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Fouling, including inorganic, organic, bio-, and composite fouling seriously

affects our daily life. To reduce these effects, antifouling strategies including

fouling resistance, release, and degrading, have been proposed.

Superhydrophobicity, the most widely used characteristic for antifouling

that relies on surface wettability, can provide surfaces with antifouling

abilities owing to its fouling resistance and/or release effects. PDMS

shows valuable and wide applications in many fields, and due to the

inherent hydrophobicity, superhydrophobicity can be achieved simply by

roughening the surface of pure PDMS or its composites. In this review, we

propose a versatile “3M” methodology (materials, methods, and

morphologies) to guide the fabrication of superhydrophobic PDMS-based

materials for antifouling applications. Regarding materials, pure PDMS,

PDMS with nanoparticles, and PDMS with other materials were

introduced. The available methods are discussed based on the different

materials. Materials based on PDMS with nanoparticles (zero-, one-, two-,

and three-dimensional nanoparticles) are discussed systematically as typical

examples with different morphologies. Carefully selected materials,

methods, and morphologies were reviewed in this paper, which is

expected to be a helpful reference for future research on

superhydrophobic PDMS-based materials for antifouling applications.
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Introduction

There are four main types of fouling according to the nature of the foulant, namely,

inorganic, organic, bio-, and composite fouling (He et al., 2021a; He et al., 2021b). Fouling

seriously affects daily life. For example, in biofouling (Callow and Callow, 2011; Bixler

et al., 2014; Manolakis and Azhar, 2020), various unwanted organisms attach to the
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surfaces of metallic, ceramic, polymeric, or composite products;

this leads to increased fuel consumption and corrosion in marine

biofouling (Dobretsov et al., 2013; Mieszkin et al., 2013; Gaw

et al., 2017; Hu et al., 2020), hospital-acquired infections in

medical biofouling (Jorge et al., 2012; Ammons and Copié,

2013; Leslie et al., 2014), or function decline in industrial

biofouling (Bixler and Bhushan, 2012; Liang et al., 2020;

Obotey Ezugbe and Rathilal, 2020). Various antifouling

strategies involving fouling resistance, release, and degrading,

have been proposed (Zhao et al., 2018; Maan et al., 2020).

Inspired by nature, such as the anti-wettability of lotus leaf,

rice leaf, and shark skin effects, scientists have developed many

well-known bionic antifouling coatings with different surface

wettability properties (Ball, 1999; Roach et al., 2008; Zhu et al.,

2010; Scardino and de Nys, 2011; Wu et al., 2011; Bixler and

Bhushan, 2013; Bixler and Bhushan, 2014; Azemar et al., 2015;

Jiang et al., 2015; Zhang et al., 2016; Pan et al., 2019; Zarghami

et al., 2019; Basu et al., 2020).

In our previous publications, we discussed the relationship

between antifouling and surface wettability (He et al., 2021a; He

et al., 2021b; Lan et al., 2021; Lei et al., 2021). For example, we

summarized the frequent strategies to achieve anti-biofouling

polymers for biomedical applications based on different types of

surface wettability (He et al., 2021a), including

superhydrophilicity (Figure 1A), hydrophilicity (Figure 1B),

hydrophobicity (Figure 1C), and superhydrophobicity

(Figure 1D). Examples with suitable polymers were introduced

for specific applications in vivo and in vitro, such as cardiological

(bioprosthetic heart valves, polymeric heart valves, etc.),

ophthalmological (intraocular lenses, contact lenses, etc.),

nephrological (urinary catheters, hemodialysis membranes,

etc.), and other applications (surgical products, sutures,

dressings, biosensors, respirators, etc.).

Among the four mentioned types of surface wettability,

superhydrophobicity (which is the most common research

focus in the field) can confer antifouling abilities to various

surfaces owing to its fouling-resistant and/or fouling-release

properties (Wang and Jiang, 2007; Xia and Jiang, 2008; Ma

et al., 2015; Liu et al., 2020a; Simovich et al., 2020). Similarly,

other kinds of super-phobicity, such as superoleophobicity,

underwater superoleophobicity, and superhemophobicity, can

lead to adequate antifouling effects owing to a decreasing

FIGURE 1
Anti-biofouling polymers with different surface wettability for various biomedical applications. Reprinted with permission from Ref. (He et al.,
2021a).
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adhesion strength between the foulant and substrate (He et al.,

2021b). Notably, different types of super-phobicity could be

effective against different types of fouling (Figure 2).

Superhydrophobicity and superoleophobicity are the most

applied super-phobicity strategies in antifouling fields.

