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Objectives: We developed a 3D U-Net-based deep convolutional neural

network for the automatic segmentation of the vertebral cortex. The

purpose of this study was to evaluate the accuracy of the 3D U-Net deep

learning model.

Methods: In this study, a fully automated vertebral cortical segmentation

method with 3D U-Net was developed, and ten-fold cross-validation was

employed. Through data augmentation, we obtained 1,672 3D images of

chest CT scans. Segmentation was performed using a conventional image

processing method and manually corrected by a senior radiologist to create

the gold standard. To compare the segmentation performance, 3D U-Net, Res

U-Net, Ki U-Net, and Seg Net were used to segment the vertebral cortex in CT

images. The segmentation performance of 3D U-Net and the other three deep

learning algorithms was evaluated using DSC, mIoU, MPA, and FPS.

Results: The DSC, mIoU, and MPA of 3D U-Net are better than the other three

strategies, reaching 0.71 ± 0.03, 0.74 ± 0.08, and 0.83 ± 0.02, respectively,

indicating promising automated segmentation results. The FPS is slightly lower

than that of Seg Net (23.09 ± 1.26 vs. 30.42 ± 3.57).

Conclusion: Cortical bone can be effectively segmented based on 3D U-net.
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1 Introduction

Osteoporosis has progressively gained public awareness as a prevalent bone disorder.

It is a systemic bone disease characterized by decreased bone mass and microarchitectural

degeneration, which leads to bone fragility and increased fracture risk (Cheng et al., 2020).

The cortical bone accounts for a small volume in the spine, but it bears 45%–75% of the

load (Rockoff et al., 1969), and cortical bone is more closely related to bone strength and is

more susceptible to mechanical forces than cancellous bone (Ye et al., 2020), which point
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to cortical bone’s role in osteoporotic fractures. The cortical shell

is crucial to the vertebral body’s capacity to bear loads. As age-

related bone mass loss progresses, the load-bearing role of the

cortical sell increases significantly, making the cortex more prone

to fracture (Cao et al., 2001). Loss of cortical bone mass and

increasing cortical porosity result from an unbalance in

intracortical remodeling, which also leads to osteoporotic

fractures (Shah et al., 2018). Both the pathogenesis of

osteoporotic fractures and the treatment options for

osteoporosis are influenced by cortical bone strength. A

healthy vertebral body cortex not only maintains the stability

of the vertebral body but also protects the spinal cord from injury

(Wallace et al., 2017). Palepu et al. (2019) found that the

thickness of the vertebral cortex varied circumferentially

within a vertebra and that this variation was distinct for each

level of the lumbar spine. As a result, having detailed reference

data for each vertebral cortical thickness might help you

comprehend bone quality better. 3D images can not only

show the integrity of cortical bone but also visually display

the thickness of cortical bone at different levels.

Accurate image segmentation is critical for cortical thickness

measurement, regional image analysis, and surgical planning.

However, accurate segmentation of cortical bone is difficult due

to partial volume artifacts caused by the low spatial resolution;

second, the boundary between cortical and trabecular

compartments is blurred and difficult to distinguish; and

third, adjacent images overlap, making cortical bone

segmentation even more difficult. Manual segmentation can

produce good results in clinical practice, but it comes with its

disadvantages: it is time-consuming and involves inter-rater

variability in practice. The automatic segmentation techniques,

in contrast, are not only quicker but are also built on measures

agreed upon by several raters, thus improving consistency and

reducing inter-rater variability.

Due to the rapid development of deep neural networks, it

has shown satisfactory performance in many medical images

processing such as classification, segmentation, detection,

localization, and registration (Chan et al., 2020; Fu et al.,

2020; Kalmet et al., 2020; Krishnan et al., 2020; Yan et al.,

2020; Hassanzadeh et al., 2021; Li et al., 2021; van Sloun et al.,

2021; Li et al., 2022), and has been widely used in many fields

(Zaharchuk et al., 2018; Jiang et al., 2020; Chandra et al.,

2021). Numerous studies have shown that high-precision

results that may be used in clinics can be achieved when

segmenting medical images. Mastmeyer et al. (2006) suggested

a hierarchical 3D technique for segmenting vertebral bodies

that combines traditional morphological procedures with

more complicated processes to allow for a rough

segmentation of vertebral bodies. Huang et al. (2009)

