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Protein secondary structure prediction (PSSP) is a challenging task in
computational biology. However, existing models with deep architectures are
not sufficient and comprehensive for deep long-range feature extraction of long
sequences. This paper proposes a novel deep learning model to improve Protein
secondary structure prediction. In themodel, our proposed bidirectional temporal
convolutional network (BTCN) can extract the bidirectional deep local
dependencies in protein sequences segmented by the sliding window
technique, the bidirectional long short-term memory (BLSTM) network can
extract the global interactions between residues, and our proposed multi-scale
bidirectional temporal convolutional network (MSBTCN) can further capture the
bidirectional multi-scale long-range features of residues while preserving the
hidden layer information more comprehensively. In particular, we also propose
that fusing the features of 3-state and 8-state Protein secondary structure
prediction can further improve the prediction accuracy. Moreover, we also
propose and compare multiple novel deep models by combining bidirectional
long short-term memory with temporal convolutional network (TCN), reverse
temporal convolutional network (RTCN), multi-scale temporal convolutional
network (multi-scale bidirectional temporal convolutional network),
bidirectional temporal convolutional network and multi-scale bidirectional
temporal convolutional network, respectively. Furthermore, we demonstrate
that the reverse prediction of secondary structure outperforms the forward
prediction, suggesting that amino acids at later positions have a greater impact
on secondary structure recognition. Experimental results on benchmark datasets
including CASP10, CASP11, CASP12, CASP13, CASP14, and CB513 show that our
methods achieve better prediction performance compared to five state-of-the-
art methods.
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1 Introduction

As a major research hotspot in bioinformatics, protein
secondary structure prediction (PSSP) is undoubtedly an
important task (Yang et al., 2018). The protein primary structure
consists of a linear arrangement of amino acid residues (Kumar
et al., 2020). The secondary structure is a specific spatial structure
formed by the peptide chain curling or folding according to a certain
rule. Further folding based on the secondary structure can form the
tertiary structure. As a bridge connecting the primary and tertiary
structures, the improvement of PSSP not only helps us understand
the structure and function of proteins but also better predicts the
tertiary structure (Wang et al., 2008; Yaseen and Li, 2014a; Wang
et al., 2017). In addition, PSSP can also facilitate drug design.
However, biological techniques for PSSP are time-consuming and
expensive, so we can use computers and deep learning (LeCun et al.,
2015) methods to improve secondary structure prediction.

Generally, the eight classes of protein secondary structure can be
divided into G (helix), H (α-helix), I (π-helix), E (β-sheet), B (β-
bridge), S (bend), T (turn) and C (coil) (Kabsch and Sander, 1983).
Three classes of protein secondary structure can be formed by
classifying H, G, and I as H (helix), E and B as E (strand), and
other structures as C (coil) (Yaseen and Li, 2014b; Ma et al., 2018;
Zhang et al., 2018). In recent years, the research on 3-state PSSP is
more in-depth. However, it is important to obtain more abundant
protein structural information about the 8-state secondary structure.

In the early days of research, machine learning methods such as
support vector machines (Hua and Sun, 2001; Yang et al., 2011),
neural networks (Qian and Sejnowski, 1988; Faraggi et al., 2012),
and k-nearest neighbors (Salzberg and Cost, 1992; Bondugula et al.,
2005) were widely used for PSSP. Furthermore, the PSIPRED server
used two feedforward neural networks to predict secondary
structure (McGuffin et al., 2000). The JPred4 server used the
JNet algorithm to improve accuracy (Drozdetskiy et al., 2015).
However, these methods cannot extract the global information in
the sequence well.

With the development and improvement of deep learning in
recent years, neural networks with deep architectures have achieved
remarkable results in various fields. The deep learning method can
not only reduce the computational complexity but also effectively
utilize the extracted information to improve the prediction accuracy.
The SSpro applied profiles, BRNN and structural similarity to PSSP
(Magnan and Baldi, 2014). The SPIDER3 server used the LSTM-
BRNN model for 3-state PSSP (Heffernan et al., 2017). The SPOT-
1D used ResNet to improve the SPIDER3 server (Hanson et al.,
2019). The SAINT combined the self-attention mechanism and the
Deep 3I network to improve PSSP (Uddin et al., 2020). However,
these methods have complex network structures and high
computational costs. In addition, Zhou et al. proposed a
supervised generative stochastic network to predict secondary
structure (Zhou and Troyanskaya, 2014). The DeepCNF
combined conditional neural fields and shallow neural networks
for prediction (Wang et al., 2016). Wang et al. (2017) proposed a
deep recurrent encoder-decoder network for classification. The
Porter 5 classifier used multiple BRNNs for prediction (Torrisi
et al., 2018). The DeepCNN used multi-scale convolution to
extract secondary structure features (Busia and Jaitly, 2017). The
NetSurfP-2.0 combined CNN and LSTM to extract local and long-

range interactions (Klausen et al., 2019). These methods can
improve PSSP performance, but they are not only insufficient for
long-range feature extraction but also fail to establish a good balance
between local features and long-range features.

In recent years, temporal convolutional network (TCN) (Bai
et al., 2018) has achieved remarkable performance (Lea et al., 2017),
while outperforming popular models such as recurrent neural
networks in most fields. TCN can only extract unidirectional
features, but secondary structure prediction is influenced by past
and future amino acids. To this end, we propose a bidirectional TCN
(BTCN) by improving TCN, which can extract bidirectional deep
dependencies between amino acids. Due to the waste of hidden layer
information in BTCN, we further propose a multi-scale BTCN
(MSBTCN), which can not only extract bidirectional features but
also better preserve the feature information of intermediate residual
blocks. However, MSBTCN may also introduce unnecessary
information.