It is known that surface wettability is a result of the surface

chemical composition and physical structure (Young, 1805; Zhu

et al., 2012; Tian et al., 2014; Yu et al., 2015; Kuang et al., 2016;

Martin et al., 2017; Lee et al., 2022; Luo et al., 2022; Zhang et al.,

2022). Silicone- or fluoro-based polymers are the main polymeric

materials used to achieve superhydrophobicity or

superoleophobicity (Dobretsov and Thomason, 2011), and

silicone- and fluoro-based polymers with fouling release

properties are suitable for achieving antifouling abilities (Carl

et al., 2012; Lejars et al., 2012; Liu et al., 2017; Liang et al., 2020).

However, fluoro-based materials are expensive and may result in

irreversible pollution due to fluoride toxicity (Cao et al., 2022). By

contrast, silicone-based polymers, such as polydimethylsiloxane

(PDMS), are advantageous owing to their acceptable costs,

chemical stability, biocompatibility, and weatherability (Liu

et al., 2021). There are 1,025 publications related to

superhydrophobic PDMS (Supplementary Figure S1, searched

in all fields in Web of Science with “superhydrophobic” and

“PDMS” on July 14th, 2022), but only 7 review papers based on

this topic are searchable (Supplementary Figure S2). After

checked these 7 review papers one by one, there is no review

paper focused on the antifouling applications based on

superhydrophobic PDMS materials. Therefore, it is necessary

to summarize this topic in order to provide a helpful reference for

future research on superhydrophobic PDMS-based materials for

antifouling applications.

“3M” methodology to obtain
superhydrophobic
polydimethylsiloxane-
based materials

“3M” methodology

A versatile “3M” (materials, methods, and morphologies)

methodology to obtain superhydrophobicity easily and

FIGURE 2
Antifouling strategies based on super-phobic surfaces. Reprinted with permission from Ref. (He et al., 2021b). Copyright 2021, Elsevier B.V.
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universally is proposed in this review as a guide for future

research. The “3M” methodology (Figure 3) underlies the

strategies for obtaining all types of PDMS-based

superhydrophobic materials (pure PDMS, PDMS with

nanoparticles, and PDMS with other materials), although

each type has its own focus and character. For example, for

pure PDMS-based superhydrophobicity, the material is

PDMS, but the chosen fabrication method must consider

the expected final morphology. Similarly, for PDMS with

nanoparticles-based superhydrophobicity, the nanoparticle

morphology together with its specific material, and the

fabrication method of PDMS with nanoparticles should be

considered simultaneously. The “3M” methodology also

works for the third superhydrophobicity type (based on

PDMS with other materials). Thus, the proposed “3M”

methodology can be summarized in the following sentence:

“The use of specific materials and methods to construct special

morphologies for surface superhydrophobicity;” thus, it can

be extrapolated to various fields that require surfaces with

superhydrophobicity or other special surface wettability

properties.

Superhydrophobicity based on different
polydimethylsiloxane materials

PDMS is an optically clear, inert, nontoxic material that is

widely applied in medical devices, cosmetics, elastomers,

antifoaming agents, flexible sensors, stretchable electronics,

and other valuable domestic applications (Das et al., 2018;

Zaman et al., 2019; Wang et al., 2021a; Liu et al., 2021; Qi

et al., 2021). Due to the inherent hydrophobicity of PDMS,

superhydrophobicity can be achieved simply by roughening

the surface of pure PDMS or its composites (Figure 3).

Pure PDMS can be roughened to obtain superhydrophobicity

via replication (Liu et al., 2006; Cho and Choi, 2008; Park et al.,

2011; Dai et al., 2019; Liu et al., 2019; Schultz et al., 2020;

Siddiquie et al., 2020), laser engraving (Yong et al., 2013;

Yong et al., 2017; Zhao et al., 2019a; Zhang et al., 2020; Chen

et al., 2021), introducing a sacrificial template (Yu et al., 2017;

Davis et al., 2018), wrinkling (Zhao et al., 2013), 3D printing (He

et al., 2017; Chen et al., 2019), and other methods (Zimmermann

et al., 2008a; Zimmermann et al., 2008b; Artus and Seeger, 2014;

Seo et al., 2016; Wang et al., 2021b; Mazaltarim et al., 2021;

FIGURE 3
A versatile “3M” (materials, methods, and morphologies) methodology to obtain superhydrophobicity on PDMS-based materials.
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Siddiqui et al., 2021; Park et al., 2022). As an example, for the

PDMS to achieve superhydrophobicity, the replication methods

use different molds, including natural morphologies (lotus leaves

(Liu et al., 2006), rose petals (Dai et al., 2019), shark skin surfaces

(Liu et al., 2019), etc.), and artificial morphologies (periodic or

multiscale structures produced via femtosecond laser processing

on stainless-steel substrates (Siddiquie et al., 2020), cylindrical

silicon trenches produced via reactive ion etching (Park et al.,

2011), polycarbonate spherulite networks produced via a

controlled solvent treatment (Schultz et al., 2020), nanoporous

anodic aluminum oxides produced via two-step anodization

(Cho and Choi, 2008), etc.). Although the methods or

morphologies may differ, the purpose is to introduce micro-

and nano-scale or hierarchical roughness into the hydrophobic

PDMS material to obtain superhydrophobicity.

