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The instantaneous spatial representation of electrical propagation produced by

muscle contraction may introduce bias in surface electromyographical (sEMG)

activation maps. Here, we described the effect of instantaneous spatial

representation (sEMG segmentation) on embedded fuzzy topological polyhedrons

and image features extracted from sEMG activation maps. We analyzed

73,008 topographic sEMG activation maps from seven healthy participants (age

21.4 ± 1.5 years and bodymass 74.5 ± 8.5 kg) who performed submaximal isometric

plantar flexions with 64 surface electrodes placed over the medial gastrocnemius

muscle.Window lengths of 50, 100, 150, 250, 500, and 1,000msandoverlapof 0, 25,

50, 75, and 90% to change sEMG map generation were tested in a factorial design

(grid search). The Shannon entropy and volume of global embedded tri-dimensional

geometries (polyhedron projections), and the Shannon entropy, location of the

center (LoC), and image moments of maps were analyzed. The polyhedron

volume increased when the overlap was <25% and >75%. Entropy decreased

when the overlap was <25% and >75% and when the window length

was <100ms and >500ms. The LoC in the x-axis, entropy, and the histogram

moments of maps showed effects for overlap (p < 0.001), while the LoC in the y-axis

and entropy showed effects for both overlap and window length (p < 0.001). In

conclusion, the instantaneous sEMG maps are first affected by outer parameters of

theoverlap, followedby the lengthof thewindow. Thus, choosing thewindow length

and overlap parameters can introduce bias in sEMG activation maps, resulting in

distorted regional muscle activation.
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Introduction

Physical therapists, biomechanists, and engineers regularly

infer (quantitative or qualitative interpretation) neuromuscular

adaptations from surface electromyography (sEMG) activation

maps (Vieira et al., 2011; Campanini et al., 2020; Merletti and

Cerone, 2020). An sEMG activation map represents the discrete

distribution of the voltage propagation elicited from the train

sum of motor unit action potentials (MUAPs) collected from an

array of electrodes on the skin (Botter and Vieira, 2015; Guzmán-

Venegas et al., 2015; Ghaderi and Marateb, 2017; Jordanić et al.,

2017; Vigotsky et al., 2017; Merletti and Muceli, 2019; Merletti

and Cerone, 2020). Thus, multiple electrodes allow for obtaining

sEMG activation maps that can be interpreted as images

(Jordanić et al., 2017; Merletti and Muceli, 2019), similar to

brain activation (Beniczky and Schomer, 2020) or a uterus

electromyogram (Xu et al., 2022). Each map pixel corresponds

to the voltage acquired by each electrode. Thus, the map can be

defined by Ii,j,t �
�����������������������������
1

N−1 ∑N
k�1(EMG[nT]i,j w[n −mR])2

k

√
. Ii,j,t is the

pixel intensity that represents the magnitude of the muscle

activity located at (i,j), t is the number of maps obtained after

windowing, EMG[nT]i,j is the sEMG signal located in the array,

w[n] is the window or epoch, N is the length of w[n], and R is the

hop size that determines the amount of overlap.

Traditionally, sEMG activation map quantification involves

feature extraction, where the location of the center (LoC or

barycenter) and the Shannon entropy are the most used

(Guzmán-Venegas et al., 2015). The LoC is defined by LoC �
∑i,j

Ii,j
i
j

[ ]
∑i,j

Ii,j
(Jordanic et al., 2016; Pincheira et al., 2020).

Meanwhile, the entropy that explores homogeneity is defined

by E � −∑N
k�1p(k)2log2 p(k)2. p(k)2 is the probability of the

square of the root mean square value at electrode k (Farina

et al., 2008). In addition, image moments (expected value,

variance, skewness, and kurtosis) can also describe image

changes in the spatial time domain (Brown and Godman, 2011).