created a fully automatic vertebra recognition and

segmentation system for spine MRI that includes three

stages: AdaBoost-based vertebra detection, detection

refinement by robust curve fitting, and vertebra

segmentation via an iterative normalized cut approach. For

automatic vertebra segmentation and identification,

Lessmann et al. (2019) suggested an iterative full

convolutional neural network combining deep learning

with CT and MRI. Using a fully convolutional neural

network to segment and label vertebrae one by one,

regardless of the number of visible vertebrae, the method

achieves great segmentation accuracy. Kolarik et al. (2019)

discovered a high-resolution 3D Dense-U-Net network

capable of segmenting the spine in the input image at

native resolution and processing 3D image data. Although

the foregoing research has proven that segmentation of the

complete spine or single vertebrae can yield good results, few

studies have focused on cortical segmentation of the vertebrae.

Buie et al. (2007) proposed the dual threshold technique,

which involved two required threshold inputs for extracting

the cortex’s periosteal and endosteal surfaces. Some

morphological parameters of segmentation measured by the

proposed method were in good agreement with the gold

standard, while others were in poor agreement. A

structure-based algorithm for differentiating cortical and

trabecular bone had been presented by Ang (Ang et al.,

2020). Bone connected to the cortex within a spatially local

threshold value is identified and segregated from the

remaining bone using the thickness of the cortex as a seed

value, however, the algorithm has only been tested on the long

bones of four species. Zebaze et al. (2013) described an

automated method for segmenting bone into its compact-

appearing cortex, transitional zone, and trabecular

compartment from background and bone, but it was

mainly used to quantify cortical porosity. Li et al. (2013)

offered an automated cortical bone segmentation system for

MD-CT imaging of the distal tibia in vivo. Using a modified

fuzzy distance transform and connectivity analysis, it made

use of more contextual and topologic information from the

bone. For the segmentation of cortical and trabecular bone,

Valentinitsch et al. (2012) described a novel, totally

automated, threshold-independent technique. The program

selected textural features with high distinguishing power

automatically and trained a classifier to distinguish between

cortical and trabecular bone. This literature had only

performed experiments on a small number of cadaveric

bones and was insufficient to cover the high variability

introduced by normal anatomy and/or pathological skeletal

processes. Deep learning algorithms are more and more

widely used in image processing and segmentation, but few

people have applied them to the segmentation of cortical bone,

especially the vertebral cortex. Our proposed accurate

vertebral cortical image segmentation method will help to

provide quantitative information for the diagnosis, treatment,

and surgical planning.

Based on the above, our objective was to propose a 3D-UNet

deep learning model to segment the vertebral cortex
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automatically. Then, the segmentation abilities of the proposed

model are evaluated for the vertebral cortex.

2 Materials and methods

2.1 Datasets

From March to October 2020, a total of 316 consecutive

patients who had undergone thoracic CT spinal imaging in our

hospital were collected retrospectively in our study. The inclusion

criteria of the research subject were as follows: 1) 20–37 years old;

2) 18.5–24.0 BMI (body mass index); 3) complete clinical and

imaging data. Exclusion criteria: 1) osteoporosis; 2) vertebral

lesions 3) endocrine diseases and other diseases that affect the

thickness of cortical bone, such as diabetes, parathyroid disease,

rheumatoid disease, etc.; 4) long-term use of bisphosphonates,

glucocorticoids, estrogens, and other drugs; 5) incomplete

imaging examination. According to the inclusion and

exclusion criteria, a total of 105 patients were enrolled in this

study (71 males, 34 females, age range 20–37 years). This study

was reviewed and approved by the local ethics committee (2020-

035). Written informed consent was not required in this

retrospective study by the institutional requirements.

Our flowchart for vertebral cortex segmentation is shown in

Figure 1. All the participants were performed on a 256-slice CT

scanner (GE Healthcare), with image acquisition parameters

listed in Table 1. The same protocol was used to process all of

the scans.