For high-dimensional long protein sequences, most existing
methods with deep architectures not only lack long-range feature
extraction capability but also ignore deep dependencies. In
addition, a single model cannot extract key information in
complex residue sequences and has great limitations.
Therefore, this paper proposes a novel deep learning model
that uses BTCN, bidirectional long short-term memory
(BLSTM) (Graves and Schmidhuber, 2005) network and
MSBTCN to improve the accuracy of PSSP. In the proposed
model, the BTCN module using the sliding window technique
can extract bidirectional deep local dependencies in protein
sequences. The BLSTM module can extract the global
interactions between amino acid residues. The MSBTCN
module can further capture bidirectional deep long-range
dependencies between residues, while better fusing and
optimizing features. Our method can effectively utilize longer-
term bidirectional feature information to model complex
sequence-structure relationships. Due to the close correlation
between 3-state and 8-state PSSP, we also propose to fuse the
features of 3-state and 8-state PSSP for classification based on the
model. Furthermore, this paper compares our proposed six novel
deep models for PSSP by combining BLSTM with TCN, reverse
TCN (RTCN), multi-scale TCN (MSTCN), BTCN and MSBTCN,
respectively. To evaluate the prediction performance of the
model, we compare it with state-of-the-art methods on
benchmark datasets. Experimental results show that our
methods achieve better performance, which can effectively
solve the shortcomings of incomplete and insufficient feature
extraction.

The main contributions of this paper: 1) We propose BTCN by
improving TCN, which can extract bidirectional deep dependencies
in sequences. To enable BTCN to extract local features, we
preprocess the sequences using a sliding window technique. 2)
We further propose MSBTCN, which can not only extract
bidirectional deep features between residues but also better
preserve the information of hidden layers. 3) We propose a novel
deep learning model using BTCN, BLSTM and MSBTCN, which
outperforms five state-of-the-art methods and improves the
prediction accuracy of secondary structure. 4) We propose
multiple novel deep learning models by combining BLSTM with
TCN, RTCN, MSTCN, BTCN, and MSBTCN respectively, which
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can effectively solve the disadvantage of low long-range dependency
extraction ability in long sequences. 5) We experimentally
demonstrate that the reverse prediction of secondary structure is
superior to the forward prediction, suggesting that the recognition of
secondary structure is more correlated with amino acids at later
positions. 6) We experimentally demonstrate that the fusion of 3-
state and 8-state PSSP features can further improve the prediction
performance of the secondary structure, which also provides a new
idea for PSSP.

2 Materials and methods

2.1 Bidirectional long short-term memory
networks (BLSTM)

As shown in Figure 1, BLSTM consists of forward LSTM
(Hochreiter and Schmidhuber, 1997) and backward LSTM.
LSTM can automatically decide to discard unimportant
information and retain useful information. For a standard LSTM
cell at time t, the input feature is denoted as xt, the output is denoted
as ht, and the cell state is denoted as ct. The forget gate f, the input
gate i and the output gate o in the LSTM unit are calculated as
follows:

f t � σ Wxf × xt +Whf × ht−1 + bf( ) (1)
it � σ Wxi × xt +Whi × ht−1 + bi( ) (2)
ot � σ Wxo × xt +Who × ht−1 + bo( ) (3)

ct � f t ⊙ ct−1 + it ⊙ tanh Wxc × xt +Whc × ht−1 + bc( ) (4)
ht � ot ⊙ tanh ct( ) (5)

where σ is the sigmoid function,W is the weight matrix, b is the bias
term, ☉ is the element-wise multiplication, and tanh is the
hyperbolic tangent function.

2.2 Temporal convolutional networks (TCN)

TCN has superior performance in sequence processing while
avoiding the gradient problem during training. In addition, TCN
also has the characteristics of fast calculation speed, low memory,
parallel operation and flexible receptive field.

2.2.1 Causal convolutions
TCN uses a one-dimensional fully convolutional network

architecture, where the length of the input layer is the same as
the length of each hidden layer, and zero padding is added to keep
the front and back layers the same length. Therefore, TCN can map
sequences of any length to output sequences of the same length.
Furthermore, the network uses causal convolution, where the output
at the current time is only determined by the feature inputs at the
current time and past time. Therefore, information in TCN does not
leak from the future to the past.

2.2.2 Dilated convolutions
However, causal convolution has inevitable limitations when

dealing with sequences that require long-term historical
information. Therefore, the network uses dilated convolution to
increase the receptive field and obtain very long effective historical
information, which is defined as:

F s( ) � Xpdf( ) s( ) � ∑k−1
i�0

f i( ) · Xs−d·i (6)

Where F(s) is the dilated convolution operation, x is the input
feature, d is the dilation factor, f is the filter, s is the element of the
sequence, k is the filter size, and s − d • i represents the past direction.
As the number of layers and the dilation factor continue to increase
(d = 2i at level i), the output of the top layer will contain a wider
range of input information.

FIGURE 1
The architecture of BLSTM.
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2.2.3 Residual connections
As shown in Figure 2, the network introduces residual

connections to ensure the training stability of high-dimensional
input, which is defined as:

O � Activation X + F X( )( ) (7)
where X represents the input of the block and F(X) represents the
output of the block after a series of operations.

