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Background: With the development of chronic kidney disease (CKD), there are
various changes in metabolites. However, the effect of these metabolites on the
etiology, progression and prognosis of CKD remains unclear.

Objective: We aimed to identify significant metabolic pathways in CKD
progression by screening metabolites through metabolic profiling, thus
identifying potential targets for CKD treatment.

Methods:Clinical data were collected from 145CKDparticipants. GFR (mGFR) was
measured by the iohexol method and participants were divided into four groups
according to their mGFR. Untargeted metabolomics analysis was performed via
UPLC-MS/MSUPLC–MSMS/MS assays. Metabolomic data were analyzed by
MetaboAnalyst 5.0, one-way ANOVA, principal component analysis (PCA), and
partial least squares discriminant analysis (PLS-DA) to identify differential
metabolites for further analysis. The open database sources of MBRole2.0,
including KEGG and HMDB, were used to identify significant metabolic
pathways in CKD progression.

Results: Four metabolic pathways were classified as important in CKD
progression, among which the most significant was caffeine metabolism. A
total of 12 differential metabolites were enriched in caffeine metabolism, four
of which decreased with the deterioration of the CKD stage, and two of which
increased with the deterioration of the CKD stage. Of the four decreased
metabolites, the most important was caffeine.

Conclusion: Caffeine metabolism appears to be the most important pathway
in the progression of CKD as identified by metabolic profiling. Caffeine is the
most important metabolite that decreases with the deterioration of the CKD
stage.
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1 Introduction

Chronic kidney disease (CKD) is a chronic disorder involving
structural and functional organ changes. There are multiple
underlying causes of this disorder which is characterized by its
irreversibility and progressive development. CKD is a growing
public health concern worldwide. As the disease progresses, the
kidney’s ability to remove nitrogenous wastes, exogenous molecules,
and metabolism of lowmolecular weight proteins decrease, resulting
in multiple clinical sequelae. It is recognized that metabolites change
with the development of kidney injury (Rysz et al., 2021). However,
the effect of these metabolites on the etiology, progression, and
prognosis of CKD remains unclear. The main clinical challenge is
that current medical interventions aimed at delaying kidney decline
are very limited. As such, the discovery of potential metabolic
pathways could help us identify new therapeutic targets and
address this serious problem (Chen et al., 2019a).

Several attempts have been made to identify new CKD-
associated biomarkers and deepen our understanding of the
pathological mechanisms underlying CKD (Dou et al., 2018; Xu
et al., 2018). Metabolomics can be used to uncover metabolites
associated with critical kidney functions such as the glomerular
filtration rate (GFR), allowing for important clinical information to
be obtained from biological samples (Earl et al., 2018; Lai et al., 2018)
Rhee et al. reported that ten plasma metabolites are nominally
associated with CKD progression (Rhee et al., 2016). In addition,
Chen et al. found that five metabolites, including 5-
methoxytryptophan (5-MTP), canavaninosuccinate (CSA),
acetylcarnitine, tiglylcarnitine, and taurine, can be used to
accurately identify the clinical stages of CKD, and that
tryptophan hydroxylase-1 (TPH-1) presents a potential
therapeutic target in CKD (Chen et al., 2019b). Feng et al. found
that CKD rats can be differentiated from sham rats by metabolites
involved in the pathways of gut microbial metabolism. They also
found that improvement of gut dysbiosis retarded the progression of
kidney disease in a rat model of CKD (Feng et al., 2019). Zhao et al.
utilized an adenine-induced CKDmodel to identify perturbations in
fatty acid metabolism, purine metabolism, and amino acid
metabolism (Zhao et al., 2014). Brunetto et al. compared the
serum metabolic profile of healthy and CKD dogs and found
decreased urea, creatinine, creatine, citrate, lipids, lactate,
branched-chain amino acids (BCAAs), and glutamine in CKD; a
specific diet was able to maintain and retard the progression of CKD
(Brunetto et al., 2021). Lanzon et al. analyzed the serum and urine of
patients with severe obesity and CKD before and after undergoing
bariatric surgery (BS) and found that isoleucine and tyrosine were
increased in CKD patients compared to those without CKD (Lanzon
et al., 2021). Gordin et al. (Gordin et al., 2019) used metabolic
pathway analysis and reported that hexose, mitochondrial, amino
acid, and purine pathways are associated with preserved kidney
function.

