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Introduction:Human-in-the-loopoptimization hasmade great progress to improve
the performance of wearable robotic devices and become an effective customized
assistance strategy. However, a lengthy period (several hours) of continuous walking
for iterative optimization for each individual makes it less practical, especially for
disabled people, who may not endure this process.

Methods: In this paper, we provide a muscle-activity-based human-in-the-loop
optimization strategy that can reduce the time spent on collecting biosignals during
each iteration from around 120 s to 25 s. Both Bayesian andCovarianceMatrix Adaptive
Evolution Strategy (CMA-ES) optimization algorithms were adopted on a portable hip
exoskeleton to generate optimal assist torque patterns, optimizing rectus femoris
muscle activity. Four volunteers were recruited for exoskeleton-assisted walking trials.

Results and Discussion: As a result, using human-in-the-loop optimization led to
muscle activity reduction of 33.56% and 41.81% at most when compared to walking
without and with the hip exoskeleton, respectively. Furthermore, the results of
human-in-the-loop optimization indicate that three out of four participants
achieved superior outcomes compared to the predefined assistance patterns.
Interestingly, during the optimization stage, the order of the two typical
optimizers, i.e., Bayesian and CMA-ES, did not affect the optimization results. The
results of the experiment have confirmed that the assistance pattern generated by
muscle-activity-based human-in-the-loop strategy is superior to predefined
assistance patterns, and this strategy can be achieved more rapidly than the one
based on metabolic cost.
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1 Introduction

For decades, scientists and engineers have been developing wearable robotic devices,
such as exoskeletons, exosuits, and powered orthosis, to assist in rehabilitation or enhance
human locomotion performance (Yang et al., 2016; Wei et al., 2020; Zhou et al., 2022).
Recent progress in human-in-the-loop (HIL) optimization has demonstrated its great
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potential to improve wearable robotic devices’ performance (Ding
et al., 2018; Koller et al., 2016; Zhang et al., 2017). Instead of using
predefined assist torque profiles (Seo et al., 2016; Xue et al., 2019) or
parameters-based functions (Young et al., 2017a; Lim et al., 2019;
Yang et al., 2021), HIL optimization adopts the human’s
physiological signals for the online iterative update of assist
torque parameters. Consequently, wearable robotic devices are
able to provide customized torque patterns to the subjects
according to their biomechanical and physiological states (Young
et al., 2017b; Wang et al., 2020).

In previous studies, metabolic expenditure was mostly used as
the cost function for HIL optimization to generate customized torque
patterns for both portable (Kim et al., 2019) and tethered (Lee et al.,
2017; Zhang et al., 2017; Witte et al., 2020) exoskeletons. Despite the
impressive metabolic expenditure reductions achieved, the research
limitation is obvious. A long time is required to generate an optimized
assistive torque profile. According to the study by Collins’s group, a 64-
min walking period was required to optimize four control parameters
based on metabolic expenditure (Zhang et al., 2017). Meanwhile, the
mask for indirect calorimetrymeasurement was uncomfortable to wear.
Therefore, different cost functions need to be explored. Zhang’s group
successfully constructed amuscle-activity-based cost function for ankle-
assistive torque pattern optimization. This proposed method could
reduce the time by 50% compared to metabolic expenditure-based HIL
optimization, since surface electromyography (sEMG) signals have less
measurement time thanmetabolic expenditure (Han et al., 2021). At the
same time, an sEMG sensor is a promising choice since it can sample
the sEMG signals constantly and operates under less strenuous
circumstances compared to metabolic cost measurement. Moreover,
subjects adapt muscle activity more quickly than metabolic costs
(Huang et al., 2012). Consequently, this muscle-activity-based
optimization strategy is worth validating in other assistive
exoskeletons, providing individual assistance for more joints.