The TCN architecture consists of multiple residual
blocks. As shown in Figure 2, the residual block
contains dilated causal convolutional layers, weight
normalization layers, ReLU layers, and dropout layers.
The TCN adds the input of each block to the output of
the block (including a 1 × 1 convolution on the input when
the number of channels between the input and output do
not match).

FIGURE 2
Architecture in TCN.

FIGURE 3
The architecture of BTCN.
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2.3 The proposed bidirectional TCN (BTCN)

Since TCN uses dilated causal convolution, it can only transmit
information from the past to the future. However, the recognition of
secondary structure is not only determined by amino acids at
previous positions but also influenced by amino acids at later
positions. The unidirectionally transported TCN obviously
cannot satisfy the comprehensive extraction of amino acid
features, so we propose a BTCN model to adequately capture the
bidirectional deep dependencies between residues.

As shown in Figure 3, the architecture of BTCN consists of
forward TCN and backward TCN. Since the dilated causal
convolution performs one-way operation on the sequence, we
input the reverse sequence to the backward TCN for reverse
feature extraction of the network.

Letting X denote a protein sequence, L be the length of X, and
X = {x1, x2, ..., xL}, X

←
= {xL, xL-1, ..., x1} is reverse sequence of X. The

BTCN can be expressed as follows:

Ŷ � TCN
�����→

X( ) (8)
Ŷ1 � TCN

←�����
X
←( ) (9)

Ouput � softmax f W 1DCov Ŷ⊕Ŷ1

←�( )( ) + b( )( ) (10)

where TCN
�����→

is the forward TCN whose input is the forward
sequence X, TCN

←�����
is the backward TCN whose input is the

reverse sequence X
←
, ⊕ is the addition operation of the matrix, Ŷ

and Ŷ1 are the outputs of the forward and backward TCN
respectively, Ŷ1

←�
is the reverse matrix of Ŷ1, 1DCov is the 1D

convolution operation of the residual block, W and b are the
weight matrix and bias term of the fully connected layer, softmax
is the activation function for classification, and Output is the final
output of BTCN.

The output ŷt of the network at the current time t can be
determined by the input of the entire sequence, which is
calculated as:

ŷt � TCN
�����→

x1, x2,/, xt( ) ⊕TCN←�����
xL, xL−1,/, xt( ) (11)

Ouputt � softmax f W 1DCov ŷt( )( ) + b( )( ) (12)
We denote the forward TCN

�����→
as TCN, because the input of the

backward TCN
←�����

is the reverse sequence, so it is also called reverse
TCN and denoted as RTCN. Therefore, the architecture of the
network is BTCN = 1DCov(TCN + RTCN), where 1DCov can
further optimize the features. In the network, TCN operates on
inputs at times t and before t (x1, x2, . . . , xt), and RTCN operates on
inputs at times t and after t (xL, xL-1, . . . , xt). Therefore, the network
can utilize bidirectional deep interactions to facilitate secondary
structure recognition through forward and backward extraction of
residue features. Furthermore, BTCN is not limited to PSSP, it
applies to all sequences that require global semantics.

2.4 The proposed multi-scale bidirectional
TCN (MSBTCN)

In unidirectional TCN, the output ŷq of the qth layer residual
block is:

ŷq � ReLU f W × ŷq−1 + b( ) + ŷq−1( ) (13)

where the input ŷq−1 is the output of the previous layer. As the
number of layers in BTCN increases, the receptive field of the
network continues to expand. However, since BTCN adopts the
dilated convolutional architecture, the hidden layer in the middle of
the network loses a lot of important feature information. Therefore,
we further propose the MSBTCN model to more comprehensively
utilize residue features for classification. The improved MSBTCN
can not only extract bidirectional multi-scale features but also better
preserve the key information of the intermediate residual blocks.

As shown in Figure 4, the MSBTCN can utilize the complete
information of all layers for prediction, which effectively prevents
the waste of weight information in hidden layers. The output ŷ of a
unidirectional MSTCN with n residual blocks is:

ŷ � Concatenate ŷ1, ŷ2,/, ŷn( ) (14)
The improved MSBTCN can not only capture the bidirectional

deep features but also utilize the key information of the intermediate
residual blocks for prediction.

2.5 Overall architecture of the proposed
model

To better improve the prediction of secondary structure, as
shown in Figure 5, the proposed model uses BTCN, BLSTM and
MSBTCN to extract deep interactions of residue sequences. The
proposed model can be divided into five parts: input, BTCNmodule,
BLSTM module, MSBTCN module and output.

In the input part, we first transform the protein data into 20-
dimensional PSSM features and 21-dimensional one-hot features.

FIGURE 4
The architecture of MSBTCN.
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Then, we use the hybrid feature PSSM + one-hot of size 41 × L as the
input of the model, where L is the length of the protein sequence.

In the BTCN module, to enable the network to extract local
features, we use the sliding window technique to segment the
input features into short sequences of 41 × W, where W is the
window size. The input and output of BTCN for sequence-to-
sequence prediction must be the same length, so we put the
secondary structure label corresponding to the segmented amino
acid feature at the W position, and fill the remaining positions
with 0. We then use the modified BTCN to extract bidirectional
deep local dependencies in amino acid sequences. Since W is
generally less than 20, our use of four residual blocks is sufficient
to capture bidirectional amino acid information in the sequence.
We use three dilated causal convolutional layers with the same
dilation factor in the residual block. After the dilated causal
convolutional layer, we add an instance normalization layer to
accelerate model convergence, a ReLU activation layer to prevent
vanishing gradient, and a spatial dropout layer to avoid model
overfitting. We use the Transform layer to process the extracted
local features into 20 × L sequences. Then, the Concatenate layer
can merge the local features with the input features into 61 × L
sequences.