Factors found to accelerate kidney decline have been explored in
many studies. Most research involving metabolic profiling has
focused on metabolites that increase with deteriorating renal
function. However, in this study, we have focused on identifying
the metabolic pathways associated with improved kidney function.
By utilizingmetabolic profiling, we attempted to identify metabolites
that decrease as CKD deteriorates, ascertain the most relevant

metabolic pathways, and identify potential therapeutic targets to
improve kidney function.

2 Materials and methods

2.1 Participants and mGFR measurement

All participants provided informed consent before participating in
the study according to a protocol approved by the Kiang Wu
Hospitalethics committee. All participants were recruited in August
2019 from the Kiang Wu Hospital (Santo Antonio, Macau) and via
outpatient clinics. The cohort included 145 patients who met the study
inclusion criteria and were diagnosed with CKD based on the NKF-
KDOI guidelines. Peripheral venous blood (4 mL) was collected from
each patient; plasma samples were used formetabolomic analysis. Renal
function was evaluated using GFR (mGFR) by utilizing the plasma
clearance of iohexol (Shah et al., 2013). After blood was collected for the
aforementioned tests, Iohexol was injected over 2 min (300 mg/mL, GE
Healthcare, Shanghai, China) and plasma (6 mL)was collected from the
contralateral upper extremity to detect the Iohexol concentration (by
HPLC) at 120 and 240 min after Iohexol administration. For
participants with eGFR<30 min/mL/1.73 m (Chen et al., 2019a), the
blood collection times were changed to 120 and 300 min. All blood
samples were centrifuged at 2000 g for 10 min at room temperature to
extract plasma and stored at −80°C until analysis.

2.2 UPLC–MS/MS assays

All of the untargeted metabolomics analyses were conducted at the
Dian Calibra-Metabolon Joint Metabolomics Laboratory (Hangzhou,
China). Four different UPLC–MS/MS assays of small molecule
metabolites were performed on each sample (Shen et al., 2020).
Automatic liquid transfer during sample preparation was handled
on a Hamilton automated MicroLab STAR® system (Hamilton,
Switzerland). A methanol-based sample extraction solution was
added to each sample and mixed using a GeneGrinder 2010 (Spex
SamplePrep, United States of America) mixer. After 2 minutes of
vigorous shaking and centrifugation to precipitate proteins and other
debris, the extracted metabolites in the supernatant were collected and
divided into four fractions: two fractions were analyzed by reversed-
phase (RP) UPLC-MS/MS under positive electrospray ionization (ESI)
mode. The two UPLC methods were slightly different using the same
column (BEHC18 2.1 × 100 mm, 1.7 μm column,Waters). The mobile
solutions for the two positive ESI UPLC-MS/MS were water and
methanol containing 0.05% perfluoropentanoic acid (PFPA) and
0.1% formic acid (FA). The third fraction was used for reversed-
phase UPLC-MS/MS in negative ion ESI mode (BEH C18 2.1 ×
100 mm, 1.7 μm column, Waters), and the mobile solutions were
methanol and water in 6.5 mM ammonium bicarbonate at pH 8.
The last fraction was used for hydrophilic interaction liquid
chromatography (HILIC)/UPLC-MS/MS in negative ESI mode
(BEH Amide 2.1 × 150 mm, 1.7 μm column, Waters), and the
mobile solutions consisted of water and acetonitrile with 10 mM
ammonium formate at pH 10.8. Each fraction was dried under
nitrogen gas flow and then dissolved in reconstitution solutions
before being injected into each of the four UPLC-MS/MS systems.
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The QE mass spectrometer was alternated between full MS and data-
dependent MS2 scans using dynamic exclusion for data collection. The
scan range was 70–1,000 m/z. Processing, extraction, and peak
identification of the raw mass spectrometry data were carried out
using in-house developed software, and metabolites were identified
by comparing the experimental ion characteristics to entries in an in-
house library which was constructed using pure reference standards.
The entries in the library included retention time/retention index (RI),
mass to charge ratio (m/z), and MS/MS spectral data of each reference
standard.