Both Bayesian Optimization (BO) and Covariance Matrix
Adaptive Evolution Strategy (CMA-ES) optimization algorithms
have been verified in previous research and produced great
results. BO utilizes the Bayesian technology to place a prior
probability distribution over an unknown objective function and
updates it to form the posterior probability distribution with the new
function evaluation. CMA-ES employs an evolution strategy to
generate a group of individuals in the first generation in a
stochastic way and select parents for the next-generation based
on their fitness (objective function value) to have better and better
individuals. In a simulation environment, it has been theoretically
demonstrated that BO, which updates objective function values
based on probability distribution, has higher efficiency, while
CMA-ES, which is based on stochastic search and evolution
selection, has greater global search ability (Kim et al., 2019). In
the previous study, CMA-ES optimized four parameters in at least
1 h (Zhang et al., 2017) with the ankle exoskeleton, and
22 parameters in 4 h with the hip-knee-ankle exoskeleton (Bryan
et al., 2021) for metabolic expenditure optimization. BO optimized
two parameters in 21.4 ± 1.0 min with the hip exoskeleton (Ding
et al., 2018) for metabolic expenditure optimization. However, those
twomethods have not been compared in a human experiment under
the same device with the same parameter set and optimization
object. The answer would provide valuable instruction for
researchers to conduct human experiments later.

The overall aim of this study is to provide a strategy for a
portable hip exoskeleton that can determine the customized and
optimal hip-assist torque patterns. A muscle-activity-based HIL
optimization for a portable hip exoskeleton torque pattern
generation was proposed. Then, a pilot test was first used to
verify the feasibility of this framework. This was followed by tests
of four volunteers to study the performance of both BO and CMA-
ES for a hip exoskeleton. To our best knowledge, this is the first study
of a portable hip exoskeleton torque generation with a muscle-
activity-based cost function for HIL optimization. The results of this
work are beneficial for guiding the assistive and resistive torque/
force profiles’ optimization of upper/lower limb wearable devices for
augmentation and physical training, respectively. Overall, the
contributions of this study are listed as follows: 1) the HIL
optimization strategy based on sEMG signals is proposed to
lower the time investment of each iteration and 2) the
effectiveness of both BO and CMA-ES algorithms was validated
and compared through experimental results.

2 Materials and methods

2.1 Portable hip exoskeleton

The portable hip exoskeleton was developed initially in our
previous study (Yang et al., 2021; Yu et al., 2022) and received
structural optimization for better joint alignment in this study.
Figure 1 shows the structure of the portable hip exoskeleton.
Both left and right hip joint mechanisms have one active and
three passive degrees of freedom (DoF). The active DoF for hip
flexion and extension is driven by a motor module (JA90 motor and
DS300 motor driver, RoboCT Co., Ltd., Hangzhou, China). Then, a
damping hinge with a moment damping of 2.3 Nm on the upper
part of the leg bar provides a passive DoF. Its functionality for
wearing the portable hip exoskeleton easily and reducing the
unexpected human-exoskeleton interaction force during walking
has been shown in the experiment, although it is not aligned with the
center of human hip joint adduction and abduction. The other two
passive DoFs are introduced by the slide/rotation mechanism
(Figure 1B) which connects the C-shaped contact structure and
thigh bar. With these two passive DoFs, the C-shaped contact
structure will passively slide along the spring rail and rotate on
the rotating shaft with wearer ambulation, which will eliminate
unexpected interaction forces here and improve efficiency as well as
comfort in transmitting the assistive torque. Spring can help the
slider recover the original position. For adaptation to different
human body types, the waist and thigh bars can be extended and
shortened thanks to the lockable sliders. Body bandages are utilized
to secure the upper body of the wearer and the exoskeleton,
particularly the motor and human-exoskeleton interface parts,
during ambulation to ensure that the positions of these interface
parts and motor shafts are maintained. Two IMUs are arranged near
the fixed straps of the thighs on both sides, which are used to
measure the hip flexion and extension angles, and angular velocities.
During assistive walking control, the microprocessor unit (MCU)
reads the IMU information through the serial port, and after
processing by the human locomotion phase estimation algorithm,
it can identify the gait phase and generate the assistive torque, then
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control the motor driver by PWM. The control board realizes
wireless data transmission with the host computer through
Bluetooth for real-time monitoring of the status of the control
system. The overall structure of the lower limb hip exoskeleton is
mainly composed of aluminum alloy, carbon fiber, and plastic, with
a total weight of 3.5 kg. Each motor power is 200 W and can provide
17.8 N m constant torque and 37.8 N m peak torque.