In the BLSTM module, we use two bidirectional LSTM layers
with powerful analytical capabilities to extract key global

interactions in protein sequences. Additionally, we add two
dropout layers to ensure gradient stabilization during training.

In the MSBTCN module, we use four and five residual blocks to
optimize the extracted local and global features, respectively, while
further capturing the deeper bidirectional long-range dependencies
between amino acid residues, which can more comprehensively
preserve the important information of the hidden layer. Since
MSBTCN has a flexible receptive field and stable computation, it
can interact and control sequence information more accurately,
while quickly optimizing and fusing the extracted features.

In the output part, we use a residual block to process and
optimize the features extracted by MSBTCN and BLSTM modules.
Finally, we use a fully connected layer and softmax function to
complete the classification.

It should be noted that we also extract the Concatenate layer features
of the output part of the model in 3-state and 8-state PSSP respectively
and fuse them into 80-dimensional features for secondary structure
prediction, where the fused features are denoted as FF3-8. The FF3-8
contains both 3-state and 8-state secondary structure label information,
which can better model the sequence-structure mapping relationship
between input features and secondary structures. The proposed method
can effectively exploit more complex and longer-term global
dependencies to improve the accuracy of PSSP through
comprehensive processing of protein sequences.

FIGURE 5
The detailed architecture of the proposed model.
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3 Experiments

3.1 Datasets

The PISCES (Wang and Dunbrack, 2005) server can produce
lists of sequences from the Protein Data Bank (PDB) based on
chain-specific criteria and mutual sequence identity, which are
widely used for PSSP. Therefore, we selected 14,991 proteins
from the PDB to compose the CullPDB (Wang and Dunbrack,
2005) dataset based on the percentage identity cutoff of 25%, the
R-factor cutoff of 0.25, and the resolution cutoff of 3 Å. To ensure
the accuracy of the 8-state secondary structure information, we
use the division method of the DSSP (Kabsch and Sander, 1983)
program. We removed proteins that were duplicated with the test
set in the training set. In addition, we also removed proteins with
lengths less than 40 or more than 800. The final CullPDB dataset
contains 14,562 protein chains. For better evaluation, we further
randomly divide the dataset into three parts: a training set
(11,650), a validation set (1,456) and a test set (1,456). The
results of all experiments are obtained from the average of
three times independent experiments.

To evaluate the performance of the proposed model, we also use
the CASP10 (Moult et al., 2014), CASP11 (Moult et al., 2016),
CASP12 (Moult et al., 2018), CASP13 (Kryshtafovych et al., 2019),
CASP14 (Kryshtafovych et al., 2021), and CB513 (Cuff and Barton,
1999) datasets as test sets, where the numbers of proteins and
residues in the six benchmark datasets are shown in Table 1. The
first five datasets are from the Critical Assessment of Protein
Structure Prediction (CASP) website https://predictioncenter.org/.

3.2 Feature representation

In this study, we used two amino acid encoding methods: one-
hot encoding and position-specific scoring matrix (PSSM) (Jones,
1999). The database of protein sequences contains 20 standard
amino acid types (A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S,
T, W, Y, and V) and 6 non-standard amino acid types such as B, Z,
and X. Since the occurrence frequency of the six non-standard
amino acid types is particularly low, they can generally be classified
as one type. Therefore, we consider that the protein sequence
consists of 21 amino acid types.

An amino acid sequence of length L can be represented as a 21 ×
L feature matrix by one-hot encoding, where 21 represents the
number of amino acid types, the position corresponding to the
amino acid type is 1, and the other positions are 0. Each amino acid
type in one-hot encoding has an independent number, which makes
the vector representations of different amino acid types mutually
orthogonal, so this method can also be called orthogonal encoding.

PSSM is a scoring matrix based on the alignment of the sequence
itself with multiple sequences. This encoding method contains rich
biological evolution information, so it is widely used for protein
sequence representation in PSSP. In the experiments, PSSM was
generated by PSI-BLAST (Altschul et al., 1997) with parameters
including a threshold of 0.001 and 3 iterations. A 20 × L PSSM
matrix represents a protein sequence of length L, where 20 is the
number of standard amino acid types, that is, each row corresponds
to one amino acid residue type.

3.3 Evaluation metrics

In this paper, we use four metrics to evaluate the performance of
the proposed model: Q3 accuracy, Q8 accuracy and Segment overlap
(Sov) (Zemla et al., 1999) score for 3-state and 8-state PSSP.