2.3 Metabolomics statistical analysis

All participants were divided into four groups according to mGFR:
group A (mGFR<30 mL/min/1.73 m (Chen et al., 2019a)), group B
(30 mL/min/1.73 m (Chen et al., 2019a)≤mGFR<60 mL/min/1.73 m

(Chen et al., 2019a)), group C (60 mL/min/1.73 m (Chen et al.,
2019a)≤mGFR <90 mL/min/1.73 m (Chen et al., 2019a)), and group
D (mGFR ≥90 mL/min/1.73 m (Chen et al., 2019a)). Statistical analysis
of patient data was carried out using SPSS 26.0. Statistical significance
was determined using a threshold of p = 0.05. Metabolomic data
analyses were carried out using MetaboAnalyst 5.0 (https://www.
metaboanalyst.ca). The mass spectrometry data which were acquired
by untargeted metabolomics analysis were uploaded as comma
separated values (.csv). The uploaded data file contains a data
matrix of 145 (samples) × 1,094 (compounds). Before data analysis,
a data integrity check was performed to ensure that all the necessary
information had been collected. To minimize bias associated with the
omission of censored data, all missing and zero values were replaced by
half of the minimum positive values across samples in the original data.
Normalization was done via log transformation and Pareto scaling.

One-way analysis of variance (ANOVA), principal component
analysis (PCA), and partial least squares-discriminant analysis

TABLE 1 Clinical characteristics of each group’s participants.

Variables Group p

A B C D

Age (y) 74.9 ± 16.5 72.7 ± 13.5 60.6 ± 14.1 41.8 ± 10.6 <0.01

Sex (M/F) 9/13 25/22 18/21 16/21 0.66

Height (cm) 154.0 (151.0, 166.5) 159.0 (155.0, 167.0) 157.0 (153.0–172.0) 163.0 (157.0–171.0) 0.43

Weight (kg) 62.3 ± 11.2 62.5 ± 17.0 66.2 ± 15.1 64.6 ± 14.1 0.85

BMI (cm/kĝ2) 25.1 ± 3.2 24.6 ± 5.7 25.2 ± 4.7 23.9 ± 4.0 0.64

Systolic blood pressure (mmHg) 130.9 ± 14.2 132.6 ± 16.9 133.0 ± 16.8 126.7 ± 12.8 0.27

Diastolic blood pressure (mmHg) 70.7 ± 13.7 72.8 ± 13.0 77.6 ± 12.1 77.5 ± 12.1 0.08

Creatinine (mg per 100 mL) 241.3 ± 144.2 105.8 ± 26.5 80.9 ± 18.0 70.2 ± 18.9 <0.01*

eGFR (ml/(min.1.73 m (Chen et al., 2019a))) 23.2 ± 11.5 48.8 ± 15.5 75.5 ± 12.0 103.1 ± 15.9 <0.01*

mGFR (ml/(min.1.73 m (Chen et al., 2019a))) 21.9 ± 6.4 44.6 ± 7.9 73.2 ± 8.4 106.9 ± 12.3 <0.01*