2.2 Muscle activity

A large number of muscles in the lower limbs are involved
during walking and those muscles are controlled by the bioelectrical
activity of spinal motor neurons under the control of the cerebral
motor cortex, which leads to a faint electric signal on the skin’s
surface. Those faint electric signals are sEMG signals and their root-
mean-square (RMS) values can reflect the strength of the
electromyographic signal, which essentially represents the degree
of muscle activity (Han et al., 2021). Consequently, in this study
muscle activity is calculated as follows.

Imuscle �
���������
1
n
∑n

i�1 S2i( )√
, (1)

where Imuscle represents the muscle activity and S is the normalized
sEMG value collected at time serial number i.

The measurement of sEMG signals is performed in a non-
invasive way by a single or a group of electrodes placed on the
skin surface of the muscle to be measured (Zhou et al., 2021). A
wireless sEMG sensor with a compact size and sampling frequency
of up to 2,000 Hz was used in this study. During the experiment, the
sEMG signals of the rectus femoris (RF) muscle were acquired as the
HIL optimization objective. We have chosen the rectus femoris
muscle for our experiment for a few reasons. Firstly, it plays a vital
role in hip flexion during walking. Secondly, it can be easily
measured with an EMG sensor without interfering with the
exoskeleton hardware. To get online muscle activity for the
online HIL optimization test, the raw sEMG signals are first
processed through a fourth-order 20–200 Hz band-pass
Butterworth filter, full wave rectifier, and 10 Hz low-pass filter,
and normalized by maximum sEMG signal value, which is
determined through finding the maximum EMG value during te
hacclimation protocol of 1-min walking without the assistance of the
exoskeleton (more detail is provided in 2.6.1 Acclimation before the
experiment). Then, a series of 20-s time windows (each time window
size contains about 10 gait cycles) is used to segment the sEMG data
flow online with a 0.5 s step. Finally, in each window, the muscle

FIGURE 1
Portable hip exoskeleton. (A) The front, side, and rear view of a subject wearing the exoskeleton. (B) Exoskeleton structure.
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activity is acquired within each time window and averaged (Lariviere
et al., 2008).

2.3 Human locomotion phase

The human locomotion phase is estimated through a phase
oscillator as it is a simple and efficient method that relies only on the
angle and angular velocity (De la Fuente et al., 2020). The human
locomotion phase φ estimated from the phase oscillator can be
expressed as:

φ � atan 2 _θ, θ( ), (2)

where θ and _θ are the current joint angle and angular velocity,
respectively. To improve the performance of the algorithm, adaptive
phase translation and scaling strategies are applied.

θ̂ t( ) � s t( ) × θ t( ) + α t( )
_̂θ t( ) � _θ t( ) + β t( ),{ (3)

where s(t) is the scaling parameter and α(t) and β(t) are the
translation parameters for hip angle and angular velocity,
respectively (Hong et al., 2021).

2.4 Assistive torque profile

To employ the HIL optimization for exoskeleton assistance,
the parameterized control scheme is required for the portable hip

exoskeleton. We defined an assist torque profile inspired by the
biological hip joint torque, which is constructed as a piece-wise
combination of five curves (Figure 2A). Except for the zero-
constant curves, all others are quadratic functions connected
smoothly. The whole assist torque profile can be defined totally
by rising time, fall time, peak time, and peak torque of extension
and flexion torque.

To prevent obvious non-optimal solutions in the process of
optimization and accelerate the convergence speed, the parameter
set range of the assist torque profile is artificially limited as follows.

τE p ∈ 0Nm, 10Nm[ ]
φE p ∈ 20%, 30%[ ]
φE r ∈ 10%, 20%[ ]
φE f ∈ 10%, 20%[ ]
τF p � τE p

φF p � 50% + φE p

φF r � φE r

φF f � φE f

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (4)

A predefined torque profile is used to compare to the
parameterized torque profile (De la Fuente et al., 2020; Yang
et al., 2021).

τ t( ) � k · sin φ( ), (5)
where k is the assistive factor and φ the human locomotion phase.
According to our previous experiments, k � 4.5 shows a good
assistance effect. Thus, this is used to compare with HIL
optimized torque profile in the verification test (Verification
experiment section).

