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Cellulose is one of the most abundant organic compounds in nature and is

available fromdiverse sources. Cellulose features tunable properties,making it a

promising substrate for biomaterial development. In this review, we highlight

advances in the physical processes and chemical modifications of cellulose that

enhance its properties for use as a biomaterial. Three cellulosic products are

discussed, including nanofibrillated, nanocrystalline, and bacterial cellulose,

with a focus on how each may serve as a platform for the development of

advanced cellulose-based biomaterials for Biomedical applications. In addition

to associating mechanical and chemical properties of cellulosic materials to

specific applications, a prospectus is offered for the future development of

cellulose-based biomaterials for biomedicine.
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Introduction

Cellulose is the most abundant, broadly-distributed natural polymer in the world (Moon

et al., 2011). It is composed of glucose residues linked by β-1,4-glycosidic bonds. Natural fibers
from cellulosic feedstock and synthetic cellulose are used in textiles, food, construction, and

many other industries (Zhu et al., 2016; Yang et al., 2021). The biocompatibility,

biodegradability, water-retention capacity, renewability, and tunability of cellulose make it

an ideal biopolymer for use as a biomaterial (Bhaladhare and Das, 2022). In general, cellulosic

materials are considered to be environment-friendly and are low-cost when compared to other

conventional synthetic materials (Hickey and Pelling, 2019). Cellulose polymers for

biomaterials may be produced either by chemical synthesis or biosynthesis. Feedstock

from a variety of sources (e.g., plants, animals, and microbes) serve as substrates to

produce cellulose-based materials (He et al., 2016; Okeyoshi et al., 2018).

Over the past decade, there has been renewed interest in the use of cellulosic

feedstocks to produce biofuels as fuel prices fluctuate erratically and use of fossil fuels

continue to contribute to geopolitical instability and climate change (Ceballos, 2017;

Kumar et al., 2020; Saravanan et al., 2022). In addition, other research has focused on the

physical and chemical properties of cellulose for the development of cellulose-based
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biomaterials (Habibi, 2014; Agarwal and Csóka, 2019; Tarrahi

et al., 2022). It has been shown that cellulose fibers produce

elongated fibrillary structures or intact rod-like crystalline

particles in the nanoscale range when subjected to mechanical

shearing or controlled acid hydrolysis (Klemm et al., 2011). This

is advantageous because it permits useful modifications to the

macromolecular structure of cellulose (through a variety of

chemistries) with nanoscale tunability for a myriad of

sophisticated applications (Habibi, 2014).

Several reviews are published on using nanoscale, structured

cellulosic substrates (i.e., nanocellulose) in biomaterials. These

are mainly focused on sourcing, isolation, fabrication, and

surface modifications to cellulose (Hickey and Pelling, 2019;

Moohan et al., 2020; Sood et al., 2021; Mali and Sherje, 2022).

Although these reports offer details regarding synthesis of

cellulosic materials, forming composites, and current

applications for cellulosic biomaterials (Agarwal and Csóka,

2019; Tarrahi et al., 2022), few is focused on the compatibility

between particular physical processes and chemical properties

and the suitability of the resulting nanocellulose-based materials

for specific biomedical applications. Here, we aim to connect the

features of cellulose-based materials based on their physical and

chemical properties to biomedical applications. This review

addresses different types of cellulose-based substrates (e.g.,

nanofibrillated, nanocrystalline, and bacterial cellulose) and

the benefits of selected chemical and physical treatments that

are amenable for biomedical applications of cellulose-based

materials.

Modifications in the synthesis of
cellulose-based biomaterials

Over the last decade, improvements for the use of cellulose as

a biomaterial have included modifying surface properties and

constructing cellulose-based composites to serve a wider range of

applications (Habibi, 2014; Jorfi and Foster, 2015). Structured

cellulose with nanoscale features (i.e., nanocellulose) that include

a high aspect (i.e., length-to-width) ratio and a large (micro- to

macroscopic) surface area (Agarwal and Csóka, 2019) can be

broadly classified as either nanofibrillated cellulose (NFC),

nanocrystalline cellulose (NCC), or bacterial cellulose (BC)

depending upon its source and properties (Lin and Dufresne,

2014). Functionality of cellulosic materials can be modified

surface alterations, including physical adsorption of molecules,

attachment of chemical moieties, and derivatization by one or

more functional groups (Figure 1).