current smoking 0 0 0 1 (2.7%) 0.40

current drinking 0 0 0 0 -

diabetes 10 (45.5%) 11 (23.4%) 7 (17.9%) 4 (10.8%) 0.02

hypertension 15 (68.2%) 28 (59.6%) 15 (38.5%) 4 (10.8%) <0.01

coronary heart disease 9 (40.9%) 11 (23.4%) 5 (12.8%) 2 (5.4%) 0.004

stroke 0 0 0 0 -

hyperuricemia 0 8 (17.0%) 11 (28.2%) 2 (5.4%) <0.01

antiplatelet drugs 9 (40.9%) 11 (23.4%) 5 (12.8%) 2 (5.4%) <0.01

antilipemic agent 2 (9.1%) 5 (10.6%) 6 (15.4%) 0 0.13

anti-hypertensive agent 15 (68.2%) 28 (59.6%) 15 (38.5%) 4 (10.8%) <0.01

hypoglycemic agent 10 (45.5%) 11 (23.4%) 7 (17.9%) 4 (10.8%) 0.02

immunosuppressor 0 0 0 0 -

Uric acid reduction medicine 0 8 (17.0%) 11 (28.2%) 2 (5.4%) <0.01

Group A:mGFR<30 mL/min/1.73m2); group B: 30 mL/min/1.73m2 ≤ mGFR<60 mL/min/1.73m2); group C:60 mL/min/1.73m2 ≤ mGFR <90 mL/min/1.73m2); group D:mGFR ≥90 mL/

min/1.73m2).

*Ptrend value.
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(PLS-DA) were used to screen out the differential metabolites.
MetaboAnalyst 5.0 provided one-way ANOVA test results to
determine whether the overall comparison among each group
was significant. Univariate analyses provided a preliminary
overview of features that are potentially significant in
discriminating the conditions under investigation. Statistical
significance was determined using a threshold of p = 0.05.

PCA and PLS-DA were also performed using MetaboAnalyst 5.0.
PCA is an unsupervisedmethod aiming to find the directions that best
explain the variance in a data set X) without referring to class labels Y).
The data are summarized into much fewer variables called scores,
which are weighted averages of the original variables. PLS is a
supervised method that uses multivariate regression techniques to
extract, via a linear combination of the original variables X),
information that can predict class membership Y). To assess the
significance of class discrimination, a permutation test was performed.
In each permutation, a PLS-DA model was built between the data X)
and the permuted class labels Y) using the optimal number of
components determined by cross-validation for the model based
on the original class assignment. MetaboAnalyst supports two
types of test statistics for measuring class discrimination. The first
one is based on prediction accuracy during training. The second is the
separation distance based on the ratio of the between-group sum of
the squares and the within-group sum of squares (B/Wratio). If the
observed test statistic is part of the distribution based on the permuted
class assignments, the class discrimination cannot be considered
statistically significant. Variable Importance in Projection (VIP),
which is an important variable in PLS-DA, is a weighted sum of
squares of the PLS loadings taking into account the amount of
explained Y-variation in each dimension. VIP scores are calculated
for each component. When more components are used to calculate

the feature importance, the average of the VIP scores is used. A VIP
threshold >1.0 was considered statistically significant.

2.4 Pathway analysis

Metabolic pathways were identified by utilizing open database
sources of MBRole2.0 (http://csbg.cnb.csic.es/mbrole2/), including
KEGG and HMDB. Compound names of the differential
metabolites were first converted to KEGG IDs using
MetaboAnalyst 5.0 and the KEGG IDs were submitted to
MBRole 2.0 for KEGG pathway analysis.

3 Results

3.1 Characteristics of the study populations

We recruited 145 individuals aged 20 to 96 years, 68 of whom
were male. Based onmGFR, 22 were assigned to group A, 47 to group
B, 39 to group C, and 37 to group D. Table 1 presents the summary
statistics for each group. Age, weight, body mass index (BMI), systolic
blood pressure, diastolic blood pressure, creatinine, eGFR, and mGFR
were symmetrically distributed. Arithmetic means and standard
deviations are provided. The p-values of one-way ANOVA tests
are also presented. Creatinine, mGFR and eGFR were used a trend
test, and the Ptrend values were presented. The height followed an
asymmetric distribution, and thusmedian and interquartile ranges are
shown. The p-values of the Kruskal–Wallis test are presented. Sex,
current smoking, current drinking, diabetes, hypertension, coronary
heart disease, stroke, hyperuricemia, use of antiplatelet drugs,
antilipemic agents, antihypertensive agents, hypoglycemic agents,
immunosuppressors, and uric acid reduction medicine were
dichotomous variables. For these, quantities and frequencies are
shown as appropriate. The p-values of Chi-square tests are
presented. There were no cases of current drinking, stroke, and
immunosuppressive drug use.