FIGURE 2
Human-in-the-loop optimization experiment setup. (A) Assist torque profile parameterization and diagram of the range of each parameter. (B)
Muscle activity estimation. The purple part represents sEMG sensors, the orange part portable hip exoskeleton, and the grey part treadmill. (C)Human-in-
the-loop optimization for the next better assist torque profile parameter set.
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2.5 Human-in-the-loop experiment setup

Bayesian optimization (BO) and CMA-ES were used in our HIL
optimization experiment setup as optimizers, which are both
suitable for complex human musculoskeletal model optimization
and have been verified in previous studies.

Both optimization methods had initialization and optimization
phases during implementation. BO was initialized by estimating
muscle activity for one iteration with a pseudo-randomly chosen
assist torque profile parameter set. During the optimization phase,
BO used the Gaussian process with Matern kernel to build the

posterior distribution of the human model-based collected dataset,
and we used the expected improvement utility function to find the
next optimal. The parameter set was defined in Section 2.4. The key
initial parameters’ values are listed in Table 1, which is set according
to previous studies and simulations (Zhang et al., 2017; Ding et al.,
2018; Kim et al., 2019). CMA-ES was initialized the same way as BO,
and the initial sampling step size, covariance matrix, and mean value
are fixed. In the optimization phase, during each generation, CMA-
ES sampled assistive torque profile parameter set λ times and chose
the first to Nbest-th best parameter sets, based on their muscle
activity results. Those best parameter sets were used to update the

TABLE 1 Bayesian optimization parameters list in HIL optimization.

Parameter Value Meaning

τE p (0 N m, 10 N m) Peak torque range

φE p (20%, 30%) Peak time range

φE r (10%, 20%) Rise time range

φE f (10%, 20%) Fall time range

N 1 Initial iteration number before optimization

x0 pseudo-randomly chosen Initial assistive torque profile parameter set value

l 1.0 Matern kernel width coefficient

υ 2.5 Matern kernel smooth coefficient

ξ 0.1 Trade-off coefficient in the expected improvement utility function. A larger trade-off coefficient gives Bayesian optimization a
stronger exploitation ability.

TABLE 2 CMA-ES optimization parameters list in HIL optimization.

Parameter Value Meaning

τE p (0 N m, 10 N m) Peak torque range

φE p (20%, 30%) Peak time range

φE r (10%, 20%) Rise time range

φE f (10%, 20%) Fall time range

x0 (1.36 N m, 25%, 15%, 15%) Initial sampling mean value

σ0 1.400 Initial sampling step size.

C Identity matrix Initial sampling covariance matrix

λ 8 Population size

Nbest 4 The number of selected points

W (0.53, 0.29, 0.14, 0.04) Positive weight coefficients for recombination

μeff 2.600 Variance effective selection mass for the mean

cμ 0.051 The learning rate for the rank-µ update of the covariance matrix update

c1 0.065 The learning rate for the rank-one update of the covariance matrix update

cc 0.500 The learning rate for cumulation for the rank-one update of the covariance matrix

cσ 0.400 The learning rate for the cumulation of the step-size control

dσ 1.400 Damping parameter for step-size update
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covariance matrix, mean value, and sampling step size for the next-
generation. Related values of the key initial parameters are listed in
Table 2, which is set according to the literature (Hansen, 2016;
Zhang et al., 2017).

The whole experiment setup is shown in Figure 2.
Participants walk on the treadmill wearing a portable hip
exoskeleton with sEMG sensors placed on the RF muscle of
the left leg, detection electrodes adhered to the RF muscle of
the left leg, and reference electrodes adhered to the adipose area
of the medial side of the left leg. The walking speed is decided
according to a preliminary experiment based on comfort and
safety. During the experiment, the control board of the portable
hip exoskeleton generates assistive torque online based on the
human locomotion phase estimation method and parameterized
torque profile (Figure 2A). Then, the control board can receive
the latest assistive torque parameter set from a host computer and
control the motor to provide target assistive torque by pulse
width modulation (PWM). A participant wearing the portable
hip exoskeleton and sEMG sensor receives the assistive torque.
The host computer acquires the sEMG of RF muscle in real-time
through WIFI and extracts the muscle activity characteristic
(Figure 2B). BO and CMA-ES are executed in Python on the
host computer, generating the next potential optimal assist
torque profile parameter set, which is then sent to the control
board of the exoskeleton (as shown in Figure 2C) to close
the loop.

