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The identification of prognostic and therapeutic biomarkers is essential to

reduce morbidity and mortality from lung adenocarcinoma (LUAD). This

study aimed to identify a reliable prognostic and therapeutic biomarker for

LUAD using integrated bioinformatics. Based on the cancer genome atlas

(TCGA) and genome-tissue expression (GTEx) analyses, KIF20A has been

identified as the hub gene. Following validation using a series of cohorts,

survival analysis, meta-analysis, and univariate Cox analysis was conducted.

ESTIMATE and CIBERSORT algorithms were then used to study the association

of KIF20A with the tumor microenvironment (TME) and the percentage of

tumor-infiltrating immune cells (TICs). In vitro experiments were conducted to

determine the function of KIF20A. Finally, there was a negative association

between the expression of the KIF20A and overall survival, progression-free

survival, and disease-free survival, which was confirmed by meta-analysis and

COX analysis. Furthermore, KIF20A also had a potential role of altering the TME

and TICs proportions in LUAD. Validations in vitrowere performed on A549 and

PC-9 cell lines, andwe found that the knockdown of KIF20A exhibited inhibitory

effects on cell proliferation, resulted in cell cycle arrest during the G2/M phase,

and induced cellular apoptosis. Our study demonstrated that KIF20A could be

utilized as a reliable prognosticmarker and treatment target for LUAD. However,

further studies are required to validate these findings.
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1 Introduction

Lung adenocarcinoma (LUAD) is themost common histological

subtype of lung cancer. In the case of LUAD, the prognosis is

extremely poor, with a five-year survival rate of less than 10%

(Zhao et al., 2018; Fu et al., 2020). Various studies found that the

aberrant expression of oncogenes, particularly those that drive

cellular proliferation, increase resistance to therapy, and protect

tumor cells against immune surveillance, play an essential role in

tumor progression, subsequently leading to worse clinical outcomes

(Zhu et al., 2015; Schabath et al., 2016; Chuang et al., 2017; Ma et al.,

2019). Furthermore, tumor initiation and progression are influenced

by the tumor microenvironment (TME), particularly the immune

microenvironment (Gajewski et al., 2013; Hinshaw and Shevde,

2019). However, the mechanism by which the TME is involved in

tumor development has not been elucidated. It is essential for the

identification of potential oncogenes, alterations in the TME, and

other cancer drivers to understand tumor pathogenesis, and

accordingly, develop personalized, targeted therapies.

Kinesin family member 20A (KIF20A), also known as

RAB6KIFL, belongs to the kinesin superfamily-6. There has been

evidence that members of the superfamily are involved in vital

cellular processes, such as spindle assembly, intracellular transport,

and cellular mitosis (Shen et al., 2019; Xiong et al., 2019; Zhang et al.,

2019). Furthermore, KIF20A dominantly functioned in chromosome

partitioning and mitotic spindle formation (Xiong et al., 2019).

Recent studies have demonstrated that KIF20A is overexpressed

in many malignant tumors, including gastric cancer, glioma,

bladder cancer, breast cancer, and prostate cancer (Li et al., 2019;

Shen et al., 2019). Additionally, Shen et al. demonstrated that high

KIF20A expression is associated with high tumor grade, advanced

stage, and poor prognosis for bladder cancer patients (Shen et al.,

2019). The prognostic significance of KIF20A has also been evaluated

in other solid tumors, where it has been demonstrated that it plays a

vital role in cell proliferation and tumor metastasis. However, there

was limited knowledge about potential mechanisms of KIF20A

in LUAD.

Integrative bioinformatics analysis combined with molecular

biology and information technology is increasingly used to identify

novel diagnostic and therapeutic biomarkers. This study aims to

determine whether KIF20A can function as a prognostic and

therapeutic biomarker for LUAD via integrated bioinformatics

analysis. The flowchart of the work is shown in Figure 1.

2 Materials and methods

2.1 Data collection and preprocessing

RNA-sequence data for LUAD was extracted from The Cancer

Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/),

whereby 54 normal lung samples and 497 LUAD cases were

identified. Another mRNA expression profile for 288 normal

tissue samples was retrieved from the Genotype-Tissue

Expression (GTEx) database (https://www.gtexportal.org/home).

GSE19188 and GSE33532 profiles were downloaded from the

Gene Expression Omnibus (GEO) database (https://www.ncbi.

nlm.nih.gov/geo/). GSE19188 profile contained 65 normal

samples and 91 LUAD samples. GSE33532 profile included

20 normal samples and 80 LUAD samples. The R package

“limma” was used to combine TCGA and GTEx datasets for the

following study.