Modifications by physical or mechanical
processes

Mechanical shearing laterally disintegrates cellulose fibers

into sub-structural nanoscale units, called nanofibrils, resulting

in nanofibrillated cellulose (NFC) (Habibi, 2014). Rigorous

mechanical disruption produces NFC, which features fibrils

on the order of several microns (Orlando et al., 2020). Three

main technologies, homogenization, microfluidization, and

microgrinding, are widely used for mechanical treatment of

substrate leading to NFC. For example, a high-pressure

homogenization method, which combines a homogenizer and

a microfluidizer, is one of the most common substrate treatments

due high defibrillation efficiency and relatively short isolation

times compared to other methods. During high-pressure

homogenization, high shear forces produce defibrillated

cellulose fibers from both crystalline and amorphous domains

of the cellulose substrate (Kose et al., 2011; Habibi, 2014).

Another method to produce NFC is emulsification in which

agitation of a multi-phase mixture yields small aqueous droplets

of hydrogel precursors in a hydrophobic medium (i.e., oil or

organic solvent). This is a proven strategy to produce of nano- or

micro-sphere gels (El-Sherbiny and Yacoub, 2013).

NFC may also be produce by other methods including

cryocrushing, ultrasonication, and steam explosion (Uetani

and Yano, 2011). Cryocrushing involves a combination of

severe shearing of cellulose in a refiner, followed by high-

impact crushing under liquid nitrogen. Resulting microfibrils

are useful in the production of high strength and high stiffness

composites for high-performance applications like bone tissue

and prosthetics engineering (Chakraborty et al., 2005). In

ultrasonication, purified cellulose is soaked in deionized water

and then subjected to ultrasonic fibrillation to isolate nanofibers.

The process can be performed at a different frequencies and

output power levels depending upon the purpose of the process

(Xie et al., 2016). Ultrasonication yields nanofibers with desired

properties, such as high crystallinity and thermal resistance

(Chen et al., 2011), which are used as nanocomposites,

filtration media, or films that feature optical transparency

FIGURE 1
Modifications in the synthesis of cellulose-based
biomaterials.
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(Chakraborty et al., 2005; Chen et al., 2011). Steam explosion is

another alternative process for NFC production, in which

saturated steam is used to treat cellulosic feedstock. NFC

derived from steam explosion exhibits a notable increase in

tensile strength as well as improvement in other properties,

such as reduced lignin content (Chakraborty et al., 2005).

For BC, silver has been integrated into cellulose by soaking

feedstock with various substances, including silver salts (Chen

et al., 2019), silver sulfadiazine (Aris et al., 2019), and silver-based

fluorescent complexes (deBoer et al., 2015). Other metals such as

titanium oxide (Ullah M. W. et al., 2016b), zinc or zinc oxide

(Wahid et al., 2019; Dharmalingam and Anandalakshmi, 2020;

Dinca et al., 2020), and zeolites or montmorillonite (Horue et al.,

2020) have also been integrated into BC biomaterials. BC acts as

stabilizing agent to control particle nucleation. Therefore,

integration of metal nanoparticles into BC is promising

strategy homogeneously incorporating metal nanoparticles and

controlling particle formation. In general, the biocompatibility,

high specific surface area, and non-toxicity of BC are properties

that have prompted rapid development of BC-based biomaterials

(Sureshkumar et al., 2010).

Modifications by chemical alteration

In addition to physical processes, chemical modifications

have also been used to develop cellulose-based biomaterials for

specific applications. For example, sulfation introduces highly

negative sulfate esters on the surface of NCC. This, in turn, can

enhance adsorption of select biomolecules such as enzymes

(Chen et al., 2013). The 2,2,6,6-tetramethylpiperidine-1-oxyl

(TEMPO)-mediated oxidation of cellulose is a widely used

method to change the hydroxymethyl groups of cellulose to

carboxylic forms while conserving secondary hydroxyls

(Besbes et al., 2011; Isogai et al., 2011). Cellulose has also

been explored as a substrate for carrying out reactions by

click chemistry. Click chemistry produces a group of reactions

that are fast, simple to use, easy to purify, versatile, regiospecific,

and give high product yields (Hein et al., 2008). For example,

porphyrin was covalently immobilized to NCC via a 1,3-dipolar

cycloaddition catalyzed by Cu(I), which resulted in

photodynamic inactivation of Mycobacterium smegmatis and

Staphylococcus aureus. Escherichia coli was also inactivated but

at lower efficacy (Feese et al., 2011). Etherification has been used

as a cost effective and highly efficient chemical treatment step to

facilitate the defibrillation of the fibers (Hasani et al., 2008;