T11, T12, L1, and L2 were chosen from 105 participants who

had CT scans. Each vertebral body was approximately

25–35 slices of axial images. The AW4.7 post-processing

workstation (GE Healthcare) was used to perform vertical

cross-section segmentation of the four vertebrae to obtain a

more accurate and complete cortical morphology. A senior

radiologist with more than 10 years of professional experience

performed the delineation of the vertebral cortex with ITK-SNAP

software, which was subsequently peer-reviewed by two other

specialists. These vertebral cortex contours delineated by

radiologists were referred to as the ground truth. Finally, both

data and labels were converted into NIFTI format. Figure 2 shows

the axial, coronal, sagittal, and 3D views of a single vertebral

body, where the red area outside the vertebral body is the cortical

bone we want to segment.

2.2 Data preprocessing

The image size is in the format (w, h, s), where w and h are the

width and height of the image, respectively, w = h, s is the number

of layers of the image, and s is between 30 and 40.

The data must be preprocessed due to the varying sizes of the

images in the dataset and the limited fraction of cortical bone in

the overall image. Figure 3 depicts the preprocessing flowchart.

First, select the CT value range of 100–800 HU, then crop out the

relevant area containing the cortical bone and resize the cropped

image (256,256). In addition, since the voxel spacing of 3D

images is not fixed, to facilitate subsequent processing, the

voxel size is unified into (1, 1, 1) mm, and finally normalized.

Supplementary Material gives a comprehensive explanation.

2.3 Fully automatic vertebral cortical
segmentation based on 3D U-Net

2.3.1 Automatic segmentation
The deep learning network used in this paper is the 3DU-Net

network proposed by Çiçek et al. (2016). The network was

created to address the issue of medical image segmentation.

U-Net (Ronneberger et al., 2015), which is a conventional

“encoder-decoder” structure, is the foundation for the full 3D

U-Net architecture. The encoder part is used to analyze the entire

image and perform feature extraction and analysis, while the

FIGURE 1
Flowchart of the proposed vertebral cortex segmentation
method.

TABLE 1 Image parameters of the dataset in our study.

Parameters Description

Scan range From T11 to L2

Tube voltage 120 kV

Tube current 335 mA

Layer thickness 1.25 mm

Layer spacing 1 mm

Image matrix 512 × 512

Window width 2000 HU

Window center 350 HU
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decoder creates a segmented block map (Figure 4). The entire 3D

U-Net architecture is created based on U-Net, which is a typical

“encoder-decoder” structure, the part of its change is to use 3D

data in the processing process. 3D U-Net consists of the

“encoder-decoder” structure. In the encoder structure, each

layer of the neural network consists of two convolutions, each

convolution followed by a batch normalization (BN) and a

rectified linear unit (ReLU), and finally a 2 × 2×2 maximum

pooling with strides of two in each dimension. In the decoder

structure, each layer consists of a 2 × 2 × 2 up-convolution with

strides of two in each dimension, followed by two 3 × 3 ×

3 convolutions, each followed by a BN and a ReLU. At the same

time, the result of the corresponding network layer on the

encoder is used as part of the input of the decoder, so that

the high-pixel feature information retained in the feature analysis

can be collected, so that the image can be better synthesized.

2.3.2 Loss function
A loss function is needed to quantify the error between the

network output and the ground truth to evaluate the predictions

and adjust the network parameters. In this study, we used three

loss functions (DiceLoss, Weighted Cross-entropy, HybridLoss)

to train and test the 3D U-Net network, and compared the effects

of the three loss functions on the experimental results. The

definition of DiceLoss, Weighted Cross-entropy, and

HybridLoss are as follows:

FIGURE 2
Three views and a 3D display of data. (A) axial plane; (B) coronal plane; (C) sagittal plane; (D) three-dimensional representation.

FIGURE 3
The flowchart of data preprocessing.
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DiceLoss:

DiceLoss(g, p) � 1 − 2∑n
i�1pigi

∑n
i�1(p2

i + g2
i )

(1)

p represents the predicted value; g represents the true value; n

represents the number of voxel points in the 3D image. It can be

seen from the formula that the background area will not be

calculated for the loss, so the network focuses on the division of

the cortex, which is conducive to the convergence of the network,

and improves the segmentation accuracy.

Weighted Cross-entropy:

LWCE � − 1
N

∑N

i�1∑
C

c�1g
c
i logs

c
i (2)

In the above formula, N and C are the numbers of pixels and data

categories respectively, gi is the true label, and si is the predicted

value.