The case of materials based on PDMS with nanoparticles is

different from that of pure PDMS materials because

nanoparticles possess inherently rough structures that can be

directly exploited to fabricate PDMS-based superhydrophobic

surfaces. Nanoparticle materials can be classified by morphology

into four types: zero-dimensional nanoparticles (He et al., 2011;

He et al., 2012; Zhao et al., 2015; Aslanidou et al., 2016; Selim

et al., 2018a; Davis et al., 2018; Liu et al., 2018; Saharudin et al.,

2018; Lu et al., 2019; Liu et al., 2020b; Gu et al., 2020; Han and

Gong, 2021; Xiong et al., 2022a; Rin Yu et al., 2022; Yu et al.,

2022) (such as spherical silicon dioxide (SiO2) (Aslanidou et al.,

2016; Yu et al., 2022), titanium dioxide (TiO2) (Liu et al., 2020b),

polypyrrole nanoparticles (Xiong et al., 2022a), core-shell

spherical composite nanoparticles (Selim et al., 2018a), or

hollow spherical nanoclusters (Han and Gong, 2021)), one-

dimensional nanoparticles (Wang et al., 2019a; Dai et al.,

2019; Selim et al., 2019; Li et al., 2021) (such as linear

nanorods (Selim et al., 2019) and carbon nanotubes (CNTs)

(Li et al., 2021)), two-dimensional nanoparticles (Wang et al.,

2019b; Saharudin et al., 2019; Li and Guo, 2020; Cao et al., 2021)

(such as laminar graphene and its derivatives (Li and Guo, 2020),

iron oxide (Fe3O4) nanoplates (Cao et al., 2021)), and three-

dimensional nanoparticles (single material nanoparticles such as

tetrapod-shaped zinc oxide (ZnO) (Yamauchi et al., 2019) and

flower-like calcium titanium (CaTiO3) structures (Wang et al.,

2007), and composite nanoparticles (Nine et al., 2015; Shi et al.,

2015; Barthwal et al., 2020; Zhu et al., 2020; Zhang et al., 2021a;

Zhang et al., 2021b; Wu et al., 2021; Selim et al., 2022a; Selim

et al., 2022b; Xiong et al., 2022b; Cheng et al., 2022; Miao et al.,

2022), among which are dual-sized SiO2 with micropowder and

nanofumed morphologies (Zhang et al., 2021a), polydopamine

clusters integrated with SiO2 to create micro-nano composite

structures (Miao et al., 2022), TiO2 and SiO2 composite

nanoparticles (Xiong et al., 2022b), and CNT and Fe3O4

composites (Wu et al., 2021)). For example, SiO2

nanoparticles themselves have nano-scale roughness and the

aggregates formed by the particles provide additional

hierarchical roughness (He et al., 2011; Gao and Yan, 2012;

He et al., 2012; He et al., 2013; Yu et al., 2018). Therefore,

materials based on PDMS and nanoparticles easily satisfy the

roughness requirements for superhydrophobicity.

For PDMS with other materials, various methods can be used

to obtain superhydrophobicity, such as spin coating with PDMS

and polytetrafluoroethylene (PTFE) powder (Ruan et al., 2017),

electrospinning to produce PDMS and poly (methyl

methacrylate) (PMMA) composites (Lu et al., 2021), drop

casting or spray coating with PDMS and wax (Zhao et al.,

2019b; Torun et al., 2019; Celik et al., 2021), spray coating

with PDMS and starch (Wang et al., 2021c), preparing PDMS

films with SU-8 resin (Wu et al., 2018), and other methods

(Děkanovský et al., 2019; Pakzad et al., 2020; Cao et al., 2022;

Zhao et al., 2022). The combined action of the used materials and

methods leads to specific morphologies that result in

superhydrophobicity.

The comparison of different typical superhydrophobic

PDMS-based materials is listed in Table 1. For different types

of superhydrophobic PDMS-based materials, materials,

methods, and morphologies are summarized and sorted to

compare with each other.

Among these three types of superhydrophobic materials

based on PDMS, the PDMS with nanoparticles type has many

advantages with respect to the other two types. First, the

nanoparticles with different morphologies can be obtained

easily and inexpensively and may confer other functional

properties to the materials, such as photocatalytic (Liu et al.,

2020b; Chen et al., 2022), electrical conductivity (Wang et al.,

2019c; Li and Guo, 2020), thermochromic (Cheng et al., 2022),

FIGURE 4
Typical nanoparticle aggregate morphologies.
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TABLE 1 Comparison of different typical superhydrophobic PDMS-based materials.

