-art DL-based classification models held
an average accuracy of 90.1% ranging from 70.0% to 98.9% and a
mean AUC of 0.90 ranging from 0.74 to 1.00 (Zhang et al., 2020) for
only osteoporosis diagnosis from healthy subjects. As shown in
Table 4, roughly speaking, from the performance point of view, our
feature-based model matched with those DL-based models. For
osteopenia diagnosis, as we know, the latest DL-based model
(Zhang et al., 2020) acquired an AUC of 0.629 with 95% CI:
(0.545, 0.707) and sensitivity of 50% with 95% CI: (32.4, 67.6).
As in Table 4, our performance, with an AUC of 0.741 with 95% CI:
(0.598, 0.844) and sensitivity of 79.4% with 95% CI: (0.655, 0.898),
was comparable. High-sensitivity results in a low fraction of false-
negative classifications, in other words, a low missed diagnosis rate.
Apart from the aforementioned, we also classified osteoporosis from
osteopenia. The AUC and Acc are even better than the osteoporosis
diagnosis in Table 4. In summary, it is possible to screen
osteoporosis from the lateral radiograph of L4 with interpretable
features matched with DL-based classifiers.

The TCB challenge dataset showing characteristic texture had
been held since 2014, and here, it was also utilized to show the high
generalization of our classifier. The present TCB challenge requires
participants to use the SVM classifier, and so, only feature-based
methods were taken into account in the ranking list according to
their accuracy. In this dataset, the number of osteoporosis cases is
identical to the number of healthy cases, and the case ratio for train
and test was 2 to 1. To the best of our knowledge, counting follow-up
studies are listed in Table 3. On the TCB challenge, no report has a
better score than ours yet, regardless of our random dataset
repartition. The latest hit list models (Palanivel et al., 2019; 2020)
have paid attention to the heterogeneity of the texture and combined
multifractal features with lacunarity to gain improvement. However,

at the early stages of osteoporosis, bone loss happens at individual
trabecular plates (Cosman et al., 2014; Golob and Laya, 2015), so our
pixel-wise feature counting has the potential for early diagnosis of
osteoporosis.

The proposed image preprocess is advantageous to the following
texture feature extraction. The fractal dimension, lacunarity, and
entropy are scale sensitive to all three feature categories. They all
depicted one facet of trabecular structure changes, whereas the
source-to-image distance (SID) and the source-to-object distance
(SOD) were not uniformed among clinical radiographs. We carried
out imaging scale (pixel size) normalization by SOD vs. SID line
fitting for radiographs. Concerning the curved shape of human
bones whether lumbar spine or calcaneus, the radiography image
intensity was naturally biased. Especially for lateral radiographs of
the lumbar spine, there was the thickness of fat, organs, and even
clothes having an overlay projection on the image. To limit those
negative impacts, we compensated for the bias with Gaussian
smoothing. Due to the influence of the thickest soft tissue on the
human body, lateral radiographs of the lumbar spine were a blurred
with scatters. We utilized the dehaze algorithm to enhance the
detailed information on bone texture.

A robust measure, the image surface area, was adopted to
overcome the superposition imaging of other human organs and
tissues rather than the image intensity analyzed by previous studies
(Zheng and Makrogiannis, 2016; Hassouni et al., 2017). Lateral
radiographs of the lumbar spine are widely available with low cost.
However, subjects’ abdominal organs, cavities, and intestinal gas even
waist belts could be all projected in radiographs. Image surface area
counting was practiced to overcome those complex impacts (Lopes
and Betrouni, 2009; Areeckal et al., 2018b). Fractal dimension features
were taken with the local surface area as a measure. Lacunarity and
local entropy features were taken based on intensity difference which
was a derivative method of image surface measure.