On the other hand, several conditions might introduce

undesired dispersion and noise. Therefore, capturing latent

map data might be convenient for understanding how

synthetic distortions are introduced. The latent data, which

retain lower-dimension information that explains higher-

dimension data, have been optimized through the Uniform

Manifold Approximation and Projection (UMAP) algorithm

(McInnes et al., 2020; Ali et al., 2019; Oskolkov, 2019).

UMAP projects a fuzzy topological set of high dimensions

equivalent to low-dimensional data (McInnes et al., 2020; Ali

et al., 2019). The approximation is possible by creating fuzzy

topological projections with binary cross-entropy and

projections (McInnes et al., 2020). The binary cross-entropy is

modeled by ∑je∈E[wh(e) log Wh(e)
Wl(e) + (1 − wh(e)) log(1−Wh(e)

1−Wl(e)) ],
while the weight between neighbors is modeled by

w � e
−d(xi−xj)−ρi/σ . ρi is the distance from the i-th data points

to its first nearest neighbor (Oskolkov, 2019). The first term

ensures fuzzy connectivity (simplex or node connections). In

contrast, the second term does not permit the creation of

simplexes (McInnes et al., 2020). Hence, UMAP might allow

the topological representation of different sEMG maps (high

dimensions) resulting from N andR parameters.

Previously, sEMG segmentation influenced the electrical

manifestation of fatigue conclusions (De la Fuente et al.,

2021). Since sEMG activation maps depend inherently on

segmentation, alterations are expected in the sEMG activation

map. However, there is still large variability in choosing window

lengths, i.e., 50 ms, 100 ms, 150 ms, 250 ms, 500 ms, or 1,000 ms

(Botter and Vieira, 2015; Guzmán-Venegas et al., 2015; Jordanic

et al., 2016; Falla et al., 2017; Jordanić et al., 2017; Zhu et al., 2017;

Martinez-Valdes et al., 2018; Vinti et al., 2018; Watanabe et al.,

2018; Hegyi et al., 2019), and truncation methods (non-

overlapping (Guzmán-Venegas et al., 2015; Falla et al., 2017;

Jordanić et al., 2017)). Therefore, understanding how

segmentation may distort regional muscle activation is still a

concern. Here, we aimed to describe the effect of instantaneous

spatial representation (sEMG segmentation) on embedded fuzzy

topological polyhedrons and image features extracted from the

sEMG activation maps obtained with high-density sEMG on

healthy participants performing a submaximal isometric

contraction of medial gastrocnemius.

Materials and methods

Study design

We conducted a factorial experiment to test 30 signal

processing conditions (Figure 1). The sample included

73,008 sEMG activation maps obtained from seven healthy

participants (aged 21.4 ± 1.5 years, body mass 74.5 ± 8.5 kg,

height 1.77 ± 0.01 m, and body mass index 20.9 ± 2.2 kg/m2) who

performed a submaximal isometric plantar flexion with the ankle

at neutral position (60% with the ankle in a 90° position) in a

controlled laboratory set-up (Figure 1). Here, we considered the

medial gastrocnemius muscle as a good muscle model due to its

application in clinics and biomechanics and because it was

previously used in EMG segmentation (Theisen et al., 2016;

De la Fuente et al., 2021). The Bioethics Committee of the

Andes University (Santiago, Chile) approved this study (#

INV-IN201701), which was developed according to the
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principles of the Declaration of Helsinki. All participants signed a

consent term agreeing to participate in this study.