Eyholzer et al., 2012). Etherification of cellulose by aqueous

sodium hydroxide may be followed by cationic surface

functionalization of NCC or NFC with ammonium groups via

the addition of a nucleophile. Surface modifications to NCC or

NFC have also been done through silylation with

alkyldimethylchlorosilanes followed by isocyanate treatment

(Gousse et al., 2002; Andresen et al., 2007). Either NCC or

NFC can be treated with isocyanate, which results in urethane

linkages via urethanization or carbamylation. This enhances the

molecular hydrophobicity of the material (Siqueira et al., 2013).

Chemical modification of a cellulose substrate either alone or

in conjunction with mechanical or physical treatment may

endow the emerging cellulose-based material with a unique

set of properties. Selection of manufacturing processes yields

biomaterial with desired thermal stability, tensile strength,

crystallinity, and other factors. Different material profiles can

be matched to compatible applications.

Modifications of cellulose-based
biomaterials for biomedical
applications

The use of cellulose as a biomaterial has a long history.

Physical processes or chemical modifications of cellulose

(Orlando et al., 2020), derivatization of cellulose (Yang et al.,

2021), or mixing cellulose with other materials to produce

composites (Aris et al., 2019; Wahid et al., 2019) have all

resulted in the development of innovative and useful

biomaterials. These cellulose-based materials are becoming

increasingly useful in biomedicine, including diagnosis,

treatment, prevention, and analysis of disease and disease

progression (Figure 2).

Drug delivery

Cellulose and nanocellulose have been used in the form of

gels, membranes, spheres, and crystals as excipients for a wide

range of drugs (Agarwal and Csóka, 2019). Early literature

reports that periodate-oxidized cellulose can be used to

immobilize insulin or p-amino salicylic acid for prolonged

drug delivery (Singh et al., 1981; Bala et al., 1982). In

addition, by copolymerizing methacrylic acid, N-isopropyl

acrylamide, or ethylene glycol dimethacrylate and employing

silica microspheres modified by 3-

methacryloxypropyltrimethoxysilane as a template, cellulose-

coated hollow microspheres have been engineered to enable

prolonged (i.e., slow release) drug delivery (Agarwal and

Csóka, 2019). In contrast, for a rapid and controlled drug

delivery, oxidized cellulose beads have been developed.

Specifically, TEMPO-mediated oxidation provides a pH-

responsive system for drug release from beads cellulose beads,

which can be tuned to retain drug at pH 1.2 and release drug at

pH 7.0 (Xie et al., 2021). The release rate is controlled by changes

in oxidation state, allowing drug release at different locations

with strategic timing (Xie et al., 2021). Cellulose beads can also be

derived from BC. For example, a high-absorbance BC membrane

was developed for sustained release of the anti-inflammatory

drug diclofenac in transdermal systems (Silva et al., 2014). Using
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glycerol to facilitate drug absorption and enhance membrane

malleability, diclofenac was more readily absorbed (Agarwal and

Csóka, 2019). In another report, benzalkonium chloride-treated

BC dry films were found to have high drug-loading capacity and

enhanced drug efficacy for at least 24 h against Staphylococcus

aureus and Bacillus subtilis when applied to wounds (Ullah H.

et al., 2016a).

Skin and wound dressings

Cellulose-based materials have been used in wound healing

to mimic skin, facilitate rapid regeneration of skin cells, and

minimize scarring (Hickey and Pelling, 2019). Among the most

advanced materials used in wound dressings are those produced

via bioprinting. Nanocellulose can be an ideal component of bio-

ink. For example, nanocellulose fibrils derived from TEMPO-

mediated oxidation reduce viscosity in bioprinting yielding

advantageous rheological properties (Rees et al., 2015).