In our study, the proposed model capacity was well restrained to
only six feature dimensions not only for better generalization but also
as a good foundation for further regressive analysis. In the field of ML,
a principle of parsimony (Vapnik, 1999; Vapnik and Chervonenkis,
2015) named Occam’s razor is widely acknowledged; among
competing hypotheses that explain known observations equally
well, we should choose the “simplest” one. Furthermore, the
proposed hyperparameter optimization, feature selection, and
classifier training process arguably follow the concept of ensemble
learning which had the property of improving generalization (Hansen
and Salamon, 1990). Compared with the latest studies for osteoporotic
diagnosis, a convolutional neural network (CNN) (Yamamoto et al.,
2020; Zhang et al., 2020)-basedmodel had dozens or even hundreds of
non-explanatory and abstract features, and real feature-based models
(Oulhaj et al., 2017; Palanivel et al., 2020) also collected dozens of
feature dimensions to obtain an ideal performance. What we gained
from restrained feature dimensions was a better generalization. The
AUC of 0.767 with 95% CI: (0.622, 0.874) of the TCB test dataset was
not worse than the AUC of 0.694 with 95% CI: (0.591, 0.778) in the
training dataset.

There are still several limitations of this study. First, as the
golden standard, the BMD value to diagnose osteoporosis is still
questionable and challenged by bone histomorphometry studies
(Wainwright et al., 2005; Greenwood et al., 2018), so a high-
resolution CT exam is suggested as a powerful complement to
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the DXA exam for osteoporotic diagnosis (Greenwood et al., 2018).
Second, the labeled sample size is restricted to a bit more than one
hundred. The data scale is not sufficient and diverse to bring this
method to real clinical trials, especially for a triple-classification
problem, in which osteopenia and osteoporosis are both analyzed.
Third, in this study, for vertebral spine radiography analysis, only
L4 was analyzed, which is similar to a recent study (Lee et al., 2020).
Nevertheless, a DXA scan is from L1 to L4. A corresponding
skeleton feature extraction could be a better way to obtain
classification results matching T-scores.

This method exhibited the capacity of resisting disturbance on
lateral spine radiographs and high generalization on the calcaneus
dataset. Interpretable pixel-wise features not only helped to better
understand osteoporosis on radiographs but also shed new light on
computer-aid diagnosis for osteopenia and osteoporosis.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

Ethics statement

The studies involving human participants were reviewed and
approved by the Shanghai Ninth People’s Hospital, Shanghai Jiao
Tong University School of Medicine, Shanghai, China. The patients/
participants provided their written informed consent to participate
in this study.

Author contributions

The authors confirm contribution to the paper as follows:
study conception and design: T-YT and JC; data collection: CL

and RJ; analysis and interpretation of results: JC and KD;
and draft manuscript preparation: JC and T-YT. All authors
reviewed the results and approved the final version of the
manuscript.

Funding

This research was supported by the Pudong New Area Science &
Technology and Development Fund under award number
210H1147900 and by the Fundamental Research Funds for the
Central Universities under award number AF0820055.

Acknowledgments

Researcher Layli Turak provided great assistance in modifying
and polishing the literature expression. We are very grateful for her
efforts. All our authors would like to thank the anonymous reviewer
for their valuable and constructive comments.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Amarnath, A. L. D., Franks, P., Robbins, J. A., Xing, G., and Fenton, J. J. (2015).
Underuse and overuse of osteoporosis screening in a regional health system: A
retrospective cohort study. J. Gen. Intern. Med. 30, 1733–1740. doi:10.1007/s11606-
015-3349-8

Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., and Perona, I. (2013). An
extensive comparative study of cluster validity indices. Pattern Recognit. 46, 243–256.
doi:10.1016/j.patcog.2012.07.021

Areeckal, A. S., Jayasheelan, N., Kamath, J., Zawadynski, S., Kocher, M., David S, S.,
et al. (2018a). Early diagnosis of osteoporosis using radiogrammetry and texture analysis
from hand and wrist radiographs in Indian population. Osteoporos. Int. 29, 665–673.
doi:10.1007/s00198-017-4328-1

Areeckal, A. S., Kocher, M., and David, S. (2018b). Current and emerging diagnostic
imaging-based techniques for assessment of osteoporosis and fracture risk. IEEE Rev.
Biomed. Eng. 12, 254–268. doi:10.1109/RBME.2018.2852620

Chung, H. W., Sadler, B. M., and Hero, A. O. (2017). Bounds on variance for
unimodal distributions. IEEE Trans. Inf. Theory 63, 6936–6949. doi:10.1109/TIT.2017.
2749310

Conci, A., andCampos, C. F. J. (1996). An efficient box-couting fractal dimension approach
for experimental image variation characterization. Proceedings IWISP’96, 665–668.