The 8-state secondary structure is H, G, I, E, B, S, T and C, while
the 3-state secondary structure is H, E, and C. Q3 and Q8 accuracy
are the ratios of the number of correct residues predicted to the
number of all residues S, which are defined as:

Q3 � SC + SE + SH
S

× 100 (15)

Q8 � SH + SG + SI + SE + SB + SC + ST + SS
S

× 100 (16)

where Si (i ∈{H, E, C} or {H, G, I, E, B, C, T, S}) represents the correct
number of predicted a single type i. Letting SS denote the total
number of residues of a single type i. The prediction accuracyQi of a
single type i is defined as:

Qi � Si
SS

× 100 (17)

Sov is a metric based on the ratio of overlapping segments, which
is defined as:

Sov � 100
NSov

∑
S0

minov S1, S2( ) + σ S1, S2( )
maxov S1, S2( ) length S1( )[ ] (18)

whereNSov is the total number of residues in the protein sequence, S1
is all observed structural segments, S2 is all predicted segments, S0 is
all segments of S1 and S2 with the same structure, length(S1) is the
residue length of S1, maxov(S1, S2) is the union length of S1 and S2
segments, and minov(S1, S2) is the intersection length of S1 and S2
segments. The factor σ(S1, S2) allows variation at the segment edges,
which is defined as:

σ S1, S2( ) � min

maxov S1, S2( ) −minov S1, S2( )
minov S1, S2( )
int len S1( )[ ]/2
int len S2( )[ ]/2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (19)

TABLE 1 The number of proteins and residues for the six datasets.

Number CASP10 CASP11 CASP12 CASP13 CASP14 CB513

Proteins 99 81 19 22 23 513

Residues 24,048 20,084 4,257 5,948 4,644 84,119
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3.4 Performance analysis of the proposed
model

To make the proposed model have good performance when
dealing with long protein sequences, we conduct extensive
experiments on the CullPDB dataset without using FF3-8. For the
three modules in the proposed model, we show and analyze the
effect of different hyperparameters on the prediction performance in
experiments.

3.4.1 Effect of BTCN module parameters
To explore the effect of sliding window size and filter parameters

on the proposed model, we conduct comparative experiments on
validation and test sets. Since the recognition of secondary structure
is mainly influenced by amino acids at current and adjacent
positions, we used different sliding window sizes 13, 15, 17 and
19 to segment protein sequences. As shown in Figures 6A, B, when
the sliding window size is 19, the model achieves the highest Q3 and
Q8 accuracy on the two datasets. Because when the window is too
small or too large, important amino acid information at key
positions will be lost or ignored.

Figures 6C, D show the Q3 and Q8 accuracy of the proposed
model under different numbers and sizes of filters. The figures show
that when the number and size of filters are 512 and 5, the model
achieves the best experimental results on the validation and test sets.
The main reason is that the filter size determines the local extent of
capture, which affects the extraction of key features between
residues. Furthermore, the number of channels in the
convolution not only affects the prediction performance but also
determines the model size and training time.

3.4.2 Effect of BLSTM module parameters
To verify the effect of hidden units in the BLSTM layer on the

proposed model, we conduct comparative experiments on the
validation and test sets with different hidden unit numbers of
1,000, 1,200, 1,500, 1800, 2000, 2,200, and 2,500. Figures 7A, B
show that the classification accuracy of the model on the two
datasets increases as the number of hidden units increases. When
the number of hidden units is 2,500, the model achieves the best
prediction performance in 3-state and 8-state PSSP. The main
reason is that the number of hidden units determines the
expressivity of high-dimensional protein sequences. However, it
should be noted that if the number of hidden units is too large,
the model will not only slow down the training speed but also may
have overfitting problems.

3.4.3 Effect of MSBTCN module parameters
The performance of the MSBTCN module composed of

residual blocks is closely related to the number of blocks, so
we optimize the extracted local features with 3–8 different
numbers of residual blocks, respectively. Figures 7C, D show
the 3-state and 8-state accuracy of the proposed model on the
validation and test sets. It can be observed that the Q3 accuracy
on the two datasets reaches the maximum when the model uses
4 residual blocks, while the Q8 accuracy on the two datasets
reaches the maximum when 4 and 5 blocks are used,
respectively. Because the number of residual blocks
determines the depth of our model. The model cannot
capture deeper dependencies when the depth is not enough,
but the model increases complexity and the risk of overfitting as
the depth increases.

FIGURE 6
(A,B) Q3 and Q8 accuracy of the proposed model under different sliding window sizes. (C,D) Q3 and Q8 accuracy of the proposed model under
different filter parameters.
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3.5 Ablation study

3.5.1 Comparison of unidirectional and
bidirectional PSSP

To demonstrate the effectiveness of the BTCN model for PSSP,
we compare the performance of TCN, RTCN and BTCN on seven
datasets. In the experiments, we use four residual blocks to extract

features, where all models have the same parameters. The model
input is the hybrid feature of size 41 × L, where L is the protein
length. As shown in Table 2, the prediction performance of our
BTCN is greatly improved on all datasets. Compared with TCN, the
Q3 accuracy and Q8 accuracy of BTCN are improved by an average
of 4.74% and 5.43% on seven datasets, respectively. The
experimental results are sufficient to demonstrate the superior

FIGURE 7
(A,B)Q3 andQ8 accuracy of the proposedmodel under different number of units. (C,D)Q3 andQ8 accuracy of the proposedmodel under different
number of blocks.

TABLE 2 Comparison of Q3 and Q8 accuracy of three models on seven datasets. Bold indicates the best performance.