2.2Weighted gene co-expression network
analysis and differential analysis

Co-expression network analyses using the R package

“WGCNA” were conducted to detect high tumor-related

modules and identify potential genes involved in these modules.

This technique involved transforming the adjacency matrix into a

topological overlap matrix (TOM) based on the soft threshold

power. According to the TOM-based dissimilarity measure, the

genes were then grouped into distinct modules. The cutoff threshold

for the minModuleSize and mergeCutHeight were 30 and 0.25,

respectively. Additionally, the genes with gene significance (GS)

greater than 0.5 and a module membership (MM) above 0.8 were

classified as candidate genes. The R package “edgeR” was used for

differential expressed gene (DEG) identification between normal

lung and LUAD cases. The parameters used for the DEGs analysis

were an adjusted p-value < 0.5 and a |log2(fold change)| > 1. Finally,

the candidate hub genes were codetermined by the promising genes

in WGCNA and the DEGs analysis.

2.3 Function and pathway enrichment
analysis

Gene oncology (GO) enrichment analysis was conducted

using “clusterProfiler” in R, and candidate hub genes were

determined by KEGG enrichment analyses. Statistical

significance was defined as an adjusted p-value of less than

0.05. Gene set enrichment analysis (GSEA) and gene set

variation analysis (GSVA) were used to identify the

dominant pathways associated with the hub genes. The

“c2.cp.kegg.v7.1.symbols.gmt” gene set was identified from

the molecular signature database (MSigDB) (http://software.

broadinstitute.org/gsea/msigdb/index.jsp). Pathway expression

was profiled using the R package “pheatmap”.

2.4 Protein-protein interaction (PPI)
construction network and COX analysis

For the candidate hub genes, the interaction information

among proteins with a combined score above 0.9 was retrieved
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FIGURE 1
Flowchart for the work in lung adenocarcinoma (LUAD).
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using the retrieval of interacting genes database (STRING) search

tool (https://string-db.org/). To visualize the PPI network and

carry out a clustering analysis of the network, we used Cytoscape

software (version 3.6.0) and its molecular complex detection

plugin (MCODE). For the top two clusters with the highest

MCODE scores, the connectivity degrees of the nodes were

calculated. Moreover, the R package “survival” was adopted to

conduct univariate COX regression analysis for the

corresponding genes within the two clusters. The common

DEGs overlapped of nodes with connectivity degrees above

30 in the clustering network and a p-value below 0.001 in the

COX analysis were identified as hub genes.

2.5 Hub gene validation

A quantitative real-time polymerase chain reaction (qRT-

PCR) was used to measure the expression of hub genes. In

addition, the hub gene was validated through several

differential analyses utilizing the TCGA and GTEx data and

the profiles GSE19188 and GSE33532. Further validation was

performed using the Oncomine meta-analysis platform (https://

www.oncomine.org). The protein expression of the

corresponding gene was also examined using Western blot

analysis, differential analysis based on the Clinical Proteomic

Tumor Analysis Consortium (CPTAC) database (https://cptac-

data-portal.georgetown.edu/), and immunohistochemical

analysis of images obtained from the Human Protein Atlas

(HPA) database (https://www.proteinatlas.org).

2.6 Survival analysis and meta-analysis

We used the R packages “survival” and “survminer” to

analyze the correlation between KIF20A expression and

overall survival (OS) as well as progression-free survival (PFS)

among patients with LUAD. The survival analyses for KIF20A

were also conducted utilizing the Gene Expression Profiling

Interactive Analysis (GEPIA) database (http://gepia.cancer-

pku.cn) and Kaplan-Meier plotter platform (https://kmplot.

com/analysis/). Meta-analysis of the five cohorts was

conducted using R packages “survival” and “meta”. Pearson’s

method was used to analyze the correlation between each term

using the GraphPad Prism software (version 7.0).

2.7 Association between hub gene and
tumor microenvironment (TME)

Using the “ESTIMATE” package in R, the proportion of

immune and stromal cells in LUAD tissues was calculated. The

total ESTIMATE score was calculated by combining the two

scores. Based on the CIBERSORT algorithm, we determined the

relative community of tumor-infiltrating immune cells (TICs).

The R packages “circlize” and “corrplot” were developed to

visualize the correlation among TICs.