Categories Materials Methods Morphologies Ref.

Pure PDMS PDMS Soft-Lithographic
Imprinting

Template: lotus leaves, rose petal, shark skin Natural Lotus-leaf-like, rose-
petal-like, shark-skin-
like surfaces

Liu et al. (2006); Dai et al. (2019); Liu et al.
(2019)

Template: stainless-steel roughened by
femtosecond laser

Artificial Periodic or multiscale
structures

Siddiquie et al. (2020)

Template: cylindrical silicon trenches
produced by reactive ion etching

Ordered microshell array Park et al. (2011)

Template: polycarbonate spherulite networks
produced via a controlled solvent treatment

Negative spherulite
networks

Schultz et al. (2020)

Template: nanoporous anodic aluminum
oxides produced via two-step anodization

Hairy nanopillar Cho and Choi. (2008)

Laser engraving D80M multi-function laser engraving
machine

Artificial Various columns, holes,
grooves

Zhao et al. (2019a)

Nanosecond fiber laser (SPI, 74W EP-Z): a
wavelength of 1064 nm and a pulse width of
120 ns

Expanded cracks and
holes

Chen et al. (2021)

Femtosecond laser ablation: wavelength,
duration, and repetition rate of the laser beam
were 800 nm, 50 fs, and 1 kHz, respectively

Micro-/nanoscale
hierarchical rough
structures

Yong et al. (2017)

Nanosecond UV laser (Nd: YVO4) Grooves Zhang et al. (2020)

Femtosecond Laser: wavelength of 800 nm
with a repetition rate of 1 kHz

Square array pattern Yong et al. (2013)

Sacrificial template Salt, sugar, water, etc. Artificial Porous sponge Yu et al. (2017); Davis et al. (2018)

Wrinkling Mechanical stretch Artificial Grooves Zhao et al. (2013)

3D printing Direct ink writing Artificial Porous He et al. (2017); Chen et al. (2019)

Polymerization Ultrasonication-induced and diluent-assisted
suspension polymerization

Natural Rose-petal-like
monodisperse droplets

Park et al. (2022)

Polymerization Gas phase polymerization Artificial Nanofilaments Zimmermann et al. (2008a);
Zimmermann et al. (2008b)

PDMS with
nanoparticles

PDMS, zero-
dimensional
nanoparticles

Spherical SiO2 Coating Spin, dip, spray coating, casting, etc. Spontaneous Nanoparticle aggregates He et al. (2011); He et al. (2012);
Aslanidou et al. (2016); Liu et al. (2018);
Saharudin et al. (2018); Lu et al. (2019)

Spherical TiO2 Coating Dip coating Spontaneous Nanoparticle aggregates Zhao et al., (2015); Liu et al., (2020b)

Spherical Ag@ SiO2 core-shell
nanocomposite

Coating Casting Spontaneous Nanoparticle aggregates Selim et al. (2018a)

PDMS, one-
dimensional
nanoparticles

Linear ZnO nanorods Coating Casting, brush coating, etc. Spontaneous Nanoparticle aggregates Selim et al. (2019)

Linear ZnO nanorods Hydrothermal
reaction

Growing with ZnO seed Spontaneous Nanoparticle aggregates Dai et al. (2019)

(Continued on following page)
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TABLE 1 (Continued) Comparison of different typical superhydrophobic PDMS-based materials.

Categories Materials Methods Morphologies Ref.

CNTs Coating Spray coating, casting Spontaneous Nanoparticle aggregates Wang et al. (2019a); Li et al. (2021)

PDMS, two-
dimensional
nanoparticles

Laminar graphene Coating Spray coating Spontaneous Nanoparticle aggregates Saharudin et al. (2019)

Laminar graphene Coating Blade coating Spontaneous Nanoparticle aggregates Wang et al. (2019b)

Laminar nano-graphite flakes Coating Dip coating Spontaneous Nanoparticle aggregates Li and Guo, (2020)

PDMS, three-
dimensional
nanoparticles

Tetrapod-shaped ZnO Coating Spray coating Natural Porcupinefish-like
aggregates

Yamauchi et al. (2019)

Flower-like CaTiO3 structures Hydrothermal
reaction

Etching of titanium by a base solution and
instant growth

Natural Flower-like aggregates Wang et al. (2007)

Dual-sized sphericalSiO2 with
micropowder and nanofumed
morphologies

Coating Spray coating Spontaneous Nanoparticle aggregates Zhang et al. (2021a)

Dual-sized sphericalSiO2

nanoparticles with spherical
pigment

Coating Brush coating Natural Raspberry-like
aggregates

Cheng et al. (2022)

Dual-sized linear multi-walled
CNTs and spherical ZnO
composite

Coating Dip coating Spontaneous Nanoparticle aggregates Barthwal et al. (2020)