Models CullPDB CASP10 CASP11 CASP12 CASP13 CASP14 CB513

Q3 Q8 Q3 Q8 Q3 Q8 Q3 Q8 Q3 Q8 Q3 Q8 Q3 Q8

TCN 75.61 63.91 77.78 65.50 75.72 63.43 76.13 63.94 75.95 61.95 74.68 62.77 80.09 66.38

RTCN 77.05 64.73 79.13 66.85 76.88 65.01 77.07 64.53 77.96 62.98 76.23 65.22 80.82 67.41

BTCN 80.79 69.40 82.25 70.52 80.56 68.93 80.26 69.16 80.75 66.86 80.04 68.58 84.48 72.43

FIGURE 8
Reverse representation of amino acid and secondary structure sequences.
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performance of the BTCN model, which can effectively capture the
bidirectional deep interactions between residues and improve the
prediction accuracy.

In addition, the table shows that the prediction accuracy of
RTCN is consistently better than TCN on seven datasets and the
Q8 accuracy is improved by an average of 1.18%. The reverse amino
acid sequence is shown in Figure 8. The results show that the reverse
prediction of the secondary structure is superior to the forward
prediction, which also indicates that the amino acid at the later
position has a greater impact on the overall recognition of the
secondary structure when the features are extracted unidirectionally.
The main reason for the low prediction accuracy of TCN is that its
broad receptive field ignores the important information of adjacent
amino acids when the sliding window technique is not used, but the
prediction of the whole sequence can better reflect the influence of
the amino acids in the front and rear positions on PSSP. The single-
type prediction accuracy of TCN and RTCN is shown in Table 3.
The table shows that the accuracy of types H, G, B, C, S and T has
improved while the accuracy of type E has decreased on most
datasets. This also demonstrates that the recognition of most
secondary structure types is more relevant to amino acid
information from later positions.

3.5.2 Comparison of the six proposed models
To verify the performance of different feature extraction

modules in PSSP, we propose six novel deep learning models
by combining BLSTM with TCN, RTCN, MSTCN, BTCN and
MSBTCN, respectively. We use the same feature extraction
process and parameters in all models. As shown in Table 4,
the BLSTM-BTCN-MSBTCN model achieves the highest Q3 and
Q8 accuracy on the eight datasets except CASP13. In addition, it
can be observed that BLSTM-RTCN has better prediction
performance on most datasets than BLSTM-TCN, which
indicates that the reverse prediction of secondary structure
can achieve higher accuracy. After the sequence is processed
by the sliding window method, the effect of the amino acids in the
front and rear positions on the prediction performance is not
much different, so the advantage of RTCN is not obvious. The
table shows that the prediction performance of the BLSTM-
BTCN and BLSTM-MSBTCN models is significantly better
than the models with unidirectional feature extraction on all
datasets, which proves that our proposed BTCN and MSBTCN
can fully exploit the bidirectional long-range interaction to
improve the prediction accuracy. Although BLSTM-MSBTCN
can capture multi-scale feature information, its prediction

TABLE 3 Single-type accuracy comparison of TCN and RTCN on seven datasets.

Accuracy CullPDB CASP10 CASP11 CASP12 CASP13 CASP14 CB513

TCN RTCN TCN RTCN TCN RTCN TCN RTCN TCN RTCN TCN RTCN TCN RTCN

QH 89.21 86.29 90.23 90.17 89.96 90.19 90.89 87.98 91.17 91.91 87.48 90.47 86.87 87.31

QG 12.45 16.94 18.15 22.48 7.79 8.72 8.15 14.81 6.84 10.27 10.81 7.43 30.80 33.34

QI 0 0 0 0 0 0 0 0 0 0 0 0 0 0

QE 80.41 76.84 73.92 78.90 82.86 78.00 80.15 76.99 77.64 72.27 72.08 75.45 77.40 77.26

QB 2.62 3.98 3.23 3.63 2.10 0 2.33 0 1.33 0 0 2.08 12.71 19.15

QC 53.14 58.25 65.61 58.28 50.76 58.86 51.56 61.30 58.40 60.34 57.17 56.84 61.23 62.32

QS 13.07 20.40 13.72 21.67 10.93 13.86 14.25 7.25 9.92 9.92 7.75 8.53 31.76 32.58

QT 36.22 43.34 45.95 51.10 35.99 44.18 36.34 43.98 27.72 39.84 30.97 38.28 48.52 52.12

TABLE 4 Comparison of 3-state and 8-state PSSP performance of the proposed six models on eight datasets. Validation and Test represent the validation set and
test set of CullPDB, respectively. The six models have the same feature extraction process and parameters. Bold indicates the best performance.