2.6 Human-in-the-loop experiment
protocol

The HIL optimization experiment consists of two sessions. One
experienced male volunteer (weight 49.5 kg, height 1.61 m, age
22 years), who had attended previous studies on the exoskeleton
of this type, was involved in the first session; its protocol is shown in
Figure 3. According to the volunteer’s preference, the treadmill
speed was set at 3 km/h and the assist torque amplitude was set
within 0.0~6.8 Nm. The goal of this session was to investigate the
efficiency of sEMG-based HIL optimization and compare its optimal
assistive torque profile with a predefined one. For the second session,
four volunteers (weight 67.1 ± 10.2 kg, height 1.72 ± 0.09 m, age
25.8 ± 4.8 years) including the one who attended the first session
were recruited. In this session, the treadmill speed was set at 3.6 km/
h and the assist torque amplitude was set within 3.0~10.0 Nm. The
protocol is similar to the first session. The volunteers were randomly
divided into two groups (two volunteers for each group). The first
group conducted Bayesian-based HIL optimization first followed by
CMA-ES-based HIL optimization. The second group conducted
CMA-ES-based HIL optimization first followed by Bayesian-based
HIL optimization. The goal of this session was to investigate the
influence of the order of the two typical optimizers on the muscle
activity reduction results. Informed consent was obtained from each
volunteer, which was approved by the ethics committee of College of
Biomedical Engineering&Instrument Science, Zhejiang University.

FIGURE 3
Human-in-the-loop experiment protocol flowchart. In the experiment, CMA-ES and BO optimization protocols are separated into two periods in
case of muscle fatigue. CMA-ES optimization is first conducted and then BO optimization is conducted after 3 days.
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2.6.1 Acclimation before the experiment
Before formal experiments, each participant had 5 min to adapt

to wearing and coordinating with the portable hip exoskeleton.
Thus, the participants gradually adapted to the assistance experience
provided by the exoskeleton and did not intentionally resist the
assistance torque. The acclimation protocol consisted of 1-min
walking with no-assistance-mode exoskeleton step followed by
two 2-min walks with predefined maximum and minimum peak
torque assistance profiles. Stable walking was observed during the
whole procedure to make sure the subject adapted to the device.

2.6.2 Human-in-the-loop optimization experiment
For the first session, CMA-ES optimization was first

conducted, and then BO optimization was conducted after
3 days. For the second session, BO optimization was first
conducted for the first group followed by CMA-ES
optimization, and the order was exchanged for the second
group. Each HIL optimization was completed in 1 day. In each
HIL optimization phase trial, the participant walked with the
portable hip exoskeleton and started running the HIL
optimization algorithm after walking was stable in the
beginning 1-min walking in no-assistance mode. We required
each participant to walk steadily for 25 s after adaptation to
assistive torque change in each HIL optimization iteration.
During steady walking, RF muscle activity was calculated
online by the collected sEMG signal. By marking the location
of the landing points on the treadmill, the participant was
required to step on the points to control the stride length
during walking. In addition, prolonged walking tends to cause
muscle fatigue, so the participant rested for 10 min after 20 min
of walking. During the rest time, we would check the portable hip
exoskeleton hardware to ensure that the next round of
experiments would perform properly.

The HIL optimization process ended when the optimization
algorithm results converged. The CMA-ES optimization process is
considered converged when the sampling step size change and
normalized muscle activity change are below the termination
threshold for five continuous iterations. And BO optimization
process is considered converged when the iteration-to-iteration
normalized muscle activity change is below the termination
threshold for five continuous iterations.

2.6.3 Verification experiment
After a whole day’s rest, a validation experiment was conducted

to verify the assistive effect of the optimal assistive profile obtained
from the HIL optimization experiment. For both sessions, each
participant was asked to walk at the same speed as the HIL
optimization experiment wearing the portable hip exoskeleton
with an sEMG sensor arranged at the same position as the HIL
optimization experiment. Each participant was asked to walk under
multiple conditions, namely, no exoskeleton (NE), predefined
assistance (PA), no assistance (NA), CMA-ES-optimized
assistance (CA), and Bayesian-optimized assistance (BA), as
shown in Figure 3, for 1 min. To minimize the effects of
experiment order, adaptation, and fatigue, the participant
experienced the same assistance pattern twice, but in the
opposite order after 1-min rest. Two experimental results under
the same conditions were averaged.