3.2 Univariate analysis

Before data analysis, a data integrity check was performed tomake
sure that all the necessary information had been collected. The data
normalization result implemented by MetaboAnalyst5.0 provided in
Figure 1 supplement. After one-way ANOVA for multigroup analysis,
Table 2 supplement shows all significant metabolites selected by
ANOVA with p-value threshold 0.05 and Table 2 details these
findings for the top 50 metabolites. ANOVA only tells whether the
overall comparison is significant or not, it is followed by post hoc
analyses in order to identify which two levels are different (Table 2
supplement).

3.3 Principal component analysis (PCA)

Figure 1 shows the results of the PCA; the separation trend
among each group is shown, indicating that each group had a unique
metabolic spectrum.

FIGURE 1
Scores plot between the selected PCs. The explained variances
are shown in brackets.
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TABLE 2 Top 50 features identified by one-way ANOVA.

Compounds f.value p.value -log10 (p) FDR

1 erythronate 153.67 3.02E-44 43.52 3.21E-41

2 N-acetylneuraminate 141.72 2.27E-42 41.644 1.21E-39

3 hydroxyasparagine 136.69 1.51E-41 40.82 5.36E-39

4 C-glycosyltryptophan 130.7 1.56E-40 39.807 4.14E-38

5 gulonate 126.55 8.22E-40 39.085 1.75E-37

6 N-acetylserine 121.06 7.87E-39 38.104 1.39E-36

7 N-acetyltaurine 118.59 2.23E-38 37.652 2.92E-36

8 3-(3-amino-3-carboxypropyl)uridine 118.48 2.34E-38 37.631 2.92E-36

9 5-methylthioribose 118.35 2.47E-38 37.607 2.92E-36

10 N,N-dimethyl-pro-pro 101.13 5.63E-35 34.25 5.98E-33

11 N2,N2-dimethylguanosine 100.75 6.74E-35 34.172 6.50E-33

12 4-acetamidobutanoate 99.782 1.07E-34 33.971 9.46E-33

13 pseudouridine 97.579 3.09E-34 33.509 2.53E-32

14 N6-carbamoylthreonyladenosine 94.4 1.48E-33 32.831 1.12E-31

15 O-sulfo-L-tyrosine 84.812 2.05E-31 30.689 1.45E-29

16 arabonate/xylonate 84.29 2.70E-31 30.568 1.79E-29

17 N-acetylalanine 84.099 2.99E-31 30.524 1.87E-29

18 N-acetylhomocitrulline 83.616 3.88E-31 30.411 2.29E-29

19 gluconate 80.378 2.26E-30 29.646 1.26E-28

20 hydroxy-N6,N6,N6-trimethyllysine 80.288 2.38E-30 29.624 1.26E-28

21 N,N,N-trimethyl-alanylproline betaine (TMAP) 78.643 5.92E-30 29.227 3.00E-28

22 5,6-dihydrouridine 77.297 1.26E-29 28.899 6.09E-28

23 1-methylhistidine 76.377 2.13E-29 28.673 9.81E-28

24 N1-methylinosine 70.241 7.63E-28 27.118 3.38E-26

25 3-methylglutaconate 68.344 2.40E-27 26.62 1.02E-25

26 3-hydroxy-3-methylglutarate 67.572 3.84E-27 26.416 1.57E-25

27 N4-acetylcytidine 67.292 4.56E-27 26.341 1.79E-25

28 alpha-ketoglutaramate 67.205 4.81E-27 26.318 1.82E-25

29 sulfate 66.705 6.54E-27 26.184 2.39E-25

30 vanillylmandelate (VMA) 65.656 1.25E-26 25.902 4.44E-25

31 glucuronate 63.813 3.99E-26 25.4 1.37E-24

32 2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA) 63.459 4.99E-26 25.302 1.66E-24