Hybrid-Loss:

LHybridLoss � − 1
N

∑
N

i�1gilogsi + (1 − gi)log (1 − si)

+ 2∑N
i�1sigi + ϵ

∑N
i�1si + ∑N

i�1gi + ϵ
(3)

Hybrid-Loss is the sum of the binary cross-entropy loss and

the Dice loss, where N is the number of pixels, gi is the true label,

si is the predicted value, and ϵ is the smoothing factor to avoid the

divisor being 0.

2.3.3 Parameter setting
The original image was flipped horizontally and rotated

45 degrees clockwise and counterclockwise, and the data was

expanded by 4 times. Three patch sizes were tested: (96, 96, 16),

(128, 128, 16), (256, 256, 16). The network training epochs were

set to 100, the Adam optimizer was selected, the initial learning

rate was 0.0001, and the batch size was set to 6. Deep

supervision was adopted to avoid the problem of gradient

vanishing, and the initial value of the deep supervision

attenuation coefficient was set to 0.4. During the training

process, the learning rate and deep supervision coefficient

decreased with the increase in training times, ensuring that

the training tended to be stable.

2.3.4 Device configuration
The experimental environment was as follows: CPU Intel (R)

Core (TM) i7-9700F @ 3.00 GHz, GPU NVIDIA GeForce RTX

2070 SUPER, Windows10 operating system, Pytorch deep

learning framework + python3.6.

2.4 Evaluation and statistical analysis

Each segmentation result was assessed and compared to the

gold standard in this paper. We used four evaluation indicators,

Dice Similarity Coefficient (DSC), mean Intersection over Union

(mIoU), Mean Pixel Accuracy (MPA), and Frames Per Second

(FPS), to evaluate the segmentation effect and inference speed of

the model. Defined as follows:

DSC � 2|P ∩ T|
|P| + |T| (4)

P is the set of predicted mask pixel locations, and T is the set of

ground truth annotated pixel locations. P∩T represents the

overlapping part of the two. The DSC value range from 1 to

0, with 1 being the best and 0 being the worst. The higher the

FIGURE 4
The architecture of 3D U-Net.
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value, the more accurate the segmentation is compared to the

gold standard of radiologist segmentation.

mIoU � 1
k + 1

∑k

i�0
pii

∑k
j�0pij +∑k

j�0pji − pii

(5)

MPA � 1
k + 1

∑
k

i�0
pii

∑k
j�0pij

(6)

k is the number of categories, i is the true value, j is the predicted

value, and pij is the number of pixels that predict i as j.

FPS � 1
t

(7)

t is the time taken by the model to infer an image, in seconds (s).

To better evaluate the segmentation accuracy of 3D U-Net, it

is compared with Res U-Net (Xiao et al., 2018), Seg Net

(Badrinarayanan et al., 2017), and Ki U-Net (Valanarasu

et al., 2021) deep learning algorithms, respectively.

3 Result

3.1 Dataset

105 patients participated in the study, and a total of

420 thoracolumbar spine CT images were obtained. Among them,

2 images were excluded due to images being incomplete or images

being of such low resolution for the radiologist to accurately annotate

the ground truth. Finally, a total of 418 thoracolumbar spineCT images

were obtained. The original images of 418 cases were horizontally

flipped and rotated 45 degrees clockwise and counterclockwise for data

enhancement, and 1,672 cases were obtained.

3.2 Patch size and loss function

In this experiment, three patch sizes and three loss

functions were used for the 3D U-Net network respectively

(Tables 2, 3), and Eq. 4 was used for evaluation. From Tables 2,

3, it can be seen that the optimum segmentation effect

was achieved with a patch size of (256, 256, 16) using the

DiceLoss function. This also proved that for the segmentation

of small target areas, the training effect of sending the entire

image to the network was better. At the same time, DiceLoss

was more suitable for this experiment than other commonly

used loss functions, and the segmentation effect was also

the best.

TABLE 2 DSC values for different patch sizes and loss functions of the training set.