3 Results

3.1 Controller results

For the first session, the BO iteration process and results are
shown in Figure 4. The whole optimization includes 61 iteration
steps and takes about 1 hour. Muscle activity and assist torque
profile parameters at every iteration step show the exploration-
exploitation search strategy path (Figures 4A, C). The optimal
objective is reached at the 20th iteration step and has no change
in the last 40 iteration steps (Figure 4B). The optimal assistive torque
profile parameter set is [τE p,φE p,φE r,φE f] � [5.90, 0.246, 0.145,
0.130]. Contrary to intuition, the optimal assist torque profile does
not necessarily always have the largest peak torque, and a peak
torque that is too low or too high is more likely to result in increased
human effort during walking. The CMA-ES iteration process and
results are shown in Figure 5. The whole optimization includes
10 generations (80 iteration steps) and takes about 1.5 h. Muscle
activity and assist torque profile parameters at every iteration step
show the CMA-ES’ search strategy path (Figures 5A, D). Optimal
muscle activity and assist torque profile parameters gradually
converge with iteration (Figures 5B–D). The optimal parameter
set is [τE p,φE p,φE r,φE f] � [5.13, 0.229, 0.108, 0.162]. Among
all the assistive torque profiles selected during the CMA-ES, results
are most similar to BO’s (Figure 5E).

For the second session, the optimized torque profiles based on
Bayesian and CMA-ES algorithms for each participant were shown
in Figure 6. For each participant, the optimized torque profile
parameter sets vary between two optimizers, and the
corresponding torque profiles are different in both torque
amplitude and timing.

3.2 Biomechanical results

Assist torque profiles used in the verification experiment for the
first session are shown in Figure 7A. We averaged the RF sEMG
signal and generated the mean single-period sEMG curve under
each condition (Figure 7B). The mean sEMG value under NE is
lower than that under NA in almost all gait phases, and that under
BO has a lower value in most gait phases compared with that under
NE condition. Quantitative muscle activity results (Figure 7C) show
that BO optimized assistive torque profile can reduce about 24.84%,
36.88%, and 26.67% RF muscle activity compared with that under
PA, NA, and NE conditions, respectively. CMA-ES-optimized
assistive torque profile can reduce about 12.68% and 26.67%
compared with that under PA and NA conditions, respectively.
The above results have a significant statistical difference (p << 0.05)
under the independent sample t-test. And results show there is no
significant difference between CA condition and NE condition.

Quantitative muscle activity results of the HIL-optimized
assistive torque profile verification experiment for each
participant in the second session were shown in Figure 8. Subject
1 and Subject 2 belong to the first group that conducted BO first, and
Subject 3 and Subject 4 belong to the second group that conducted
CMA-ES optimization first. In the first group, no significant
difference in muscle activity is found between BA and CA for
participant 1, and a slight reduction of CA compared to BA is
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FIGURE 4
Bayesian optimization iteration trial. (A)Muscle activity during each optimization step. (B)Optimal muscle activity got at the current step. (C)Optimal
parameter set of assist torque profile during each iteration. (D) Selected assist torque profiles during each optimization step.

FIGURE 5
CMA-ES iteration trial. (A) Muscle activity during each optimization step. (B) Optimal muscle activity during each generation. (C) Step size during
each generation. (D) Optimal parameter set of assist torque profile during each generation. (E) Selected assist torque profiles during each optimization
step.
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found for participant 2. In the second group, there is a significant
reduction of muscle activity during BA compared to that of CA for
Subject 3. However, for Subject 4, there is a significant increase in
muscle activity during BA compared to that of CA. Consequently,
changing the order of the optimizers during HIL optimization does
not obviously affect the performance of both optimizers. The muscle
activity of each assistance mode and the muscle activity reduction
percentage of CA and BA relative to PA, NE, and NA are listed in
Table 3. A negative number stands for a muscle activity increase of
CA or BA compared to PA, NE, or NA. For each participant, the
maximum reduction percentage of CA and BA is in bold.