33 acisoga 63.356 5.33E-26 25.274 1.71E-24

34 1-ribosyl-imidazoleacetate 63.156 6.05E-26 25.218 1.87E-24

35 mannonate 63.128 6.16E-26 25.211 1.87E-24

36 dimethylarginine (SDMA + ADMA) 63.007 6.65E-26 25.177 1.96E-24

37 N-formylmethionine 61.59 1.65E-25 24.782 4.74E-24

38 5-(galactosylhydroxy)-L-lysine 61.132 2.22E-25 24.654 6.21E-24

(Continued on following page)
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3.4 Partial least squares-discriminant
analysis (PLS-DA)

PLS-DA was used to better distinguish the overall difference
in the metabolic spectrum among each group and determine the
metabolites that were most characteristic of each group. Figure 2
shows the 2D score plot between selected components; Figure 2
supplement shows the classification performance with different

number of components; and Figure 3 shows important features
identified by PLS-DA. To assess the significance of class
discrimination, a permutation test was performed. In each
permutation, a PLS-DA model was built between the data and
the permuted class labels using the optimal number of
components determined by cross validation for the model
based on the original class assignment (Figure 3 supplement).
VIP scores are calculated for each component. When more than
components are used to calculate the feature importance, the
average of the VIP scores was used. The average VIP value of
caffeine was the highest among the metabolites that decreased
with mGFR deterioration.

3.5 Pathway analysis

Differential metabolites were selected by one-way ANOVA,
PCA, and PLS-DA. The differential metabolites were p < 0.05 in
one one-way ANOVA and VIP>1 in PLS-DA. The metabolites of
VIP>1 are presented in Table 3 plsda_vip supplement. The KEGG
ID of each differential metabolite was found through
MetaboAnalyst 5.0. KEGG IDs of differential metabolites were
uploaded to MBRole2.0 and the background was set as the full
database for KEGG pathway analysis. MBRole performs an
overrepresented (enrichment) analysis of categorical
annotations for a set of compounds of interest. These
categorical annotations correspond to biological and chemical
information available in several public databases and software.
Caffeine metabolism, metabolic pathways, pyrimidine metabolism,
and histidine metabolism were classified as important in Table 3.
Caffeine metabolism was classified as the most important pathway
compared with the three other identified pathways. Metabolic
pathways included the other three metabolic pathways, so
further analysis was directed at the metabolites enriched in
these three metabolic pathways (Figure 4).

TABLE 2 (Continued) Top 50 features identified by one-way ANOVA.

Compounds f.value p.value -log10 (p) FDR

39 urea 59.762 5.43E-25 24.265 1.48E-23

40 4-hydroxyphenylacetylglutamine 59.206 7.83E-25 24.106 2.08E-23

41 3′-sialyllactose 57.834 1.95E-24 23.71 5.05E-23

42 2-O-methylascorbic acid 56.139 6.11E-24 23.214 1.54E-22

43 2-pyrrolidinone 56.02 6.62E-24 23.179 1.64E-22

44 maltose 55.803 7.68E-24 23.115 1.85E-22

45 myo-inositol 54.891 1.43E-23 22.843 3.38E-22

46 1-methylguanidine 54.085 2.50E-23 22.602 5.78E-22

47 quinolinate 53.58 3.55E-23 22.449 8.03E-22

48 3-methylglutarylcarnitine 2) 53.062 5.10E-23 22.292 1.13E-21

49 N6-succinyladenosine 51.995 1.08E-22 21.966 2.34E-21

50 creatinine 51.229 1.86E-22 21.73 3.96E-21

FIGURE 2
Scores plot between the selected PCs. The explained variances
are shown in brackets.
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FIGURE 3
Important features identified by PLS-DA. The colored boxes on the right indicate the relative concentrations of the corresponding metabolite in
each group under study.

TABLE 3 Overview of metabolite set enrichment.