2.8. Cell culture and plasmid transfection

We obtained the cell lines HBE, A549, PC-9, and NCI-H1395

from the Shanghai Cell Bank of the Chinese Academy of Medical

Sciences (Shanghai, China). Cells were cultured in high glucose

Dulbecco’s Modified Eagle’s medium (DMEM; Hyclone, Logan,

Utah, United States) containing 10% fetal bovine serum (FBS;

Gibco, Grand Island, NY, United States) and 1% penicillin-

streptomycin (MRC, Jintan, China) at 37°C and 5% Carbon

dioxide (CO2). The KIF20A-targeted sequence of short hairpin

RNAs (shRNA, 5′- GCCACTCACAAATTTACCTTT-3′) and

the scrambled sequence (5′-CCTAAGGTTAAGTCGCCCTCG-
3′) were cloned into pLKO.1 plasmid. Both pLKO.1-KIF20A-

shRNA (shKIF20A) and pLKO.1-scramble-shRNA (shNC) were

provided by the Chinese Public Protein Plasmid Library (PPL,

Nanjing, China). A549 and PC-9 cells were transfected using the

X-tremeGENE HP DNA transfection reagent (Roche, Shanghai,

China) according to the manufacturer’s guidelines.

2.9 Quantitative real-time PCR analysis

The Total RNA Extraction Kit (Solarbo, Beijing, China) was

used to isolate the total RNA. First-strand cDNA synthesis kit

(Invitrogen, Carlsbad, CA, United States) and Premix Ex Taq

SYBR Green PCR kit (Takara, Dalian, China) were used

according to the manufacturer’s protocols for reverse

transcription and quantitative PCR, respectively. The primers

were synthesized as follows: KIF20A, forward: 5′-TGCTGTCCG
ATGACGATGTC-3′ and reverse: 5′-AGGTTCTTGCGTACC
ACAGAC-3’; GAPDH, forward: 5′-GGAGCGAGATCCCTC
CAAAAT-3′ and reverse: 5′-GGCTGTTGTCATACTTCTCAT
GG-3’.

2.10 Western blot analysis

Extraction and quantification of total protein were

conducted. Six percent SDS-PAGE gels were then used to

separate and transfer the proteins onto polyvinylidene fluoride

membranes. Membranes were blocked with five percent

skimmed milk for two hours at room temperature and then

incubated with the primary antibody against KIF20A

(ThermoFisher, Waltham, MA, United States, 1:1000 dilution,

Catalog #PA5-83359) and β-actin (Abcam, Cambridge,

United Kingdom, 1:1000 dilution, ab8226) overnight at four

degrees. Thereafter, the bands were incubated with a

horseradish peroxidase-conjugated secondary antibody (Bioss,
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Beijing, China) at room temperature for an hour and were

subsequently visualized using enhanced chemiluminescence

reagents (Beyotime, Shanghai, China).

2.11 Assessment of cell proliferation

Cell counting kit (CCK)-8 kit (Beyotime) and colony

formation assay were conducted to assess cell proliferation

ability. A total of 6,000 cells were cultured overnight in 96-well

plates. On the following day, cells were transfected with the

corresponding plasmid. The CCK-8 solution was added to

each well after 24–48 h to determine the cells’ viability. The

colony formation assay was performed by culturing 1,000 cells

per well overnight in six-well plates, followed by transfection.

A new culture medium was added the next day, and the cells

were kept in culture for an additional 14 days. The colonies

were then stained with Giemsa solution (Beyotime) and

calculated using ImageJ (version 1.8.0).

2.12. Cell cycle and apoptosis assessment

Overnight at 4°C, the transfected cells were fixed in 70%

ethanol. Afterward, the cells were stained with 500 μL PI/

RNase staining buffer (BD Pharmingen, San Diego, CA,

United States) for 15 min at 37°C or else incubated with

5 μL FITC Annexin V (BD Pharmingen), 5 μL propidium

iodide (PI, BD Pharmingen) and 400 μL binding buffer for

15 min at 25°C in the dark. A flow cytometer (FCM) (BD

FACSVerse, San Jose, CA, United States) was used to analyze

the cell cycle and apoptosis according to the manufacturer’s

instructions.

2.13 Statistical analysis

GraphPad Prism (version 7.0) and R software (version

3.6.0) were used for statistical analysis. Log-rank tests were

used to calculate the statistical significance of the survival

analysis. In the meta-analysis, heterogeneity was measured

using Cochran’s Q test and Higgin’s I2 statistics. The results of

qRT-PCR were analyzed by the 2-△△Ct method. Student’s

t-tests and one-way analyses of variance (ANOVA) were

used to determine whether there was a significant

difference between LUAD and normal cells. Experiments

were conducted at least three times, and the quantitative

data are presented as mean ± standard deviation (SD).

p-values below 0.05 were considered statistically significant.