Models Validation Test CASP10 CASP11 CASP12 CASP13 CASP14 CB513

Q3 Q8 Q3 Q8 Q3 Q8 Q3 Q8 Q3 Q8 Q3 Q8 Q3 Q8 Q3 Q8

BLSTM-TCN 82.95 73.53 82.71 73.22 84.04 73.82 81.68 71.72 80.14 69.82 81.09 68.43 80.74 69.94 85.61 77.21

BLSTM-RTCN 83.03 73.60 82.87 73.34 83.96 73.74 81.53 71.59 80.32 70.08 81.17 68.50 80.71 70.10 85.68 77.27

BLSTM-MSTCN 83.05 73.64 82.83 73.29 84.01 73.86 81.79 71.75 80.39 69.73 80.94 68.29 80.63 70.05 85.73 77.18

BLSTM-BTCN 83.98 74.08 83.65 73.84 84.71 74.45 82.53 72.45 81.49 70.69 82.21 69.04 81.99 70.99 86.41 77.56

BLSTM-MSBTCN 83.93 74.03 83.68 73.79 84.77 74.48 82.47 72.51 81.43 70.51 82.16 68.96 81.83 70.87 86.45 77.71

BLSTM-BTCN-
MSBTCN

84.01 74.10 83.72 73.89 84.83 74.53 82.62 72.56 81.51 70.92 82.26 69.02 82.02 71.12 86.47 77.91
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accuracy is inferior to BLSTM-BTCN on most datasets. The main
reason is that BTCN does not waste the information of
intermediate layers excessively when extracting local features
in short sequences segmented by sliding windows, on the
contrary, MSBTCN may introduce unnecessary information.
To this end, we use BTCN and MSBTCN to extract
bidirectional local and long-range features respectively in the
BLSTM-BTCN-MSBTCN model, which can not only better
extract features in short sequences but also preserve useful
information in long sequences. The BLSTM-BTCN-MSBTCN
model can combine the advantages of each module to extract
diverse features and improve prediction accuracy.

3.6 Comparison with state-of-the-art
methods

In this section, we compare the proposed model with five
state-of-the-art models on seven datasets CullPDB, CASP10,
CASP11, CASP12, CASP13, CASP14, and CB513 using
Q3 accuracy, Q8 accuracy and Sov score as evaluation
measures. Among the compared models, DCRNN (Li and Yu,
2016) is an end-to-end deep network that uses convolutional
neural networks with different kernel sizes and recurrent neural
networks with gated units to extract multi-scale local features and
long-range dependencies in protein sequences. CNN_BIGRU
(Drori et al., 2018) combines convolutional network and
bidirectional GRU to predict secondary structure.
DeepACLSTM (Guo et al., 2019) combines asymmetric
convolutional networks and bidirectional long short-term
memory networks to improve secondary structure prediction
accuracy. These three algorithms are all combinations of
convolutional neural networks and recurrent neural networks,
but their structures are different. MUFOLD-SS (Fang et al., 2018)
uses a Deep inception-inside-inception (Deep3I) network to
handle local and global dependencies in sequences. ShuffleNet_
SS (Yang et al., 2022) uses a lightweight convolutional network
and label distribution aware margin loss to improve the network’s
learning ability for rare classes. For a fair comparison, we use our
dataset for training in experiments, where the input is the hybrid
feature PSSM + one-hot.

The prediction results of the proposed methods and five
existing popular methods DCRNN, CNN_BIGRU,
DeepACLSTM, MUFOLD-SS, and ShuffleNet_SS on
benchmark datasets are shown in Tables 5, 6. The table shows
that our model consistently outperforms five state-of-the-art
methods on seven datasets in terms of Q3 accuracy, Q8 accuracy
and Sov scores for 3-state and 8-state PSSP. This is mainly
attributed to the powerful and comprehensive feature extraction
capability of the proposed model, which enables bidirectional
deep local and long-range interactions in residue sequences to be
fully extracted and used for prediction. Compared to our model
without FF3-8, FF3-8 achieves the best 3-state PSSP performance
on all datasets while FF3-8 also achieves the highest 8-state PSSP
accuracy in most cases. The experimental results show that the
important correlation between the 3-state and 8-state PSSP can
mutually promote the recognition of secondary structure. In
particular, the accuracy of the 3-state PSSP is significantly
improved after adding the 8-state PSSP feature. Furthermore,
our model size is 13.8 MB while the model size using FF3-8 is
14.3 MB. The model sizes of DCRNN, CNN_BIGRU,
DeepACLSTM, MUFOLD-SS and ShuffleNet_SS are 18.1MB,
15.8MB, 20.6MB, 17.6 MB and 3.9MB, respectively. Although
our model parameter size only outperforms four popular
methods, it achieves state-of-the-art performance in PSSP.
For high-dimensional long sequences, our model can also
effectively utilize a broad and flexible receptive field to
capture longer-term key dependencies between residues, so it
can better model the complex relationship between sequence
and structure.

3.7 The single-type accuracy of the 8-state
PSSP

In 8-state PSSP, the single-type accuracy of the proposed
model without and with FF3-8 on seven datasets is shown in
Table 7. It can be seen from the table that there are obvious
differences in the prediction accuracy of the eight structures. The
main reason is that the frequency of occurrence of various types is
too different, and the number of structure type I is almost 0. It can
be observed that the accuracy of structure types G, E, B and T is

TABLE 5 3-state PSSP performance comparison with state-of-the-art methods on seven datasets. Bold indicates the best performance.

Methods CullPDB CASP10 CASP11 CASP12 CASP13 CASP14 CB513

Q3 Sov Q3 Sov Q3 Sov Q3 Sov Q3 Sov Q3 Sov Q3 Sov

DCRNN 82.12 78.51 82.57 75.71 80.57 75.53 80.41 74.75 80.49 77.09 80.28 71.46 84.66 79.63

CNN_BIGRU 82.31 78.68 82.40 76.20 81.03 76.58 80.37 75.62 80.64 76.94 80.45 71.92 84.81 79.90

DeepACLSTM 82.64 79.45 83.43 77.76 81.32 76.04 80.49 75.56 80.91 77.43 80.79 71.73 85.02 80.12

MUFOLD-SS 83.02 79.62 83.28 78.04 81.68 77.41 80.94 77.47 81.15 78.02 81.12 70.97 85.30 80.23

ShuffleNet_SS 83.07 78.79 83.89 76.27 81.72 76.37 80.87 76.39 81.43 77.46 81.26 71.32 85.62 79.98

Our Model 83.72 79.94 84.83 79.43 82.62 78.31 81.51 77.90 82.26 79.12 82.02 72.65 86.47 81.05

Our Model (FF3-8) 84.45 81.24 85.83 80.97 83.51 80.12 82.01 79.18 82.72 79.66 83.44 75.51 87.49 83.12
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improved on most datasets after adding the features of 3-
state PSSP.