Annotation Category Set In set p-value FDR correction

Cafffeine metabolism (map00232) KEGG pathways 64 12 5.32e-18 2.98e-16

Metabolic pathway (map01100) KEGG pathways 64 44 1.30e-9 3.64e-8

Pyrimidine metabolism (map00240) KEGG pathways 64 8 1.22e-6 2.28e-5

Histidine metabolism (map00340) KEGG pathways 64 6 2.81e-5 3.94e-4

Biosynthesis of alkaloids derived from histidine and purine (map01065) KEGG pathways 64 5 1.09e-4 1.23e-3

Arginine and proline metobolism (map00330) KEGG pathways 64 6 9.21e-4 8.59e-3

Phenylalanine metabolism (map00360) KEGG pathways 64 4 3.17e-3 2.97e-2

Tryptophan metabolism (map00380) KEGG pathways 64 5 5.26e-3 3.66e-2

ABC transporters (map00230) KEGG pathways 64 5 8.20e-3 5.03e-2

Purine metabolism (map00230) KEGG pathways 64 5 8.98e-3 5.03e-2

Ascorbate and aldarate metabolism (map00053) KEGG pathways 64 3 2.76e-2 1.41e-1

Starch and sucrose metabolism (map00500) KEGG pathways 64 3 3.24e-2 1.51e-1

Pentose and glucuronate interconversions (map00040) KEGG pathways 64 3 3.76e-2 1.62e-1

Amino sugar and nucleotide sugar metabolism (map00520) KEGG pathways 64 3 1.22e-1 3.37e-1

Biosynthasis of secondary metabolites (map0110) KEGG pathways 64 17 2.76e-1 4.45e-1

Set: total number of selected metabolites; In set: the number of differential metabolites contained in this pathway.

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Guo et al. 10.3389/fbioe.2023.1006246

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1006246


3.6 Caffeine metabolism accumulation of
multiple metabolites decreased with the
deterioration of CKD

The caffeine metabolism pathway mapped by
MBRole2.0 enriched 12 metabolites (Table 3), including
Xanthine, Xanthosine, Theophylline, Theobromine, Caffeine,

Paraxanthine, 7-Methylxanthine, 3-Methylxanthine, 1-
Methylxanthine, 1,3,7-Trimethyluric acid, 5-Acetylamino-6-
formylamino-3-methyluracil, and 5-Acetylamino-6-amino-3-
methyluracil, which were circled in red in Figure 4A. The levels
of paraxanthine, theobromine, caffeine, and theophylline decreased
with renal deterioration (metabolites in red boxes in Figure 4A).
Xanthosine and xanthine increased with renal deterioration
(metabolites in green boxes in Figure 4A).

4 Discussion

In this study, we enrolled 145 CKD individuals who were
divided into four groups based on mGFR. Many differential
metabolites were screened out by metabolic profiling. Through
pathway analysis of differential metabolites, we report for the
first that the caffeine metabolism pathway is critical in CKD. We
showed that in this pathway, paraxanthine, theobromine, caffeine,
and theophylline decreased with poorer renal function, while
xanthosine and xanthine increased. Caffeine was the most
important metabolite, decreasing with deteriorating renal function.

Previous studies have found that coffee consumption may
reduce the risk of CKD (Li et al., 2021), showing a negative
association between caffeine intake and all-cause mortality in
patients with CKD (Bigotte et al., 2019). However, other studies
have shown that caffeine exacerbates hypertension in rats with
polycystic kidney disease (Tanner and Tanner, 2001), potentiates
the development of more severe tubulointerstitial changes, and
increases focal glomerulosclerosis (Tofovic et al., 2002). High
caffeine-sugar content increases the incidence of cardiovascular
disease and tissue inflammation by altering lipid profiles and
blood glucose (Eltahir et al., 2020). Yu et al. (Yu et al., 2016)
found that acute caffeine intake causes an acute increase in blood
pressure, while chronic caffeine intake decreases blood pressure; the
latter may be related to a diuretic effect. Chronic caffeine
consumption also reduces sodium absorption, contributing to its
antihypertensive effects in salt-sensitive rats (Wei et al., 2018). This
study found that caffeine metabolism was the most important
pathway and that caffeine was the most important metabolite.