3 Results

3.1 Identification of candidate hub genes

A total of 839 samples (342 normal samples and 497 LUAD

samples) were clustered according to their mRNA expression

similarity. No outliers within the samples were removed, and the

distribution of clinical traits within the samples was shown in

Supplementary Figure S1. In the WGCNA, a soft-thresholding

power (β) of five and a scale-free R2 of 0.95 were adopted for a

scale-free network, as shown in Supplementary Figure S2. Based

on this method, 16 modules were identified, as shown in

Figure 2A. The turquoise module showed the strongest

negative association with tumor samples, as shown in

Figure 2B, and had a higher module significance (MS) than

the other modules, as shown in Supplementary Figure S3. In

general, MS was defined as the average gene significance (GS) for

all genes within a particular module, indicating the overall

correlation between a trait and the module. Additionally, the

yellow module was the most positively associated with tumor

samples. There were 1,055 and 144 genes with GS > 0.5 and

MM > 0.8, respectively, in the turquoise and yellow modules, as

shown in Figure 2C and Figure 2D. The differential analysis

between normal and LUAD tissues revealed a total of

2,933 DEGs, containing 1,327 upregulated DEGs and

1,606 downregulated DEGs, as shown in Figure 2E. There

were 801 common genes between all DEGs and turquoise

module-related genes and 103 common genes between DEGs

and yellow module-related genes, as shown in Figure 2F and

Figure 2G. The 904 intersected DEGs were defined as candidate

hub genes and used for the following analysis.

3.2 GO and KEGG enrichment analyses

According to GO analysis, the 904 common DEGs were

mainly enriched in chromosome segregation, mitotic nuclear

division, cell cycle checkpoint, and other biological processes, as

shown in Figure 3A. The chromosomal region, cytosolic

ribosome, and kinetochore were the primarily enriched

cellular component terms. For molecular function enrichment,

DEGs were mainly involved in the structural constituent of the

ribosome, protein-threonine kinase activity, microtubule-

binding, and other terms. More detailed information is

provided in Supplementary Table S1. In addition, KEGG

analysis revealed that DEGs were predominantly associated

with the ribosome, cell cycle, oxidative phosphorylation, and

other biological pathways, as shown in Figure 3B. The

information is further illustrated in Supplementary Table S2.
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FIGURE 2
Weighted gene co-expression network analysis (WGCNA) and differential analysis. Image (A) illustrates a clustering dendrogram for the GTEx
and TCGA datasets based on the dissimilarity measure (1-TOM). Heatmap (B) shows the correlation betweenmodule eigengenes and clinical traits in
LUAD. The scatter plots illustrate the eigengenes for the turquoise (C) and yellow (D) modules. A module membership above 0.8 and a gene
significance greater than 0.5 were considered statistically significant. The volcano plot (E) shows 2,933 differentially expressed genes (DEGs) in
LUAD samples versus normal lung tissues. An adjusted p-value < 0.05 and |log2(fold change)| > 1 were set as the cutoff criterion. The Venn plots (F)
illustrate 801 genes overlapped by the turquoise module eigengenes and differential analysis, and the 103 genes were codetermined by the yellow
module eigengenes and differential analysis (G).
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FIGURE 3
Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses. Bubble plot (A) shows the GO function
analysis for the 904 common DEGs. The circle plot (B) shows the KEGG pathway analysis for the common DEGs. The higher the z-score, the higher
the expression of enriched terms.
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3.3 KIF20A was identified as a hub gene

PPI network constructed from candidate DEGs contained

391 nodes and 2,794 edges, as shown in Supplementary Figure S4.

Meanwhile, the top six clusters in the PPI network were

developed via the MCODE plugin, as shown in Table 1, of

which clusters one and two had the highest MCODE scores

and were therefore selected as the key clusters, as shown in

Figure 4A. The connectivity degrees of the nodes within key

clusters were calculated and visualized in the histograms, as

shown in Figure 4B. Among the DEGs in key clusters,

univariate COX analysis was carried out to determine the

significant factors (p < 0.001) for the overall survival (OS) in

LUAD patients, as shown in Figure 4C. According to COX

analysis, five common genes, including CDK1, BUB1B, PLK1,

KIF20A, and CCNA2, were shared by leading nodes with a

connectivity degree above 30 and a p-value below 0.001 in the

second cluster. However, no genes were identified in the first

cluster, as shown in Figure 4D. Amongst the five common

factors, KIF20A was further evaluated and classified as the

hub gene for the following study.

3.4 KIF20A exhibited high expression in
LUAD tissues

In LUAD samples, KIF20A expression was significantly higher

than in normal samples, as shown in Figures 5A–D. According to a

meta-analysis using the Oncomine database, LUAD tissues had a

higher expression ofKIF20A than normal lung tissues in five cohorts

(Hou lung, Landi lung, Okayama lung, Selamat lung, and Su lung),

as shown in Figure 5E (Hou et al., 2010; Landi et al., 2008; kayama

et al., 2012; Selamat et al., 2012; Su et al., 2007). Furthermore, higher

levels of KIF20A proteins were detected in LUAD tissues as

compared with normal lung tissues, as shown in Figure 5F. The

observation that KIF20A had increased expression in LUAD was

further assessed in A549, PC-9, and NCI-H1395 cell lines by qRT-

PCR and Western blot analyses, as shown in Figure 5H.