(96, 96, 16) (128, 128, 16) (256, 256, 16)

DiceLoss 0.6576 0.6915 0.7240

Weighted cross-entropy 0.6678 0.6534 0.6803

HybridLoss 0.5778 0.5823 0.6176

TABLE 3 DSC values for different patch sizes and loss functions of the test set.

(96, 96, 16) (128, 128, 16) (256, 256, 16)

DiceLoss 0.6635 0.6896 0.7128

Weighted cross-entropy 0.6554 0.6438 0.6733

HybridLoss 0.5622 0.5756 0.5978

TABLE 4 DSC of the four methods on the training set.

Fold 3D U-Net Res U-Net Seg Net Ki U-Net

1 0.6859 0.6457 0.5813 0.4981

2 0.7141 0.6381 0.5944 0.4732

3 0.7391 0.5964 0.618 0.5022

4 0.7438 0.6022 0.6154 0.5143

5 0.7412 0.5715 0.6321 0.4881

6 0.7223 0.6218 0.6092 0.4973

7 0.7501 0.6334 0.5873 0.5278

8 0.7349 0.6176 0.6239 0.5197

9 0.6934 0.6420 0.6158 0.5054

10 0.7155 0.6394 0.6245 0.4910

Mean 0.7240 0.6208 0.6102 0.5012
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3.3 Segmentation evaluation and
comparison with other different
algorithms

A comparative analysis was performed on the Res U-Net, Seg

Net, Ki U-Net, and our proposed 3DU-Net. On the training set for

3D U-Net and the other three methods, we conducted a ten-fold

cross-validation to determine which approach works the best. The

test set was then tested usingDSC,mIoU,MPA, and FPS (Tables 4,

5). It can be seen that the DSC, mIoU, andMPA of 3DU-Net were

higher than those of the other three methods, indicating that the

segmentation effect of this method is the best. The FPS is slightly

lower than that of Seg Net, but since the main purpose of this

experiment is not real-time, it is acceptable. Figure 5 represents the

loss drop and Dice value of different algorithms on the training set,

respectively. It can be seen from the above figures that the overall

performance of the 3D U-Net algorithm is better than the other

three methods, and the segmentation accuracy is higher. The Loss

value of the 3D-Unet algorithm is lower than the other three

algorithms, while the Dice value is higher than the other three

algorithms. Figure 6 compares the difference between the ground

truth and the segmentation results of 3D U-Net, Ki U-Net, Res

U-Net, and Seg Net. The 3DU-Net segmentation effect is found to

be the best, and the overall shape is the closest to the ground truth;

Seg Net and Res U-Net will incorrectly segment surrounding

tissue; The segmentation result of Ki U-Net is the worst, the

shape is far from the gold standard and it will segment irrelevant

tissues.

4 Discussion

In this study, we proposed a fully automated segmentation

method based on 3D U-Net, which could obtain highly accurate

results and reduce the workload of radiologists. The initial step in

using finite element analysis, individualized surgical planning,

and bone repair are to segment the cortical compartment.

Manual segmentation is time-consuming and laborious, which

is an obstacle to clinical application. Our skeletal functions are

supported and protected by cortical bone, which is also vital in

determining bone strength and fracture risk. This is the first time

when 3D U-Net deep learning model was applied to vertebral

cortex segmentation.

Since 3D images are very common in the medical field, most

previous literature focused on 2D images (Malinda et al., 2019;

Cho et al., 2020). If we want to train these models to solve tasks,

we need to convert 3D images into 2D slices layer by layer for

labeling. However, using 2D slice data to train a model is not only

time-consuming and laborious but also may ignore the

connection between layers. In addition, training with all the

data of the entire 3D volume is inefficient and likely to cause

overfitting, and it is impossible to create a large amount of data to

optimize training. Therefore, based on the above discussion, the

3D U-Net was selected in this study, which was suitable for 3D

medical images, and the experiment also showed that the

network had a good segmentation effect on vertebral cortical

bones.

At the beginning of this study, 3 different patch sizes and

different loss functions were first considered. After testing, it was

found that while dicing the data into little pieces might speed up

TABLE 5 Comparison of experimental results of different algorithms
on the test set.