Bioprinting with nanocellulose-based bio-ink also permits the

construction of porous nanostructures to stabilize functionalized

molecules. For example, carboxymethylated-periodate

nanocellulose has been used in bioprinting to produce 3D

porous structures with the capacity to carry and launch

microbicides (Rees et al., 2015). Electrospinning is a useful

method for the production of 3D porous matrices that mimic

the natural structures of layers within skin. Mixtures of cellulose

acetate and hydrogel (e.g., gelatin and poly urethane) have been

used in electrospinning processes to form scaffolds (Vatankhah

et al., 2014). By varying the ratio of nanocellulose-to-hydrogel,

parameters such as porosity, stiffness, hydrophobicity,

absorption, and surface area can be tuned to improve

efficiency in wound healing applications (Liu et al., 2012). The

high specific surface area and hydrophilicity of NFC allows it to

hold large amounts of water (relative to its dry mass). When

dispersed in water, NFC yields a hydrogel that can be modified

for a variety of purposes including the production of wound

dressing products. It has been shown that functionalized cellulose

dressings are superior to existing commercial products such as

Suprathel (Hakkarainen et al., 2016).

Bone tissue engineering

Cellulose has been used in bone tissue engineering because

cellulose fibers resemble the collagen fibers of bone tissue and

are compatible with the stiff, mechanical environment found

in bone systems (Torgbo and Sukyai, 2018; Vallejo et al.,

2021). Because the mechanical properties of hydrogels cannot

withstand mechanical stresses seen on bone, they are often

reinforced with nanocellulose (e.g., NFC). Cellulose

nanocrystals (e.g., NCC) serve as support in electrospun

matrices of polylactic acid (PLA) or polyvinyl alcohol

(PVA) hydrogels (Chalal et al., 2014; Rescignano et al.,

2014; Zhang et al., 2015). It has been demonstrated that

adhesion between PLA and cellulose in electrospinning can

be enhanced by maleic anhydride grafting, polyethylene glycol

grafting (PEG), and sodium dodecyl sulfate (SDS). This

FIGURE 2
Biomedical applications and advantages of cellulose-based materials.
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process modifies the nanocrystals to produce matrices with

smaller diameters and polydispersity (Zhou et al., 2013). It

also increases mechanical and thermal stability. For example,

it has been reported that PLA-cellulose scaffolds can exhibit

tensile strengths greater than 10 MPa (Zhang et al., 2015).

Fibrous nanocellulose has been used with bioactive glass to

coat metal implants resulting in rapid mineralization (e.g.,

hydroxyapatite formation) to facilitate cell attachment and

proliferation around the implants (Chen et al., 2015). Thus,

high mechanical strength cellulose and cellulose composites

are being successfully implemented in bone tissue

regeneration applications.

Nerve tissue repair and growth factor
delivery

Cellulosic materials have been used as scaffolds for nerve

cell and stem cell culturing as well as for the delivery of growth

factors into tissues of the nervous system (Wang et al., 2013;

Du et al., 2014; Kuzmenko et al., 2016). For example, cellulose-

based biomaterials have been shown to promote the

regeneration of neurons after spinal cord injury. NFC

scaffolds are used in research to promote in vitro neural

stem cell differentiation. In vivo, the tunable porosity of

NFC scaffolds can facilitate optimal release of growth

factors into injured spinal cord regions (Tsai et al., 2006;

Hackett et al., 2010). For targeted delivery into micro-

environments surrounding neural stem cells, cellulose-

based scaffolds have been used to transport and release

growth factors. This is useful for heterogeneous neural

differentiation of large populations of stem cells and for

repairing damaged nerve tissues (Wang et al., 2013).

Ophthalmic tissue repair

Cellulose-based materials have been developed for several

ophthalmic applications. For example, BC/polyvinyl alcohol

(PVA) composites are being developed to mimic properties of

the natural cornea, which offers a transparent structure with

high light transmittance, flexibility but with mechanical

strength, and desirable thermal properties (Wang et al.,

2010). BC-based contact lens and lens components can be

doped with antibiotics, such as ciprofloxacin/γ-cyclodextrin
to prevent infection or to treat active bacterial infections

(Cavicchioli et al., 2015). BC biomaterials that are modified

with chitosan and carboxymethyl cellulose to maximize

hydrophilicity have been shown to facilitate enhances

propagation of retinal pigment epithelial cells (Goncalves

et al., 2015). This offers new prospects in the treatment of

multiple eyes diseases including age-related macular

degeneration.