3.5. Identification of KIF20A as a
prognostic factor

Kaplan-Meier survival analysis revealed that high KIF20A

expression is a significant indicator of poor OS and

unfavorable PFS in LUAD patients, as shown in Figures

6A–E. Besides, KIF20A showed a negative association with

DFS in the GSE50081 profile, as shown in Figure 6F. These

were further confirmed in the GEPIA database and Kaplan-

Meier Plotter platform, as shown in Supplementary Figure S5.

As there was no heterogeneity among the five datasets (I2 <
50% and p > 0.05), we chose a fixed model to conduct the

meta-analysis. The results of the meta-analysis suggested that

KIF20A served as a high-risk factor for the survival of LUAD

patients (HR = 1.41, 95% CI: 1.28–1.56), as shown in

Figure 6G. Subsequently, univariate Cox analysis

demonstrated that KIF20A had a significantly negative

correlation with the survival of LUAD patients in several

datasets, as shown in Table 2. According to the above

results, KIF20A may serve as a prognostic factor for LUAD

patients.

3.6 Prognostic significance of KIF20A in
LUAD

Based on TCGA data, both correlation test and differential

analysis indicated that KIF20A had a dominantly positive

association with T-stage and N-stage in LUAD patients, as

shown in Figures 7A–F. Still, there was no significant

difference in KIF20A expression based on age (above or below

65), gender (female and male), and distant metastasis, as shown

in Supplementary Figure S6. Additionally, KIF20A significantly

predicted poor OS in LUAD patients with certain clinical

characteristics; stage I and II (p = 0.0015), stage III and IV

(p = 0.0417), T1 and T2 (p = 0.0008), and N0 (p < 0.0001), but not

in LUAD patients with T3 and T4 (p = 0.1251) and N1 and N2

(p = 0.1191), as shown in Figures 7G–L.

TABLE 1 The top six MCODE clusters in the PPI network.

MCODE cluster Nodes Edges MCODE scores MCODE cluster Nodes Edges MCODE scores

cluster 1 37 646 36.541 cluster 4 12 66 12.000

cluster 2 41 625 31.250 cluster 5 9 36 9.000

cluster 3 12 66 12.000 cluster 6 9 36 9.000

PPI, protein-protein interaction; MCODE, molecular complex detection.
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FIGURE 4
Identification of hub genes. Image (A) illustrates the network of the top two clusters in the protein-protein interaction network containing
904 common DEGs. Green and red colored spots indicate downregulated and upregulated DEGs, respectively. Image (B) illustrates the degrees of
connectivity within the nodes in the corresponding cluster networks. Image (C) shows the results of the univariate COX analysis for the significant
factors in selected clusters (p < 0.001). Image (D) shows the five common genes overlapped by the nodes with connectivity degrees above 30 in
the cluster network (n > 30) and a p-value below 0.001 in the COX analysis.
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FIGURE 5
Verification of KIF20A expression. LUAD samples had higher KIF20A expression in both unpaired (A) and paired (B) differential analyses, and the
observations were verified using GSE19188 (C) and GSE33532 (D) profiles. Meta-analysis (E), protein differential analysis (F), and
immunohistochemical images (G) validated the overexpression of the KIF20A gene in LUAD. Quantitative real-time PCR (qRT-PCR) (H) and Western
blot analysis (I) illustrate the significant upregulation ofKIF20A expression in A549, PC-9, and NCI-H1395 cells compared with HBE cells.
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3.7 KIF20A was involved in the cell cycle

To identify the biological functions of KIF20A in LUAD, we

conducted GSVA and GSEA for the DEGs between high and low

KIF20A expression subgroups according to the median

expression of KIF20A. The results of GSVA found that cell

cycle pathways, oocyte meiosis, and DNA replication were

markedly upregulated in high KIF20A expression samples

compared with low KIF20A expression samples, as shown in

Figure 8A. The results of GSEA found that oocyte meiosis and

p53 signaling pathway were the mainly enriched cell cycle

pathways in the KEGG collection and the E2F targets, G2M

checkpoint, and mitotic spindle in the HALLMARK gene set

collection, as shown in Figure 8C, Figure 8D, and Supplementary

FIGURE 6
Prognostic value of KIF20A expression in LUAD. Kaplan-Meier survival analysis showed KIF20A expression significantly indicated worse OS in
LUAD patients in the TCGA dataset (A), GSE68465 (B), and GSE50041 (C) profiles. Kaplan-Meier survival analysis showed that KIF20A expression was
negatively associated with progression-free survival (PFS) in the TCGA dataset (D) and GSE68465 profile (E), as well as disease-free survival (DFS) in
the GSE50081 profile (F). The meta-analysis (G) further confirmed the correlation of KIF20A expression with OS in the five cohorts.
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Table S3. The above results suggest that KIF20A was mainly

associated with cell cycle in LUAD progression.