DSC mIoU MPA FPS

3D U-Net 0.71 ± 0.03 0.74 ± 0.08 0.83 ± 0.02 23.09 ± 1.26

Res U-Net 0.62 ± 0.07 0.66 ± 0.14 0.72 ± 0.05 20.33 ± 1.82

Seg Net 0.59 ± 0.06 0.61 ± 0.09 0.67 ± 0.04 30.42 ± 3.57

Ki U-Net 0.48 ± 0.07 0.52 ± 0.18 0.62 ± 0.06 20.96 ± 3.04

FIGURE 5
Loss and Dice values of 3D-Unet, Ki U-Net, Res U-Net, and
Seg Net on the training set. The Loss value of the 3D-Unet
algorithm is lower than the other three algorithms, while the Dice
value is higher than the other three algorithms.
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the model convergence and reduce training time, it sacrifices

some segmentation accuracy, therefore this study chose the patch

size (256, 256, 16). In addition, compared with the Weighted

Cross-entropy and HybridLoss loss functions, DiceLoss does not

calculate the background area in the loss, that is, it focuses more

on the segmentation of the cortical bone, which is more suitable

for the task of this study. This experiment demonstrated that

selecting the optimal patch size and loss function for a certain

segmentation job can significantly increase the segmentation

effect.

From the performance of the evaluation indicators listed in

Table 3, it could be seen that the segmentation effect of 3D U-Net

was superior to the other three methods. 3D U-Net had the

advantage of utilizing the spatial information of 3D images, not

ignoring the relationship between layers in the image, and using

stitching procedures to merge low-level and high-level semantic

features, allowing it to better restore the tissue’s structure and

overall contours. In terms of inference speed, 3D U-Net was

slightly lower than Seg Net, because the data used by 3D U-Net

was three-dimensional, which consumed more computer

memory than two-dimensional images. This outcome was

acceptable because the segmentation job in this study was

more concerned with accuracy than inference speed. The

benefits of 3D U-Net resulted in a considerable improvement

in segmentation accuracy, proving the method’s rationality in

this study.

From Figure 6, we can see that for the 3 randomly selected

test images, compared to the ground truth, Ki U-Net has the

worst segmentation effect. It will not only incorrectly segment

other tissues around the cortical bone, but also the overall shape

is incomplete. The cortical bone region has obvious separation,

which is far from the ground truth, and the segmentation

performance of 3D U-Net is the closest. In the two yellow

areas marked in the first image, it can be seen that the inner

side of the cortical bone segmented by Res U-Net and Seg Net is

relatively smooth, while the gold standard has obvious texture. At

the same time, there are missing breaks in the segmentation of

Seg Net, and the overall shape of the segmentation of 3D U-Net

and Res U-Net is relatively complete. In the two blue regions

marked in the second image, Res U-Net and Seg Net segment

other surrounding tissues that do not belong to cortical bone,

while 3D U-Net does not. In the two green areas marked in the

third image, Res U-Net and Seg Net also have over-segmentation,

and the middle area of Res U-Net segmentation is particularly

obvious. Due to the fusion of cortical bone and cancellous bone

or the incomplete shape of cortical bone in the adjacent layers of

the 3D images in the dataset, the other three methods cannot

achieve good segmentation results in this case. The input of the

3D U-Net is a three-dimensional image, which considers the

connection between layers and makes better use of spatial

information, so the best segmentation effect can be obtained.

To further improve the accuracy of cortical bone

segmentation, there is still a lot of work to be done. First,

modify the network structure to improve the segmentation

ability for the fine structure. Second, further data collection is

needed to increase the number of training samples. Third, since

the cortical bone regions are difficult to capture and the manual

calibration is time-consuming and laborious, consider using

FIGURE 6
Cortical bone segmentation results (each row from left to right are the gold standard and segmentation results of the different algorithms). (A)
Ground-truth; (B) 3D U-Net; (C) Ki U-Net; (D) Res U-Net; (E) Seg Net.
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fewer and high-quality labels in combination with other methods

to delineate the cortical bone.

5 Conclusion

In this work, we proposed a fully automated cortical bone

segmentation method based on 3D U-Net. The obtained results

were quantitatively evaluated on the entire dataset. Our

proposed model not only achieved satisfactory segmentation

accuracy, but it was also computationally efficient at inference

time. Our results also showed that 3D U-Net significantly

improved segmentation results compared to other deep

learning algorithms.
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