4 Discussion

The primary goal of this study was to validate an sEMG-based
hip exoskeleton control scheme that automatically tunes the assist
torque patterns with the wearer’s lower limb muscle activities
through HIL optimization. To the best of the authors’
knowledge, it is the first time that muscle activity has been
adopted for HIL optimization for a portable hip exoskeleton.

4.1 Comparison of torque generation
algorithms

The results of the first session indicate that there are some
advantages for sEMG-based HIL optimization control for
controlling robotic hip exoskeletons compared to the predefined

torque profile control. Although the predefined torque profile
control can reduce muscle activity (16.02% reduction, p << 0.05)
compared to walking during assist-off mode (the hip exoskeleton
provides no assist torque), the HIL optimization had a larger RF
muscle activity reduction than the predefined one (Figure 7). The HIL
optimization with BO could reduce the RF muscle activity by 24.84%
and 14.7% (p << 0.05) compared to predefined torque profile control
and walking without the hip exoskeleton, respectively. The HIL
optimization with CMA-ES could reduce the RF muscle activity by
12.68% (p << 0.05) compared to predefined torque profile control.
However, when compared to walking without the hip exoskeleton,
there was no significant difference. A possible explanation for this
result was that the relatively long HIL optimization walking test may
lead to the subject sweating which could cause signal drift of the target
sEMG, leading to the non-optimized torque pattern. There is a
significant difference between BO and CMA-ES optimization
results. The result of BO is much better than that of CMA-ES by
13.93%. It turned out that CMA-ES was stuck into a local minimum.
This may be influenced by the initial individual group selected
pseudo-randomly and the random offspring selection. In the
experiment, BO shows its great global optimization efficiency and
found the optimal assistive torque parameter set in 20 steps. However,
from the selected assistive torque profiles during each optimization
step, CMA-ES searched a larger range of parameter sets than BO
(Figures 4, 5). Less efficiency of CMA-ES did not transfer the better
global search into faster optimization speed and better optimization
results. Another possibility might be that the participant in the first
session conducted CMA-ES-based HIL optimization, and then the
Bayesian-based HIL optimization. The participant may have become

FIGURE 6
Optimized torque profiles based on Bayesian and CMA-ES algorithms during the second session. (A) Subject 1. (B) Subject 2. (C) Subject 3. (D)
Subject 4.
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gradually more familiar with exoskeleton-assisted walking during the
first optimization trial, leading to better interaction and performance
in the later optimization trial. To eliminate the influence of the order

of both optimizers, we divided four volunteers into two groups
randomly, and exchanged the order for two groups in the second
session.

FIGURE 7
HIL optimized assist torque profile verification experiment results. (A) CMA-ES-optimized, BO-optimized, and predefined assistive torque profiles.
(B) Averaged normalized sEMG signal in a gait period during the verification experiment. (C)Muscle activity results in five experimental conditions. BA and
CA are compared with other conditions utilizing the t-test. Star “*” symbolizes that there is a significant difference between each other (p << 0.05,
statistical power > 0.9).

FIGURE 8
Quantitativemuscle activity results of HIL-optimized assistive torque profile verification experiment for each participant. The X-axis label represents
four subjects involved in the second session of experiments. The symbol “*” indicates a statistically significant difference (p << 0.05, statistical power >
0.9). (A)Muscle activity reduction in CA and BA comparedwith PA. (B)Muscle activity reduction inCA and BA results comparedwith NA. (C)Muscle activity
reduction in CA compared with BA.
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The muscle activity results of the second session indicate that
the order exchange of two optimizers does not obviously affect
the HIL optimization performance of both optimizers. According
to the verification experiment results of four participants, both
BO and CMA-ES are capable of generating assist torque profiles
for muscle activity reduction with similar percentages, except for
Subject 3. Meanwhile, only Subject 1 shows muscle activity
reduction of CA and BA when compared to NE. One
explaination may be that only Subject 1 is experienced with
exoskeleton-assisted walking. During HIL optimization, the
other three participants were prone to adjusting their stride
length or stride frequency when new torque profiles were
generated and applied. This may influence the convergence of
HIL optimization.