Dual-sized laminar graphene
oxide (GO) and linear TiO2

nanorods

Coating Brush coating Spontaneous Nanoparticle aggregates Selim et al. (2022a)

PDMS with
others

PDMS, PTFE powder Coating Spin coating Natural Honeycomb-like
structures

Ruan et al. (2017)

PDMS, PMMA Electrospinning Spontaneous Porous membrane with
bead on string

Lu et al. (2021)

PDMS, carnauba wax Coating Spray coating, casting Natural Lotus-leaf-like structures Torun et al. (2019); Celik et al. (2021)

PDMS, paraffin wax Coating Dip coating Spontaneous Randomly scattered
structures

Zhao et al. (2019b)

PDMS, starch Coating Spray coating Spontaneous Hierarchical structures Wang et al. (2021c)
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and self-illuminous properties (Shi et al., 2015). Second, the

methods to achieve superhydrophobicity with PDMS with

nanoparticles are based on one-step coating strategies (Steele

et al., 2009), which are easier and less costly than strategies such

as replicating, laser engraving, and electrospinning. Third,

hierarchical roughness can be obtained via the spontaneous

formation of nanoparticle aggregates (He et al., 2011; Gao and

Yan, 2012; He et al., 2012; He et al., 2013; Yu et al., 2018). Here,

we will use materials based on PDMS with nanoparticles to

exemplify the “3M” methodology in the following sections.

Superhydrophobicity based on
polydimethylsiloxane with
nanoparticle aggregates

Nanoparticles with different morphologies form different

aggregates; the typical aggregate morphologies are shown in

Figure 4. Zero-dimensional nanoparticles may be made of a

single, two, or more types of materials with core–shell structures.

One-dimensional nanoparticles can have many different

morphologies, such as nanorods, nanowires and nanotubes.

The morphologies of two-dimensional nanoparticles are

usually simple laminar or layered structures. Three-

dimensional nanoparticles can consist of single materials

(such as the shown tetrapod-shaped or flower-like particles)

or composite nanoparticles. The latter can be combinations of

differently sized nanoparticles with the same dimensional

morphology (for example, raspberry-like structures) or

combinations of nanoparticles with different dimensional

morphologies (for example, linear one-dimensional

nanoparticles on the surface of laminar two-dimensional

nanoparticles). Regardless of their specific morphology,

nanoparticles aggregate spontaneously to form various

hierarchical structures. Usually, aggregates of PDMS with

nanoparticles are similar in morphology to those without

PDMS. In this context, the nanoparticle aggregates usually

provide the necessary hierarchical roughness to achieve

superhydrophobicity and the PDMS provides a low surface

energy and binds the aggregates together.

Polydimethylsiloxane with zero-
dimensional nanoparticles

A facile and universal strategy to fabricate superhydrophobic

surfaces via spin-coating a mixture of PDMS and SiO2

nanoparticles on a target substrate was proposed in our

previous publications (He et al., 2011; He et al., 2012). As

shown in Figure 5A, multi-scale physical structures with

micro-scale nanoparticle aggregates and nano-scale single

nanoparticles were obtained via one-step coating; this was

attributed to spontaneous nanoparticle aggregates (Liu et al.,

2008; Wang et al., 2008; Xu et al., 2010). Owing to the low surface

energy of PDMS and the hydrophobicity of SiO2 nanoparticles,

the final coating exhibited superhydrophobicity with water

contact angles (WCA) higher than 150° (Figure 5B).

Similar coating methods have been studied, such as casting,

spray-coating, dip-coating, and other methods (Garcia et al.,

2010; Zhou et al., 2012; Li et al., 2013; Selim et al., 2018b;

Elzaabalawy et al., 2019; Kamelian et al., 2019; Saadatbakhsh

et al., 2020), which demonstrates the efficiency of this strategy.

Superhydrophobic coatings can be obtained using PDMS and

hydrophilic SiO2 nanoparticles (owing to the migration of PDMS

molecular chains to the surface (Ju et al., 2017; Su et al., 2017;

Davis et al., 2018)) and using PDMS and other types of

nanoparticles, such as carbon black (Zhai et al., 2019), TiO2

(Qing et al., 2019; Chen et al., 2022), flame soot (Shen et al.,

2013), and other materials (Su et al., 2018; Wang et al., 2018; Li

et al., 2022a; Pakdel et al., 2022). Additionally, other

functionalities can be combined with superhydrophobicity.

For example, Esfandiar Pakdel et al. reported that coatings of

FIGURE 5
Superhydrophobic coatings fabricatedwith PDMS and SiO2 nanoparticles. SEM images of the physicalmorphologies (A), andWCA changeswith
the weight percent of nanoparticles (B). Reprinted with permission from Ref. (He et al., 2012). Copyright 2012, Elsevier B.V.
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PDMS and natural yak hair melanin particles prepared via a

dip–pad–dry–cure process exhibited superhydrophobicity, UV

protection, and personal thermal management properties

(Pakdel et al., 2022).