In our study, paraxanthine, theobromine, and theophylline
decreased with poorer renal function. It is known that
theobromine activates sirtuin one to reduce extracellular matrix
accumulation in the kidneys of diabetic rats (Papadimitriou et al.,
2015); a single dose of prophylactic theophylline has been shown to
prevent acute kidney injury (AKI)/severe kidney dysfunction in
term neonates with severe birth asphyxia (Bhatt et al., 2019). This
study corroborated that theobromine and theophylline improve the
progression of CKD. The effect of paraxanthine on CKD is still
unclear. In this study, paraxanthine decreased with decreasing
mGFR, which may also improve the progression of CKD.

We also found that xanthosine and xanthine increased with
poorer renal function. Chen et al. (Chen et al., 2020) demonstrated
that xanthosine is associated with significantly greater risks of CKD
progression. Xanthine is an intermediate metabolite of uric acid
(UA), converted by xanthine oxidase (XO). Previous research
suggests a pathogenic role of hyperuricemia in the development
of CKD (Uedono et al., 2015; Mallat et al., 2016). XO inhibitors have
been suggested to slow the progression of kidney disease (Pisano

FIGURE 4
(A) Caffeine metabolism pathways; (B) Pyrimidine metabolism;
(C) Histidine metabolism. The red circle represents the enriched
metabolites; the green boxes are metabolites that rise as mGFR
decreases; the red boxes are metabolites that decrease as mGFR
decreases.
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et al., 2017) but this remains controversial (Kimura et al., 2018). The
present study supports that xanthosine and xanthine are associated
with CKD progression.

We found that metabolites that are associated with CKD
progression can be converted to more ‘desirable’metabolites, as
shown in Figure 4A. This conversion involves many enzymes
that are shown in Figure 4A. Thus, the regulation of these
enzymes offers a potential target for CKD treatment. In
subsequent research, we plan to focus on these enzymes. One
limitation was that we did not record the baseline caffeine
ingestion in our participants; the influence of caffeine
ingestion on renal function in CKD should be observed in
subsequent studies.

In this study, we found that in pyrimidine metabolism and
histidine metabolism (Figures 4B,C), orotidine-5P,
pseudouridine, 3-Ureidopropionate, urea, 1-Methyl-
L-histidine, Hydantoin-5-propionate, N-Formimino-L-
glutamate and imidazole lactate rise as mGFR decreases.
Consistent with previously reported results, pseudouridine is
extremely correlated with mGFR and might be an ideal
biomarker for CKD (Peng et al., 2022). Urea is an endogenous
marker in CKD (Weiner et al., 2015). The significance of the
accumulation of the other six metabolites in CKD has not been
reported. These eight metabolites have limited significance in the
search for targets to protect kidney function. Moreover, in
histidine metabolism, ergothioneine which is absorbed from
the intestine through food intake may function as a major
antioxidant (Cheah et al., 2017), and the protective effect on
the kidney can be further investigated.

This study has potential limitations. Based on the
metabolomic approach, we identified the significance of
caffeine metabolism in CKD, but the mechanisms linking
caffeine metabolism to CKD have yet to be clarified, and the
exact intricate mechanism needs additional animal experiments
and prospective studies. Future investigations will need to
include more animal experiments and prospective studies to
elucidate the mechanism and the significance of caffeine
metabolism in CKD identified in this study.

5 Conclusion

In conclusion, metabolic profiling identified caffeine
metabolism as the most important pathway in CKD progression.
Decreased renal function was associated with decreased
paraxanthine, theobromine, caffeine, and theophylline, and with
increased xanthosine and xanthine. Caffeine was themost important
metabolite associated with CKD deterioration.

6 Summary at a glance

Metabolic profiling was used to identify significant metabolic
pathways in CKD progression. Four metabolic pathways were
classified as important in the progression of CKD. Caffeine
metabolism appears to be the most important pathway. Caffeine
is the most important metabolite that decreases with the
deterioration of CKD stage.
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