Oral tissue repair

Nanocellulose-based materials have also been developed for

oral tissue repair and post-surgical recovery. For example, a

blend of BC with calcium chloride and sodium alginate has

resulted in the construction of a cellulosic “sponge”. This

material has been shown to promote the proliferation of

gingival fibroblast cells (Chiaoprakobkij et al., 2011). Similar

BC-based materials have shown utility in recovery regimens in

root canal surgeries. Specifically, BC biomaterials for plugging

cavities from dental root canals showed the ability to expand and

cover the entire canal space with the added benefit of sterilizing

and removing residue from the canal space (Yoshino et al., 2013).

Artificial blood vessels

Cellulosic biomaterials have also been used in the

regeneration and replacement of vasculature. BC can be

molded to very different shapes during its synthesis to

generate substrates optimized for enhancing cell attachment

and proliferation (Mohite and Patil, 2014; Picheth et al.,

2017). Studies have demonstrated that in vascular grafting,

materials made with BC induce a reduction in thrombin at

target surfaces thus inhibiting clot formation (Fink et al.,

2010). This is a notable advantage over other commonly

materials commonly used for vascular grafting (e.g., PET and

PTFE). In addition, BC-derived composites have emerged as a

major alternative in the replacement of atherosclerotic blood

vessels. For example, blending BC nanocrystals with PVA

(Polyvinyl alcohol) results in an artificial vessel with high

tensile strength, low cytotoxicity, and enhanced suture

retention profile (Tang et al., 2015). A key issue in implants is

optimizing cell adhesion. The development of hydrophilic BC-

based biomaterials with polyethylene glycol (PEG) grafted into

the cellulosic base have shown favorable compatibility for cell

proliferation and adhesion (e.g., fibroblasts), reduced propensity

for complement activation, and resistance to bacterial adhesion

(da Silva et al., 2016). The development of such hydrophilic BC

composites offers notable advances in the development of novel

artificial blood vessels implants, coatings for cardiovascular

stents (resistant to bacterial adhesion), and the replacement

heart valves.

Prospectus

Development of nanocellulose-based biomaterials is a robust

area of current research and engineering. From feedstock choice

to defining properties of different cellulosic substrates and

matching pretreatment and manufacturing processes to

specific applications, the diversity and number of cellulosic

biomaterials is growing. In this review, we have summarized
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general properties of three common cellulosic materials

(i.e., NCC, NFC, BC) and discussed physical and chemical

processes used to produce or modify each. We have provided

examples of how these starting materials are being used in

different biomedical applications and why the unique

properties of each cellulose substrate are suitable to each

application. Due to the sensitivity of biological systems to

foreign materials and the tunability of cellulosic substrates, the

use of cellulose-based biomaterials for biomedical applications is

a robust area of research and development. The shear abundance

of cellulose as a raw material and its status as a sustainable

resource make cellulosic materials evenmore attractive. Efforts to

understand the limitations of cellulosic biomaterials in

biomedicine, such as the potential for immunological

rejection, facilitating disease transmission, and enhancing risks

for future malignancies are valuable as cellulose-based products

become more widely used in biomedicine (Savoji et al., 2018).

The potential is great, indeed. Cellulose is being used in bio-ink

that serves to produce scaffolds for the regeneration of tissues or

entire organs (Weng et al., 2021). Cellulose matrices are being

used to stabilize differentiating stem cells and in tissue

engineering. Cellulose-based drug delivery systems (e.g.,

cellulose microspheres and nanobeads) are used to regulate

the controlled release of medications and growth factors with

high resolution and specificity. Thus, despite some limitations

such as production costs for advanced cellulosic substrates

(Tornello et al., 2016) and special transportation/storage

conditions (Guan et al., 2020), the future looks promising for

the use of cellulose-based biomaterials in biomedicine.
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