3.8 KIF20A was associated with TME

Supplementary Figure S7 showed that KIF20A had a

significant negative association with the immune score, stromal

score, and total ESTIMATE score. CIBERSORT analysis results

revealed eight TICs among 21 kinds of TICs prominently associated

with KIF20A, codetermined by the differential analysis in the

histogram and the correlation test scatter plot, respectively, as

shown in Figures 9A–C. The correlation among the eight

different types of TICs, as well as the association of eight TICs

with OS, shows that levels of uncommitted macrophages (M0) and

activated CD4 memory T-cells had a distinctively negative

association with OS in patients with LUAD, as shown in

Figure 9D, Figure 9E and Supplementary Figure S8.

TABLE 2 Univariate Cox regression analysis for KIF20A expression on OS, PFS, and DFS in LUAD patients.

Parameter Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

TCGA (OS)

KIF20A 1.718 1.356–2.178 <0.001 1.685 1.299–2.185 <0.001
age 1.000 0.983–1.019 0.958 1.014 0.996–1.033 0.133

gender 1.091 0.774–1.539 0.618 0.971 0.685–1.377 0.87

stage 1.581 1.350–1.852 <0.001 1.422 0.943–2.145 0.093

T classification 1.598 1.313–1.945 <0.001 1.205 0.961–1.512 0.107

M classification 1.900 1.069–3.378 0.029 0.910 0.317–2.618 0.862

N classification 1.716 1.411–2.087 <0.001 1.156 0.810–1.650 0.425

GSE42127 (OS)

KIF20A 1.404 1.074–1.835 0.013 1.452 1.079–1.953 0.014

age 1.043 1.008–1.079 0.016 1.032 0.996–1.070 0.085

gender 1.804 0.959–3.392 0.067 1.308 0.671–2.551 0.43

stage 1.571 1.094–2.256 0.014 1.431 0.970–2.110 0.071

TCGA (PFS)

KIF20A 1.876 1.463–2.407 <0.001 1.788 1.366–2.340 <0.001
age 1.001 0.984–1.019 0.868 1.013 0.995–1.031 0.162

gender 1.127 0.800–1.589 0.494 1.024 0.723–1.449 0.895

stage 1.573 1.339–1.847 <0.001 1.394 0.935–2.076 0.103

T classification 1.592 1.318–1.923 <0.001 1.235 0.989–1.543 0.062

M classification 2.053 1.151–3.662 0.015 0.939 0.342–2.582 0.903

N classification 1.603 1.319–1.948 <0.001 1.054 0.749–1.483 0.764

GSE68465 (PFS)

KIF20A 1.460 1.153–1.848 0.002 1.403 1.070–1.841 0.014

gender 1.225 0.871–1.721 0.243 1.186 0.840–1.673 0.333

age 1.010 0.991–1.030 0.301 1.016 0.997–1.036 0.106

grade 1.492 1.125–1.979 0.006 1.169 0.863–1.585 0.313

N classification 1.575 1.267–1.959 <0.001 1.582 1.255–1.995 <0.001
T classification 1.497 1.174–1.908 0.001 1.318 1.020–1.703 0.035

GSE50081 (DFS)

KIF20A 1.414 1.105–1.809 0.006 1.339 1.025–1.751 0.033

age 1.018 0.989–1.047 0.238 1.017 0.985–1.049 0.296

gender 1.480 0.846–2.589 0.170 1.565 0.880–2.783 0.128

stage 2.514 1.415–4.465 0.002 2.191 0.357–13.435 0.397

T classification 2.749 1.461–5.173 0.002 1.697 0.799–3.606 0.169

N classification 2.219 1.236–3.982 0.008 0.984 0.163–5.935 0.986

LUAD, lung adenocarcinoma; HR, hazard ratio; CI, confidence interval; OS, overall survival; PFS, progress-free survival; DFS, disease-free survival.
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FIGURE 7
Correlation of KIF20A expression with clinical characteristics according to the TCGA dataset. Scatter plots show the correlation of KIF20A
expression with tumor stage (A), T classification (B), and N classification (C). Boxplots show the differential analysis of KIF20A expression in different
tumor stages (D), T classification (E), and N classification (F). Kaplan-Meier survival analysis shows the correlation of KIF20A expression with OS in
LUAD patients according to tumor stage: stage I&II (G) and stage III and IV (H), primary tumor: T1 and 2 (I) and T3 and 4 (J), and lymph node
metastasis: N0 (K) and N1&2 (L).