Data

A total of 73,008 sEMG activation maps were included in

the study (data are available in https://www.researchgate.net/

publication/365904692_Biased_instantaneous_regional_muscle_

activation_maps_embedded_fuzzy_topology_and_image_

features_analysis_datapart1 and https://www.researchgate.

net/publication/365904985_Biased_instantaneous_regional_muscle_

activation_maps_embedded_fuzzy_topology_and_image_

features_analysis_datapart2). They were the result of

39 experiments of a total of 42 experiments (6 trials x

7 participants). Of the 42 experiments, three experiments

were excluded due to artifacts. These 39 experiments contained

10,240 samples x 64 channels. The 73,008 sEMG activation maps

resulted in combining 1,872 maps and 39 experiments. The

1,872 maps resulted from 30 conditions, that is, window lengths

(50, 100, 150, 250, 500, and 1,000 ms) combinedwith an overlap (0%,

25%, 50%, 75%, and 90%) without repetition. This combination

resulted in 100, 136, 199, 423, and 1,014maps (Pincheira et al., 2021).

Experimental set-up

Participants were lying prone on a bench with their hip, knee,

and ankle in a neutral joint position. The ankle of the participants

was tightly strapped to a customized rigid structure (Figure 1).

Then, they were asked to perform three maximal voluntary

isometric contractions against a force transducer placed at a

metatarsal head level (Revere Transducers®, 9363-B10-500-

20T1R, United States). Each attempt lasted 5 seconds, with a

3-min rest period between repetitions (a period of non-

contraction to recover basal muscle energy conditions).

Immediately, the participants were asked to perform the

submaximal voluntary contraction. The contractions were

sustained for 20 s, and the duration of the ascending/

descending ramps was 6 s and 8 s, respectively, for the hold

FIGURE 1
Experimental set-up and instantaneous surface electromyographic map generation flow. Colors represent the instantaneous potential
amplitude distribution (yellow indicates more intensity, and blue indicates lower intensity).
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phase. The participants received real-time visual feedback,

displaying a trapezoid target (Figure 1). The participants

completed six trials.

Electrode location and data acquisition

Prior to data acquisition, the skin was shaved, abrased (Everi:

Spes Medica s. r.l, Battipaglia, Italy), and cleaned with alcohol to

diminish the skin impedance. Then, a semi-disposable adhesive

with 64 electrodes organized in eight rows and eight columns of

1 mm diameter and an inter-electrode distance of 10 mm was

attached (GR10MM0808, OT Bioelettronica, Torino, Italy)

(Pincheira et al., 2021). The electrode spaces were filled with a

conductive cream (Spes Medica s.r.l., Italy) (Pincheira et al., 2021).

The electrode was placed over the most prominent region of

the medial gastrocnemius, and the muscle belly was determined

by palpation during a resisted plantar flexion. Then, the electrode

was aligned in the cephalocaudal axis with respect to the line

formed between the medial femoral condyle and malleolus. For

the mediolateral axis, the electrode was aligned with respect to

the medial contour of the medial gastrocnemius muscle. The

superomedial electrode corner was fixed at 30% of the distance of

the cephalocaudal axis, as was described previously (Pincheira

et al., 2021).

A total of 64 monopolar sEMG signals were collected from

the electrodes, amplified with a gain of 200, and digitized at a

sampling frequency of 2,048 Hz with a 12-bit resolution and 3-dB

bandwidth 10–500 Hz (EMG-USB2: OTBioelettronica, Turin,

Italy). The reference electrodes were positioned according to

Pincheira et al. (2021) over the contralateral ankle and superior

to the electrode near the popliteal fossa (Pincheira et al., 2021).

Two additional reference electrodes were placed on the tibial

tuberosity and the fibula to improve the EMG signal-to-noise

ratio. Once the quality of the signals was assured, the electrodes

were firmly secured with an elastic adhesive bandage (Figure 1).

Correct electrode placement was confirmed by assessing

sEMG signals online for low baseline noise levels and possible

artifacts, cortocircuit, or bad contact during visual inspection

during brief plantar flexion contractions (Pincheira et al., 2021).

The signal was evaluated at rest (without contraction) and

under contraction (Pincheira et al., 2021). Non-saturated

signals and out-of-power line interference were appreciated

during the acquisition (Pincheira et al., 2021). Nevertheless,

three experiments were excluded during offline signal

processing after observing in the time and frequency

domains. The domains showed increased noise.