4 Conclusion

In this paper, we propose a novel deep learning model for
PSSP using BTCN, BLSTM and MSBTCN. In the proposed
model, we use a modified BTCN module to extract
bidirectional deep local dependencies in protein sequences
segmented by the sliding window technique. Then, we use the
BLSTM module to extract the global interactions between amino
acids. We also use a modified MSBTCN module to further
capture the bidirectional key long-range dependencies
between residues while better optimizing and fusing the
extracted features, which prevents information waste in
hidden layers. The proposed model has strong stability and
feature extraction ability, and it can not only effectively solve
the shortcomings of insufficient extraction of deep long-range
dependencies in sequences but also overcome the weaknesses of
each module. Due to the close correlation between the 3-state
and the 8-state, we also use the fusion feature FF3-8 based on the

proposed model to further improve the performance of PSSP,
which is also a new idea for PSSP. Moreover, this paper
compares the six PSSP models we propose by combining
BLSTM with TCN, RTCN, MSTCN, BTCN, and MSBTCN,
respectively. In addition, we experimentally demonstrated
that the reverse prediction of secondary structure can achieve
higher accuracy, which indicates that amino acids at later
positions are more correlated with secondary structure
recognition than amino acids at earlier positions. We evaluate
the performance of the proposed model on benchmark datasets
such as CASP10, CASP11, CASP12, CASP13, CASP14, and
CB513 using Q3 accuracy, Q8 accuracy and Sov score.
Experimental results show that our method has better
prediction performance compared to state-of-the-art methods.
Our methods can fully use the diverse deep features in residue
sequences for prediction to better model the complex mapping
relationship between sequences and structures, thereby
improving the accuracy of PSSP. Our models are not limited
to PSSP but are applicable to all data that rely on bidirectional
information. When dealing with other real sequence data, BTCN
may ignore some information while MSBTCN may introduce
unimportant information. Therefore, in the future, we will

TABLE 6 8-state PSSP performance comparison with state-of-the-art methods on seven datasets. Bold indicates the best performance.

Methods CullPDB CASP10 CASP11 CASP12 CASP13 CASP14 CB513

Q8 Sov Q8 Sov Q8 Sov Q8 Sov Q8 Sov Q8 Sov Q8 Sov

DCRNN 72.06 70.42 72.11 69.74 70.50 68.44 69.41 67.24 68.05 68.01 68.87 63.27 75.63 73.06

CNN_BIGRU 72.28 70.15 71.87 69.17 70.94 69.05 69.67 68.06 67.83 67.92 68.69 62.95 75.54 72.84

DeepACLSTM 72.86 71.34 73.09 71.42 71.24 69.93 69.82 68.18 68.47 69.31 69.52 63.46 76.01 73.46

MUFOLD-SS 73.32 71.59 72.98 71.51 71.62 69.84 70.23 69.32 68.23 68.89 69.23 62.69 76.64 74.04

ShuffleNet_SS 73.31 71.12 73.62 70.23 71.54 69.17 70.21 68.73 68.54 68.36 69.91 63.17 76.89 73.32

Our Model 73.89 72.50 74.53 72.25 72.56 70.90 70.92 70.02 69.02 69.78 71.12 64.32 77.91 74.96

Our Model (FF3-8) 74.13 72.71 74.88 72.31 72.64 70.95 70.92 68.70 69.10 70.70 71.21 65.25 78.12 75.66

TABLE 7 Single-type accuracy of the proposed model on seven datasets in 8-state PSSP when using FF8 and FF3-8, where F8 represents the 8-state PSSP feature.

Accuracy CullPDB CASP10 CASP11 CASP12 CASP13 CASP14 CB513

FF8 FF3-8 FF8 FF3-8 FF8 FF3-8 FF8 FF3-8 FF8 FF3-8 FF8 FF3-8 FF8 FF3-8

QH 90.44 91.74 91.54 92.90 91.73 91.79 92.88 92.42 91.72 91.72 89.72 88.91 93.76 93.58

QG 35.47 38.97 34.66 35.71 35.80 29.85 36.30 39.26 27.00 28.14 30.41 33.11 52.27 54.05

QI 9.62 3.85 0 0 0 0 0 0 0 0 0 0 0 0

QE 83.29 83.46 85.50 85.64 83.43 82.72 80.52 81.54 80.76 78.77 79.14 79.87 86.88 87.65

QB 19.20 19.83 20.97 18.95 15.13 13.87 11.63 13.95 4.00 8.00 12.50 16.67 36.01 33.10

QC 69.29 68.39 71.80 74.40 65.45 69.91 62.34 61.07 65.46 68.15 65.23 65.01 74.19 72.06

QS 35.59 38.28 32.45 31.20 35.94 30.82 27.75 26.75 23.09 27.15 30.49 28.17 49.51 52.24

QT 61.19 57.46 63.62 59.32 55.73 56.14 54.40 55.56 51.81 46.30 49.46 52.90 63.70 65.86
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investigate more feature extraction and optimization techniques
to better utilize protein information, and study the association
between 3-state and 8-state PSSP to improve prediction
accuracy.
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