In addition to single-material spherical nanoparticles, there is

another type of zero-dimensional nanoparticles consisting of two

or more materials and denominated composite zero-dimensional

nanoparticles. Their typical morphologies are core–shell

structures (Selim et al., 2018a). Yong Huang et al. fabricated

Ag@SiO2 core–shell composite zero-dimensional nanoparticles

via a modified Stöber method and obtained a superhydrophobic

PDMS and Ag@SiO2 coating via a solution casting method

(Figure 6A) (Selim et al., 2018a). The superhydrophobic

coating exhibited excellent antifouling abilities against various

bio-foulants (Figure 6B).

Polydimethylsiloxane with one-
dimensional nanoparticles

One-dimensional nanoparticles can exhibit nanorod (Selim

et al., 2019; Selim et al., 2022a; Selim et al., 2022b), nanowire

(Zhang et al., 2013; Li et al., 2020), nanofilament (Zhou et al.,

2022), nanotube (Wang et al., 2010), and nanofiber structures

(Chen et al., 2009; Liang et al., 2020), among other morphologies.

Mohamed S. Selim et al. fabricated a superhydrophobic

nanocoating based on PDMS and ZnO nanorods; the coating

exhibited long-term antifouling abilities for marine applications

(Selim et al., 2019). Zhiguang Guo et al. performed spray-coating

of a silk fibroin membrane using a mixture of PDMS and Ag

nanowires (Figure 7) (Li et al., 2020). SEM and atomic force

microscopy images shown in Figures 7A and 7B revealed the

hierarchical structures of a PDMS and Ag nanowire membrane.

The prepared membranes exhibited superhydrophobicity, self-

cleaning, and antifouling properties (Figures 7C and 7D).

Superhydrophobic coatings with similar morphologies have

also been obtained via a simple coating process with PDMS

and TiO2 nanowires (Zhang et al., 2013) or CNTs (Wang et al.,

2010).

Polydimethylsiloxane with two-
dimensional nanoparticles

Two-dimensional nanoparticles can be made of materials

such as montmorillonite (Song et al., 2015; Kancı Bozoğlan et al.,

2021; Peng et al., 2021), layered silicates (Ho et al., 2012), mica

(Han et al., 2019; Miyamoto et al., 2019), graphite (Li and Guo,

2020), graphene, and GO (Wang et al., 2019b; Saharudin et al.,

2019; Wang et al., 2021d; Selim et al., 2022a; Selim et al., 2022b).

Here, we use the emerging graphene materials as an example to

introduce the fabrication of superhydrophobic materials made

with PDMS with two-dimensional nanoparticles. Owing to the

multi-functionality of graphene, excellent superhydrophobic and

photo-responsive properties can be achieved by pouring PDMS

and graphene mixtures into templates (Figure 8A) (Wang et al.,

2019b). The surface morphologies of PDMS and graphene

composites are determined by the hierarchical structures of

the two-dimensional graphene nanoparticles (Figures 8B and

8C). The displacement of the beluga whale robot is shown in

Figure 8D, and this phenomenon is attributed to the

superhydrophobicity of PDMS and graphene composites.

Polydimethylsiloxane with three-
dimensional nanoparticles

Three-dimensional nanoparticles can be categorized into two

types. The first type are particles made of single materials, such as

tetrapod-shaped ZnO (Yamauchi et al., 2019) and flower-like

CaTiO3 structures (Wang et al., 2007). As shown in Figures

9A–9D, Yoshihiro Yamauchi et al. reported superhydrophobic

materials made of PDMS and tetrapod-shaped ZnO with

porcupinefish-like structures obtained by pouring the

composite into a template (Yamauchi et al., 2019). The

composite materials exhibited superhydrophobicity not only

on the surface but also inside; thus, the superhydrophobicity

FIGURE 6
Superhydrophobic coatings fabricated by PDMS and Ag@
SiO2 core–shell composite zero-dimensional nanoparticles (A).
Antifouling behavior of bacteria, yeast, and fungi strains on PDMS
materials with different contents of Ag@SiO2 nanoparticles
(B). Reprinted with permission from Ref. (Selim et al., 2018a).
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can be stable even under material abrasion, bending, or twisting

deformation (Figures 9E–9G).