Cosman, F., de Beur, S. J., LeBoff, M. S., Lewiecki, E. M., Tanner, B., Randall, S., et al.
(2014). Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int.
25, 2359–2381. doi:10.1007/s00198-014-2794-2

Costa, M. D., and Goldberger, A. L. (2015). Generalized multiscale entropy analysis:
Application to quantifying the complex volatility of human heartbeat time series.
Entropy 17, 1197–1203. doi:10.3390/e17031197

Creutzberg, R., and Ivanov, E. (1989). “Computing fractal dimension of image
segments,” in Proceedings of the 3rd international conference of computer analysis of
images and patterns (CAIP’89). (Berlin, Germany: Springer-Verlag).

Davies, D. L., and Bouldin, D. W. (1979). A cluster separation measure. IEEE Trans.
Pattern Anal. Mach. Intell. PAMI-1, 224–227. doi:10.1109/tpami.1979.4766909

Enkins, J., Riffin, R. O. J. G., Ings, R. U. U. D. P. M. D., Arasimhan, N., Ajaram, R.,
Uinn, K. Y. L. E. P. Q., et al. (2018). Rapid quantification of mitochondrial fractal
dimension in individual cells. Biomed. Opt. Express 9, 5269–5279. doi:10.1364/boe.9.
005269

Golob, A. L., and Laya, M. B. (2015). Osteoporosis: Screening, prevention, and
management. Med. Clin. North Am. 99, 587–606. doi:10.1016/j.mcna.2015.01.010

Greenwood, C., Clement, J., Dicken, A., Evans, P., Lyburn, I., Martin, R. M., et al.
(2018). Age-related changes in femoral head trabecular microarchitecture. Aging Dis. 9,
976–987. doi:10.14336/AD.2018.0124

Hansen, L. K., and Salamon, P. (1990). Neural network ensembles. IEEE Trans.
Pattern Anal. Mach. Intell. 12, 993–1001. doi:10.1109/34.58871

Harrar, K., Hamami, L., Lespessailles, E., and Jennane, R. (2013). Piecewise Whittle
estimator for trabecular bone radiograph characterization. Biomed. Signal Process.
Control 8, 657–666. doi:10.1016/j.bspc.2013.06.009

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Cui et al. 10.3389/fbioe.2023.1054991

https://doi.org/10.1007/s11606-015-3349-8
https://doi.org/10.1007/s11606-015-3349-8
https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/10.1007/s00198-017-4328-1
https://doi.org/10.1109/RBME.2018.2852620
https://doi.org/10.1109/TIT.2017.2749310
https://doi.org/10.1109/TIT.2017.2749310
https://doi.org/10.1007/s00198-014-2794-2
https://doi.org/10.3390/e17031197
https://doi.org/10.1109/tpami.1979.4766909
https://doi.org/10.1364/boe.9.005269
https://doi.org/10.1364/boe.9.005269
https://doi.org/10.1016/j.mcna.2015.01.010
https://doi.org/10.14336/AD.2018.0124
https://doi.org/10.1109/34.58871
https://doi.org/10.1016/j.bspc.2013.06.009
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1054991


Hassouni, M. El, Tafraouti, A., Toumi, H., Lespessailles, E., and Jennane, R. (2017).
Fractional brownian motion and rao geodesic distance for bone X-ray image
characterization. IEEE J. Biomed. Heal. Inf. 21, 1347–1359. doi:10.1109/JBHI.2016.
2619420

Humeau-Heurtier, A. (2016). Multivariate refined composite multiscale entropy
analysis. Phys. Lett. A 380, 1426–1431. doi:10.1016/j.physleta.2016.02.029

Hussain, D., and Han, S.-M. (2019). Computer-aided osteoporosis detection from
DXA imaging. Comput. Methods Programs Biomed. 173, 87–107. doi:10.1016/j.cmpb.
2019.03.011

Jennane, R., Ohley, W. J., Majumdar, S., and Lemineur, G. (2001). Fractal analysis of
bone X-ray tomographic microscopy projections. IEEE Trans. Med. Imaging 20,
443–449. doi:10.1109/42.925297

Johnell, O., and Kanis, J. A. (2006). An estimate of the worldwide prevalence and
disability associated with osteoporotic fractures. Osteoporos. Int. 17, 1726–1733. doi:10.
1007/s00198-006-0172-4

Karperien, A., Jelinek, H. F., and Milosevic, N. (2011). “Reviewing lacunarity analysis
and classification of microglia in neuroscience,” in Proceedings of the 8th European
conference on mathematical and theoretical biology. (Kraków, Poland: Springer).
Available at: http://www.researchgate.net/profile/Audrey_Karperien/publication/
230857319_Lacunarity_Analysis_and_Classification_of_Microglia_in_Neuroscience/
links/0c9605288742c529d8000000.pdf.