Pre-processing

The sEMG signals were mean-centered to zero and

segmented at the force plateau signal. Then, the signals

were filtered by a zero-lag second-order Butterworth with a

bandpass of 20–400 Hz. Outlier channels were manually

identified and confirmed using the Z-score. A mean with 1

pixel of radio was assigned for outlier pixels from channels

with confirmed higher Z-scores (<0.01% was assigned).

Afterward, the sEMG signals were convolved with a

rectangular window. Our convolved sEMG signals were

arranged in a matrix 8 × 8, and the maps were normalized

to the maximum value of the whole matrixes during the

plateau (Figure 1).

Window length and overlap (intervention)

The window lengths were chosen based on previous reports

(Guzmán-Venegas et al., 2015; Jordanic et al., 2016; Falla et al.,

2017; Jordanić et al., 2017; Zhu et al., 2017; Martinez-Valdes

et al., 2018; Watanabe et al., 2018; Hegyi et al., 2019). The overlap

parameters were 0, 25, 50, 75, and 90%, resulting in 30 different

combinations between the window length and overlap

(50, 0), (50, 25), . . . , (1000, 75), (1000, 90){ } to introduce

variability to the sEMG activation maps to study its effects.

Uniform manifold approximation and
projection and feature image extraction

The sEMG activation maps of each condition of all

participants were concatenated [73,008 × 64] and

introduced to the UMAP algorithm version 1.4.1 (Meehan

et al., 2020). The global structure of high-dimensional data

(64 dimensions) was embedded into three-dimensional data

(McInnes et al., 2020; McInnes, 2018). The number of

neighbors was 10, the minimum distance was 0.7, the

number of components was three dimensions, the metric

was Euclidean, the number of epochs was 200, the learning

rate was 1, local connectivity was 1, repulsion strength was 1,

the spread was 1, the fuzzy set operation was 1, and the

negative sample rate was 5. After assessing the level of

connectivity and homogeneity of the structures, we created

a 3D polyhedron (finite elements) to obtain their volume and

Shannon entropy. In addition, we extracted the image

features from sEMG activation maps, LoC, Shannon

entropy, and image moment (expected value–moment 1-,

variance–moment 2-, skewness–moment 3-, and

kurtosis–moment 4-) (Brown and Godman, 2011).

Variables

The following continuous variables were determined: 1)

volume of the fuzzy topological structure obtained from the

embedded dataset and normalized to a maximum value, 2)

Frontiers in Bioengineering and Biotechnology frontiersin.org04

De la Fuente et al. 10.3389/fbioe.2022.934041

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.934041


entropy of the fuzzy topological structure from the embedded

dataset obtained as the Shannon entropy (Farina et al., 2008),

3) LoC obtained from the sEMG activation map in both x and

y coordinates (Jordanić et al., 2017), 4) Shannon entropy

obtained from the sEMG activation maps (Farina et al.,

2008), 5) moment-1 of maps obtained from the sEMG

activation map as the expected value (Brown and Godman,

2011), 6) moment-2 of maps obtained from the sEMG

activation map as variance (Brown and Godman, 2011), 7)

moment-3 of maps obtained from the sEMG activation map as

skewness (Brown and Godman, 2011), and 8) moment-4 of

maps obtained from the sEMG activation map as kurtosis

(Brown and Godman, 2011).