The second type of three-dimensional nanoparticles are those

consisting of a combination of two or more materials. As shown in

Figure 10, three-dimensional nanoparticles with a raspberry-like

morphology have been obtained via the aggregation of spherical

SiO2 nanoparticles on the surface of spherical thermochromic

pigment (TP) particles (Cheng et al., 2022). A thermochromic

superhydrophobic coating has been fabricated by brushing a

mixture of PDMS and the three-dimensional nanoparticles onto a

substrate (Figure 10A). SEM images of a blue TP powder and various

coatings are shown in Figure 10B. Coatings made with different TP

particles show similar superhydrophobicity, and surface

contaminants can easily be washed with water (Figure 10C). A

similar superhydrophobic surface made of nanoparticles with zero-

dimensional morphology and different sizes was obtained by

combining PDMS and CaCO3/SiO2 composite particles with a

raspberry-like morphology (Yang et al., 2009). Sumit Barthwal

et al. reported a stable superhydrophobic coating based on PDMS

and three-dimensional composite nanoparticles assembled with one-

dimensional multi-walled CNTs and ZnO nanorods (Barthwal et al.,

2020). The multi-walled CNT and ZnO composite nanoparticles

were prepared via a sol-gel method, and superhydrophobic coatings

were obtained by dip-coating various substrates.

Three-dimensional composite nanoparticles can also consist

of combinations of nanoparticles with different dimensional

morphologies. Mohamed S. Selim et al. developed a simple

two-phase process to obtain three-dimensional composite

nanoparticles with one-dimensional anatase TiO2 nanorods

(Selim et al., 2022a) or boehmite nanorods (c-AlOOH) (Selim

et al., 2022b) on the surface of two-dimensional GO sheets.

PDMS and three-dimensional composite nanoparticles

consisting of nanorods on the surface of GO sheets can be

coated onto substrates such as a hull to confer

superhydrophobicity and antifouling abilities to the surface.

Dusan Losic et al. prepared graphene-based superhydrophobic

composite coatings with diatomaceous earth (DE), reduced GO

(rGO) and TiO2 (P25) nanoparticles via spraying, brush

painting, and dip coating (Nine et al., 2015). The

morphologies of DE, TiO2 (P25) and GO particles can be

found in Figures 11A and 11B. Due to the hydrophilicity of

GO (Figure 11B, WCA 45°), the final superhydrophobic coating

FIGURE 7
SEM (A), atomic forcemicroscopy (B) images, and antiwetting behavior (C,D) of a PDMS and Ag nanowiremembrane. Reprintedwith permission
from Ref. (Li et al., 2020). Copyright 2020, American Chemical Society.
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FIGURE 8
Fabrication process of PDMS and graphene materials (A). Optical (B) and SEM (C) images of PDMS and graphene materials. Photo-responsive
and superhydrophobic properties of PDMS and graphene materials (D). Reprinted with permission from Ref. (Wang et al., 2019b). Copyright 2019,
American Chemical Society.
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was prepared with rGO to avoid the effect of hydrophilic GO.

Finally, the coatings with PDMS and DE, DE/TiO2, or DE/TiO2/

rGO composite particles showed rough surface morphologies

and superhydrophobicity (Figure 11C).

Owing to the wide variety of potential morphologies of three-

dimensional composite nanoparticles, it is impossible to discuss

them thoroughly in this review. Nonetheless, other morphologies

of three-dimensional composite nanoparticles can be reasonably

conceived based on the “3M” methodology and the previous

discussion (Dai et al., 2021; Li et al., 2022b; Li et al., 2022c). For

example, zero-dimensional carbon black nanoparticles and one-

dimensional carbon nanotubes have been mixed to obtain

conductive composite nanoparticles, and superhydrophobic

materials could be obtained by mixing PDMS and the

conductive composite nanoparticles in a solution and curing

the PDMS (Li et al., 2022b).

Methods to obtain
superhydrophobicity based on
polydimethylsiloxane and
nanoparticles

The “3M”methodology can be applied to prepare a variety

of superhydrophobic coatings. In addition to the previous

examples, in which superhydrophobic materials for

antifouling applications were obtained based on a

combination of PDMS with nanoparticle aggregates (shown

for zero-dimensional nanoparticles as an example in

Figure 12A), two other strategies can be used to obtain

superhydrophobic materials using PDMS and nanoparticles

(Figures 12B and 12C).

When PDMS is added on the surface of nanoparticle

aggregates (Figure 12B), the surface of the final

FIGURE 9
Photograph and computer tomography scan images of a porcupinefish and its skeleton (A). Schematic representation of independent
tetrapod-shaped ZnO and its compositewith PDMS (B). SEM images of tetrapod-shaped ZnO (C) and elastic acicular frameworks (D). Photographs of
the materials showing superhydrophobicity with slicing resistance (E), bending resistance (F), and twisting resistance (G). Reprinted with permission
from Ref. (Yamauchi et al., 2019). Copyright 2019, American Chemical Society.
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superhydrophobic material consists of PDMS. Therefore,

hydrophilic particles could be used without hydrophobic

modifications because the PDMS provides the required

hydrophobicity. Figure 13A shows an example in which Ag

nanoparticles (AgNPs) were first applied on a rubber band

(RB) substrate, and PDMS was then coated on the substrate

with AgNPs to confer superhydrophobicity to the material

(Wang et al., 2019c). Owing to the existence of a continuous

PDMS film on the surface, the superhydrophobicity can be

maintained under cyclic stretching–releasing and abrasion

tests (Figure 13B).