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Sun et al. 10.3389/fbioe.2022.993820

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.993820


3.9 KIF20A knockdown inhibited cell
proliferation and induced cell cycle arrest

Compared with shNC group, the shKIF20A efficiently

reduced the expression of KIF20A in A549 and PC-9 cells

after transfection, as shown in Figure 10A. At 48 h after the

transfection, the shKIF20A group had lower cell viability than

the shNC group, as shown in Figure 10C. The number of

colonies was distinctively reduced in the shKIF20A group

compared to the shNC group, as shown in Figure 10D. The

FCM results demonstrated that the cell numbers of the G0/

G1 phase were remarkably decreased 48 h after transfection,

while the cell proportions at the G2/M phase were dominantly

increased, as shown in Figure 11A. Moreover, the higher

percentage of apoptosis was significantly associated with

shKIF20A transfection, as shown in Figure 11B.

FIGURE 8
Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA). Image (A) illustrates the identification of differentially expressed
pathways among LUAD patients by GSVA. LUAD patients were divided into low and high KIF20A expression subgroups based on the median KIF20A
expression level. An adjusted p-value < 0.05 and log2|fold change| > 0.25 were set as the cutoff criterion. Image (B) shows the clustering heatmap for
the differentially expressed pathways. Image (C) shows the enriched gene sets in KEGG, while image (D) shows the HALLMARK collections in the
high KIF20A expression samples.
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4 Discussion

Because of cancer metastasis and recurrence, LUAD has

posed a significant obstacle to clinical outcomes.

Accumulating findings indicate that multiple signaling

pathways are activated during LUAD progression, including

the MAPK signaling pathway, PI3K/AKT signaling axis,

FOXM1 signals, WNT signaling pathway, JAK/STAT

FIGURE 9
Correlation of KIF20A expression with tumor-infiltrating immune cells (TICs) proportion. Differential analysis (A) for the proportions of 21 kinds
of TICs in LUAD samples with low or high KIF20A expression levels relative to the median KIF20A expression level. Scatter plots (B) show the
correlation between the levels of the ten kinds of TICs and the KIF20A expression (p < 0.05). Venn diagram (C) shows the eight kinds of TICs
correlated with KIF20A expression overlapped by the differential analysis and correlation test. Circle plot (D) shows the correlation among the
eight different types of TICs. Image (E) illustrates the Kaplan-Meier overall survival (OS) analysis for the proportions of two types of TICs (p < 0.05).
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pathways, and others (Zhan et al., 2017; Gao et al., 2018; Hou

et al., 2019; Shan et al., 2019; Sun and Zhao, 2019). These

pathways have been found to contribute to tumor

development by inducing cell cycle arrest at the resting-first

growth (G0/G1) transition phase or the second growth mitosis

transition (G2/M) phase. The FOXO3/FOXM1 axis is an

essential downstream signal of the PI3K/AKT, Ras/ERK, and

JNK/p38MAPK pathways, which are also involved in the tumor

growth mediated by controlling the cell cycle (Yao et al., 2018).

From these observations, we can conclude that the cell cycle plays

an essential role in controlling tumor growth, suggesting that

future therapeutic strategies for LUAD could target the key

molecules involved in the cell cycle. In addition, numerous

studies have shown that immunotherapy can potentially

suppress tumor growth and metastasis by triggering the innate

and adaptive immune systems (Farhood et al., 2019; Wculek

et al., 2020). Studies have shown that the initiation and

recurrence of LUAD are not only influenced by the oncogenic

properties of cancer but also by its interaction with the TME,

particularly the immune microenvironment.

In this study, we have identified KIF20A as the hub gene via

integrated bioinformatics analysis. This gene was linked with a

FIGURE 10
Effects of KIF20A knockdown on the proliferation of A549 and PC-9 cells. Efficacy of KIF20A deletion measured by qRT-PCR (A) and Western
blot analysis (B). KIF20A deletion inhibited cell growth in the CCK-8 test (C) and colony formation assay (D).
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worse OS and could be used as a prognostic indicator in LUAD