According to the results of torque pattern optimization tests, HIL
optimization with both BO and CMA-ES algorithms can be
converged within a limited time. Besides the similar muscle
activity reduction performance, the BO algorithm is more
sufficient during each iteration compared to CMA-ES and takes
fewer iterations to converge. For each iteration, the sEMG signal
of the RF muscle was able to update and reflect the influence of the
current assistive torque pattern within 25 s, which is faster than the
method with metabolic expenditure measurement (more than 120 s
(Zhang et al., 2017; Ding et al., 2018). The results of optimized torque
patterns’ verification experiments show that the sEMG-based HIL
optimization is a promising solution for exoskeleton-assisted walking
control to reduce muscle activities.

4.2 Subject experiences

In the HIL optimization stage, a wide range (with an amplitude
between 0 Nm and 10 Nm) of torque profiles is applied and tuned
through the HIL optimization. Most subjects felt that neither high nor
low torque amplitude was comfortable during exoskeleton-assisted
walking. The high torque assistance would cause human-exoskeleton
joint misalignment, which may lead to resistance of the participants’

hip joint to the assist torque. With low torque assistance, the subject
felt more restraint and weight burden from the hip exoskeleton.
Consequently, the optimized torque patterns that are all within
acceptable torque amplitudes are reasonable. Another common
experience from all participants is that the timing of peak torque
influences the feeling of assistance most. Meanwhile, the smoothness
of the torque profile can also affect comfort. Both Subject 2 and
Subject 4 pointed out that PA mode was more comfortable than CA
and BA modes because there were transient jumps of assist torque
during HIL optimization, which felt like a sudden drag on the thigh
rather than a smooth push and pull of the thigh for walking assistance.
This could be optimized in assistive torque profile parameterization by
ensuring the continuation of the first derivative of the torque profile.

4.3 Study limitations

It is worth noting that this study has limitations. One is that only
the RF muscle activity was measured for HIL optimization of torque
patterns. Although the literature has shown that the RF muscle
activity was reduced most when assisted by the hip exoskeleton
compared to the unpowered condition (Young et al., 2017a), it
would be valuable to select a cost function that covers muscle
activities of all hip joint-related muscles. Another limitation is that
only a single walking scenario, i.e., treadmill walking with constant
speed, was tested. In daily life, humans do not solely locomote on level
ground and constantly adjust their gait activities and walking speeds.
Further experiments under various scenarios should be conducted to
systematically study the best assistive torque patterns. In addition,
only four subjects were recruited for the trials. Having more
participants would better strengthen our results.

5 Conclusion

In conclusion, we developed a portable hip exoskeleton with
compatible joint alignment mechanisms. The sEMG-based HIL

TABLE 3 Muscle activity results for each subject during each assistance mode.

Subject No. HIL optimizer PA NE NA CA BA

1 Muscle Activity (μV) 143.97 114.20 130.41 75.88 77.35

CA reduction (%) 47.29 33.56 41.81 — —

BA reduction (%) 46.27 32.27 40.69 — —

2 Muscle Activity (μV) 66.68 60.14 110.33 67.09 71.36

CA reduction (%) −0.61 −11.56 39.19 — —

BA reduction (%) −7.02 −18.66 35.32 — —

3 Muscle Activity (μV) 106.66 66.93 100.00 126.52 96.69

CA reduction (%) −18.62 −89.03 −26.52 — —

BA reduction (%) 9.35 −44.46 3.31 — —

4 Muscle Activity (μV) 61.29 51.53 65.84 53.05 62.45

CA reduction (%) 13.44 −2.95 19.43 — —

BA reduction (%) −1.89 −21.19 5.15 — —
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optimization of torque patterns was presented, and the RF muscle
activity was evaluated to validate the effect of the exoskeleton. The
key findings of this study showed a decrease in RF muscle activity
when the sEMG-based HIL optimization was applied to assist torque
generation. Furthermore, by applying muscle activities to the upper-
layer control loop, this study preliminarily revealed the human
body’s muscle adaptation mechanisms associated with the assist
torque patterns, which are still an open challenge in the field of
wearable robots. Future work will focus on exploring the
characterization of muscle fatigue and muscle synergy during
wearable robot-assisted walking and developing a new HIL
optimization for effective and natural human-robot interaction.
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