When nanoparticle aggregates are added on a PDMS

surface (Figure 12C), the surface of the final

superhydrophobic material consists of nanoparticles.

Therefore, the nanoparticles must be hydrophobic to

avoid conferring a hydrophilic or superhydrophilic

character to the surface. Figure 14A shows an example in

which hydrophilic SiO2 nanoparticles hydrophobized with

PDMS are closely laid on a PDMS and carbonyl iron particle

(CIP) microcilia array to form a superhydrophobic coating

(Dai et al., 2021). The nanoparticle aggregates provide the

necessary roughness to achieve superhydrophobicity

(Figure 14B). For this type of superhydrophobic materials,

the substrate may be a thick PDMS layer, which would

expand the applications of PDMS-based superhydrophobic

materials (Figure 14A).

FIGURE 10
Schematic diagram of the fabrication process of thermochromic superhydrophobic coatings (A). SEM images of a blue TP powder and various
coatings (B): blue TP powder (a1–a3); blue TP/coating without SiO2 (b1–b3); blue TP/coating containing SiO2 (c1–c3). Surface wettability
measurements for different coatings (C): the red, blue, black, and yellow TP/coating. Reprinted with permission from Ref. (Cheng et al., 2022).
Copyright 2021, Wiley-VCH GmbH.

FIGURE 11
SEM images of DE and TiO2 (P25) nanoparticles (A). TEM
image of exfoliated GO and SEM image of dried GO flakes (B). SEM
images and WCAs on superhydrophobic coating fabricated with
PDMS and DE, DE/TiO2, or DE/TiO2/rGO particles (C).
Reprinted with permission from Ref. (Nine et al., 2015). Copyright
2015, American Chemical Society.
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FIGURE 12
Strategies to obtain superhydrophobicity using PDMS and nanoparticles. Mixing PDMS and nanoparticle aggregates (A); PDMS on the surface of
the nanoparticle aggregates (B); Nanoparticle aggregates on a PDMS surface (C).

FIGURE 13
Preparation of superhydrophobic composites PDMS on the surface of AgNPs (A). Durable superhydrophobicity of the composites under cyclic
stretching–releasing and abrasion tests (B). Reprinted with permission from Ref. (Wang et al., 2019c). Copyright 2019, American Chemical Society.
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Conclusion and outlook

In this review, according to the mechanism of

superhydrophobicity based on dual micro-scale and nano-

scale structures, or hierarchical roughness, we propose a

versatile “3M” methodology (materials, methods, and

morphologies) that can be defined as “The use of specific

materials and methods to construct special morphologies for

surface superhydrophobicity” to guide the fabrication of

superhydrophobic PDMS-materials for antifouling

applications. Three types of PDMS-based materials were

introduced: pure PDMS materials, materials consisting of

PDMS and nanoparticles, and combinations of PDMS and

other materials. Furthermore, the methods that can be chosen

were discussed based on the different types of materials. Because

materials made of PDMS and nanoparticles are advantageous,

they were discussed to exemplify various morphologies and

explain the “3M” methodology to obtain superhydrophobicity.

Owing to the wide variety of potential morphologies of zero-,

one-, two-, and three-dimensional nanoparticles, it is impossible

to discuss them thoroughly in this review. Nonetheless, typical

materials, methods, and morphologies were carefully selected

and reviewed. Based on this “3M” methodology, in future

research, people can design various novel morphologies, and

obtain necessary dual micro-scale and nano-scale structures, or

hierarchical roughness by adopting novel materials or methods.

Therefore, numerous novel superhydrophobic materials will be

explored. This paper is expected to serve as a helpful reference to

future research on the fabrication of superhydrophobic materials

based on PDMS and other polymers for antifouling applications.

FIGURE 14
Preparation of superhydrophobic coatings by adding hydrophobized SiO2 nanoparticles on a PDMS and CIP microcilia array (A). SEM images of
the surfaces (B). Reprinted with permission from Ref. (Dai et al., 2021). Copyright 2020, Wiley-VCH GmbH.
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Moreover, superhydrophobic antifouling materials with

multifunctions, such as optical, electrical, magnetic, thermo

function, will have extensive applications in biomedical

devices, lab-on-a-chip devices, sensors, etc. The challenges in

future research should be focused on developing novel cheap and

safe raw materials, versatile and covenitent fabrication methods,

and designable but easily achieveable and stable enough

morphologies.
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