Lee, S., Choe, E. K., Kang, H. Y., Yoon, J. W., and Kim, H. S. (2020). The exploration of
feature extraction and machine learning for predicting bone density from simple spine
X-ray images in a Korean population. Skelet. Radiol. 49, 613–618. doi:10.1007/s00256-
019-03342-6

Li, J., Du, Q., and Sun, C. (2009). An improved box-counting method for image fractal
dimension estimation. Pattern Recognit. 42, 2460–2469. doi:10.1016/j.patcog.2009.
03.001

Lopes, R., and Betrouni, N. (2009). Fractal and multifractal analysis: A review. Med.
Image Anal. 13, 634–649. doi:10.1016/j.media.2009.05.003

Mandelbrot, B. B. (1994). “A Fractal’s Lacunarity, and how it can be Tuned and
Measured,” in Fractals in biology and medicine (Berlin, Germany: Springer), 8–21.

National Health Commission of China, Epidemiological investigation of osteoporosis
in China (2018). Peoples health. Network. Available at: https://www.phsciencedata.cn/
Share/jsp/PublishManager/foregroundView/1/9eaadbb3-bd64-4531-9d9f-
753ec183f26d.html (Accessed August 1, 2022).

Office of the Surgeon General (US) (2004). “Bone health and osteoporosis: A report of
the Surgeon general,” in US health and human services. (Rockville, MD) 5. Available at:
h t t p : / / s cho l a r . g oog l e . c om/ s cho l a r ? h l= en&b tnG=Sea r ch&q= in t i t l e :
Bone+Health+and+Osteoporosis+A+Report+of+the+Surgeon+General#0.

Omiotek, Z., Dzierzak, R., and Kepa, A. (2021). Fractal analysis as a method for
feature extraction in detecting osteoporotic bone destruction. Fractals 29, 2150095.
doi:10.1142/S0218348X2150095X

Oulhaj, H., Rziza, M., Amine, A., Toumi, H., Lespessailles, E., Jennane, R., et al.
(2017). Trabecular bone characterization using circular parametric models. Biomed.
Signal Process. Control 33, 411–421. doi:10.1016/j.bspc.2016.10.009

Overview (2022). Orleans university. Available at: https://www.univ-orleans.fr/en/
overview (Accessed June 5, 2022).

Palanivel, D. A., Natarajan, S., Gopalakrishnan, S., and Jennane, R. (2020).
Multifractal-based lacunarity analysis of trabecular bone in radiography. Comput.
Biol. Med. 116, 103559. doi:10.1016/j.compbiomed.2019.103559

Palanivel, D. A., Natarajan, S., Gopalakrishnan, S., and Jennane, R. (2019).
“Trabecular bone texture characterization using regularization dimension and box-
counting dimension,” in TENCON 2019-2019 IEEE region 10 conference (TENCON).
(Kochi, India: IEEE), 1047–1052.

Peleg, S., Naor, J., Hartley, R., and Avnir, D. (1984). Multiple resolution texture
analysis and classification. IEEE Trans. Pattern Anal. Mach. Intell. PAMI- 6, 518–523.
doi:10.1109/TPAMI.1984.4767557

Raghu, S., and Sriraam, N. (2018). Classification of focal and non-focal EEG signals
using neighborhood component analysis and machine learning algorithms. Expert Syst.
Appl. 113, 18–32. doi:10.1016/j.eswa.2018.06.031

Ranking (2022). Orleans university. Available at: https://www.univ-orleans.fr/fr/
i3mto/innovation/challenge-ieee-isbi-bone-texture-characterization/resultsw
(Accessed March 7, 2022).