patients. Furthermore, it was also linked with alterations in the

TME and TICs communities. The KIF20A knockdown was also

found to inhibit LUAD cell proliferation, arrest cells at the G2/M

phase, and promote apoptosis. KIF20A, also known as MKLP2

and RAB6KIFL, is a type of protein belonging to the kinesin

family. Most members of the kinesin family are characterized by

conserved kinetic domain and ATP activity (Li et al., 2019; Xiong

et al., 2019). The characteristics prompt them to participate in

chromosome partitioning, cellular transport, and spindle

formation. KIF20A was mainly involved in organelle dynamics

and cell mitosis (Fontijn et al., 2001; Zhang et al., 2020). Aberrant

expression of KIF20Amight result in abnormal cellular behaviors

in cancer cells. Xiong et al. distinctively demonstrated that

KIF20A was highly expressed in colorectal cancer and was

involved in pathological functions, including promoting

FIGURE 11
Effects of KIF20A knockdown on cell cycle and apoptosis inA549 and PC-9 cells. KIF20A knockdown induced G2/M arrest (A) and promoted
apoptosis (B) 48 h after transfection.
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cellular growth and increased resistance to chemotherapy,

mediated by triggering the JAK/STAT3 signaling pathway. Li

et al. indicated that KIF20A silencing significantly impaired the

proliferative and invasive capabilities of ovarian cancer cells, and

FOXO1 could target KIF20A to manipulate cellular behaviors (Li

et al., 2020). Xie et al. suggested that non-small cell lung cancer

(NSCLC) had higher KIF20A expression than adjacent tissues.

The deletion of the KIF20A remarkably alters cellular

phenotypes, inhibits cell migration and invasion by reducing

MMP-7 expression, as well as preventing cell proliferation by

inactivating JNK signals, implying thatKIF20Amight function as

a potential oncogene and a promising treatment target for

NSCLC (Xie et al., 2020). In addition to pathological

functions and therapeutic value, KIF20A has been recognized

as an independent prognostic factor for various malignant

cancers, such as bladder cancer, colorectal cancer, breast

cancer, gastric cancer, epithelial ovarian cancer, and NSCLC

(Ni et al., 2018; Sheng et al., 2018; Shen et al., 2019; Xiong et al.,

2019; Nakamura et al., 2020). To our knowledge, no studies

reported on the role of KIF20A as a prognostic indicator for

LUAD patients.

Furthermore, a growing body of studies demonstrated that

cancer cells, to some extent, shaped their surrounding

microenvironment by secreting various cytokines and

chemokines (Wu and Dai, 2017; Hinshaw and Shevde, 2019).

The functional microenvironment would reprogram the

surrounding cells, especially immune cells, and prompt them to

take part in the tumor initiation and progression (Frankel et al.,

2017). Additionally, the innate and adaptive immune cells in TME

elicited crucial roles in tumor survival and maintenance (Gajewski

et al., 2013; Cassim and Pouyssegur, 2019). In this study, we found

that M0macrophages and activated memory CD4+ T cells were not

only significantly associated with KIF20 expression but also

negatively correlated with the survival of LUAD patients,

indicating their potential actions in LUAD pathogenesis.

Macrophages (Mφs) could polarize into inflammatory M1 Mφs
or immune-suppressiveM2Mφs, of which TMEpreferredM2Mφs
compared with M1 Mφs (Genin et al., 2015; Nielsen and Schmid,

2017). Besides, Mφs were reported to foster the migration and

invasion of cancer cells mediated by secreting epidermal growth

factors (Elbaz et al., 2015; Zeng et al., 2019). High M0 Mφs
infiltration was found in many solid tumors and commonly

indicated unfavorable survival, such as colorectal cancer,

digestive system cancer, and breast cancer (Bense et al., 2016;

Ge et al., 2019; Yang et al., 2019). CD4+ central memory T cells

mainly act on immune memory and immunoprotection during

tumor metastasis (Bhattacharyya et al., 2010). In general, high

factions of activated memory CD4+ T cells were correlated with

good survival in esophageal cancer (Wang et al., 2020), which as

opposite to our findings. However, the pathogenesis of TME

involved in cancer progression is still not fully understood.

Further research on pathogenesis is recommended in order to

develop suitable therapeutic interventions.

The work contributed to the understanding of LUAD

pathogenesis and the possible development of novel therapeutic

strategies. However, the study has some limitations that need to be

acknowledged. First of all, it was difficult to identify the specific

molecular mechanisms of KIF20A in the development and

progression of LUAD, highlighting the need for further studies

to understand the underlying mechanism. Moreover, the

inhibitory effects of KIF20A against cancer cell proliferation

were not validated in vivo. Finally, the association of KIF20A

with the TME, especially TICs communities, was not verified

experimentally. In conclusion, KIF20A could be used as a

reliable prognostic and therapeutic biomarker for LUAD. High

KIF20A expression indicated worse OS, PFS, and DFS in LUAD

patients. Knockdown of KIF20A efficiently suppressed cell

proliferation, induced G2/M phase arrest, and promoted

cellular apoptosis. However, more research is required to

further validate the findings of this study.
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