Reiter, R. (1987). A theory of diagnosis from first principles. Artif. Intell. 32, 57–95.
doi:10.1016/0004-3702(87)90062-2

Sarkar, N., and Chaudhuri, B. B. (1994). An efficient differential box-counting
approach to compute fractal dimension of image. IEEE Trans. Syst. Man. Cybern.
24, 115–120. doi:10.1109/21.259692

Scanlan, J., Li, F. F., Umnova, O., Rakoczy, G., Lövey, N., and Scanlan, P. (2018).
Detection of osteoporosis from percussion responses using an electronic stethoscope
and machine learning. Bioengineering 5, 107. doi:10.3390/bioengineering5040107

Schneider, E. D., and Kay, J. J. (1994). Life as a manifestation of the second law of
thermodynamics.Math. Comput. Model. 19, 25–48. doi:10.1016/0895-7177(94)90188-0

Shannon, C. E. (2001). Amathematical theory of communication.ACM Sigmob. Mob.
Comput. Commun. Rev. 5, 3–55. doi:10.1145/584091.584093

Smets, J., Shevroja, E., Hügle, T., Leslie, W. D., and Hans, D. (2021). Machine learning
solutions for osteoporosis—a review. J. Bone Min. Res. 36, 833–851. doi:10.1002/jbmr.
4292

Smith, T. G., Lange, G. D., and Marks, W. B. (1996). Fractal methods and results in
cellular morphology - dimensions, lacunarity and multifractals. J. Neurosci. Methods 69,
123–136. doi:10.1016/S0165-0270(96)00080-5

Tang, J. (2022). COVID-19 pandemic and osteoporosis in elderly patients. Aging Dis.
13, 960–969. doi:10.14336/AD.2021.1201

Tecle, N., Teitel, J., Morris, M. R., Sani, N., Mitten, D., and Hammert, W. C. (2020).
Convolutional neural network for second metacarpal radiographic osteoporosis
screening. J. Hand Surg. Am. 45, 175–181. doi:10.1016/j.jhsa.2019.11.019

Tu, K. N., Lie, J. D., Wan, C. K. V., Cameron, M., Austel, A. G., Nguyen, J. K., et al.
(2018). Osteoporosis: A review of treatment options. P T 43, 92–104.

Vapnik, V. N., and Chervonenkis, A. Y. (2015). “On the uniform convergence of
relative frequencies of events to their probabilities,” in Measures of complexity (Berlin,
Germany: Springer), 11–30.

Vapnik, V. (1999). The nature of statistical learning theory. Berlin, Germany: Springer
science \& business media.

Wainwright, S. A., Marshall, L. M., Ensrud, K. E., Cauley, J. A., Black, D. M., Hillier, T.
A., et al. (2005). Hip fracture in women without osteoporosis. J. Clin. Endocrinol. \&
Metab. 90, 2787–2793. doi:10.1210/jc.2004-1568

Xiao, P., Zhang, T., Dong, X. N., Han, Y., Huang, Y., and Wang, X. (2020). Prediction
of trabecular bone architectural features by deep learning models using simulated DXA
images. Bone Rep. 13, 100295. doi:10.1016/j.bonr.2020.100295

Yamamoto, N., Sukegawa, S., Kitamura, A., Goto, R., Noda, T., Nakano, K., et al.
(2020). Deep learning for osteoporosis classification using hip radiographs and patient
clinical covariates. Biomolecules 10, 1534. doi:10.3390/biom10111534

Yang, W., Wang, K., and Zuo, W. (2012). Neighborhood component feature selection
for high-dimensional data. J. Comput. 7, 161–168. doi:10.4304/jcp.7.1.161-168

Yger, F. (2014).Application of covariance matrices and wavelet marginals. arXiv Prepr.
arXiv1410.2663.

Zhang, B., Yu, K., Ning, Z., Wang, K., Dong, Y., Liu, X., et al. (2020). Deep
learning of lumbar spine X-ray for osteopenia and osteoporosis screening: A
multicenter retrospective cohort study. Bone 140, 115561. doi:10.1016/j.bone.
2020.115561

Zheng, K., and Makrogiannis, S. (2016). Bone texture characterization for
osteoporosis diagnosis using digital radiography. Proc. Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc. 2016, 1034–1037. doi:10.1109/EMBC.2016.7590879

Frontiers in Bioengineering and Biotechnology frontiersin.org15

Cui et al. 10.3389/fbioe.2023.1054991

https://doi.org/10.1109/JBHI.2016.2619420
https://doi.org/10.1109/JBHI.2016.2619420
https://doi.org/10.1016/j.physleta.2016.02.029
https://doi.org/10.1016/j.cmpb.2019.03.011
https://doi.org/10.1016/j.cmpb.2019.03.011
https://doi.org/10.1109/42.925297
https://doi.org/10.1007/s00198-006-0172-4
https://doi.org/10.1007/s00198-006-0172-4
http://www.researchgate.net/profile/Audrey_Karperien/publication/230857319_Lacunarity_Analysis_and_Classification_of_Microglia_in_Neuroscience/links/0c9605288742c529d8000000.pdf
http://www.researchgate.net/profile/Audrey_Karperien/publication/230857319_Lacunarity_Analysis_and_Classification_of_Microglia_in_Neuroscience/links/0c9605288742c529d8000000.pdf
http://www.researchgate.net/profile/Audrey_Karperien/publication/230857319_Lacunarity_Analysis_and_Classification_of_Microglia_in_Neuroscience/links/0c9605288742c529d8000000.pdf
https://doi.org/10.1007/s00256-019-03342-6
https://doi.org/10.1007/s00256-019-03342-6
https://doi.org/10.1016/j.patcog.2009.03.001
https://doi.org/10.1016/j.patcog.2009.03.001
https://doi.org/10.1016/j.media.2009.05.003
https://www.phsciencedata.cn/Share/jsp/PublishManager/foregroundView/1/9eaadbb3-bd64-4531-9d9f-753ec183f26d.html
https://www.phsciencedata.cn/Share/jsp/PublishManager/foregroundView/1/9eaadbb3-bd64-4531-9d9f-753ec183f26d.html
https://www.phsciencedata.cn/Share/jsp/PublishManager/foregroundView/1/9eaadbb3-bd64-4531-9d9f-753ec183f26d.html
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Bone+Health+and+Osteoporosis+A+Report+of+the+Surgeon+General#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Bone+Health+and+Osteoporosis+A+Report+of+the+Surgeon+General#0
https://doi.org/10.1142/S0218348X2150095X
https://doi.org/10.1016/j.bspc.2016.10.009
https://www.univ-orleans.fr/en/overview
https://www.univ-orleans.fr/en/overview
https://doi.org/10.1016/j.compbiomed.2019.103559
https://doi.org/10.1109/TPAMI.1984.4767557
https://doi.org/10.1016/j.eswa.2018.06.031
https://www.univ-orleans.fr/fr/i3mto/innovation/challenge-ieee-isbi-bone-texture-characterization/resultsw
https://www.univ-orleans.fr/fr/i3mto/innovation/challenge-ieee-isbi-bone-texture-characterization/resultsw
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1109/21.259692
https://doi.org/10.3390/bioengineering5040107
https://doi.org/10.1016/0895-7177(94)90188-0
https://doi.org/10.1145/584091.584093
https://doi.org/10.1002/jbmr.4292
https://doi.org/10.1002/jbmr.4292
https://doi.org/10.1016/S0165-0270(96)00080-5
https://doi.org/10.14336/AD.2021.1201
https://doi.org/10.1016/j.jhsa.2019.11.019
https://doi.org/10.1210/jc.2004-1568
https://doi.org/10.1016/j.bonr.2020.100295
https://doi.org/10.3390/biom10111534
https://doi.org/10.4304/jcp.7.1.161-168
https://doi.org/10.1016/j.bone.2020.115561
https://doi.org/10.1016/j.bone.2020.115561
https://doi.org/10.1109/EMBC.2016.7590879
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1054991

	A highly generalized classifier for osteoporosis radiography based on multiscale fractal, lacunarity, and entropy distributions
	1 Introduction
	2 Methodology
	2.1 Data acquisition and partition
	2.2 Image enhancement
	2.3 Feature extraction
	2.3.1 Pixel-wise fractal dimension (FD)
	2.3.2 Differential box-counting (DBC) lacunarity
	2.3.3 Pixel-wise entropy

	2.4 Scale parameter selection
	2.5 Feature selection
	2.6 SVM training
	2.7 Classifier validation

	3 Results
	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