Data analysis

The sEMG activation maps were described as the expected

value and variance. Normality and homoscedasticity

assumptions were checked prior to the image analysis feature

using two-way ANOVA 2 × 5 × 6 (two factors: window length

and overlap; six levels of the length of windows: 50 ms, 100 ms,

FIGURE 2
Surface electromyographic maps embedded in three dimensions for 30 conditions of signal processing varying window lengths (50 ms,
100 ms, 150 ms, 250 ms, 500 ms, and 1,000 ms) and overlap (0, 25, 50, 75, and 90%). The normalized no-linear fitting for the Shannon entropy and
volume of sEMG polyhedrons is also shown in dark lines. Notice that the combination of 1000 ms and 90% of overlap projects no simplexes
connections.
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150 ms, 250 ms, 500 ms, and 1,000 ms; and five levels of sliding:

0%, 25%, 50%, 75%, and 90%) for main effects. Effect sizes were

described as the square sum of the effects divided by the total sum

of squares to show the explained variance [small: η2 < 0.04 (<

4%), medium: between 0.04 (4%) and 0.64 (64%), and large: >
0.64 (64%) (Ferguson, 2009)]. The Tukey–Kramer test was

used to find differences between groups. The K-medoid

algorithm was applied to explore the differences between

TABLE 1 Topographical EMG map outcomes.

50 ms 100 ms 150 ms 250 ms 500 ms 1,000 ms

LoCx, m.m.

0% 33 (0.013) 33 (0.013) 33 (0.010) 33 (0.010) 33 (0.010) 33 (0.010)

25% 24 (0.007) 24 (0.006) 24 (0.005) 24 (0.005) 24 (0.005) 24 (0.005)

50% 16 (0.003) 16 (0.003) 16 (0.002) 16 (0.002) 16 (0.002) 16 (0.002)

75% 08 (7.4e-4) 08 (5.7e-4) 08 (5.4e-4) 08 (5.2e-4) 08 (5.2e-4) 08 (5.1e-4)

90% 03 (1.2e-4) 03 (9.7e-5) 03 (9.2e-5) 03 (8.9e-5) 03 (8.7e-5) 03 (8.7e-5)

LoCy, m.m.

0% 35 (0.012) 35 (0.010) 35 (0.010) 35 (0.010) 35 (0.009) 35 (0.009)

25% 26 (0.007) 26 (0.005) 26 (0.005) 26 (0.005) 26 (0.005) 26 (0.005)

50% 18 (0.003) 18 (0.003) 18 (0.002) 18 (0.002) 18 (0.002) 18 (0.002)

75% 08 (6.6e-4) 08 (5.5e-4) 08 (5.2e-4) 08 (5.0e-4) 08 (5.0e-4) 08 (4.9e-4)

90% 03 (1.2e-4) 03 (9.4e-5) 03 (8.9e-5) 03 (8.6e-5) 03 (8.5e-5) 03 (8.4e-5)

Entropy, d.u.

0% 3.11 (0.012) 3.11 (0.012) 3.12 (0.012) 3.11 (0.012) 3.11 (0.012) 3.11 (0.023)

25% 3.11 (0.012) 3.11 (0.012) 3.11 (0.012) 3.11 (0.012) 3.11 (0.012) 3.11 (0.012)

50% 3.11 (0.012) 3.11 (0.012) 3.11 (0.012) 3.11 (0.012) 3.11 (0.012) 3.11 (0.012)

75% 3.11 (0.009) 3.11 (0.009) 3.11 (0.009) 3.11 (0.009) 3.11 (0.009) 3.11 (0.009)

90% 2.97 (7.1e-4) 2.97 (7.1e-4) 2.97 (5.1e-4) 2.97 (4.8e-4) 2.98 (4.6e-4) 2.98 (4.7e-4)

Moment-1, d.u.

0% 0.126 (0.004) 0.128 (0.004) 0.128 (0.004) 0.128 (0.004) 0.128 (0.004) 0.129 (0.004)

25% 0.126 (0.004) 0.128 (0.004) 0.128 (0.004) 0.128 (0.004) 0.128 (0.004) 0.129 (0.004)

50% 0.126 (0.004) 0.128 (0.004) 0.128 (0.004) 0.128 (0.004) 0.128 (0.004) 0.129 (0.004)

75% 0.126 (0.004) 0.128 (0.004) 0.128 (0.004) 0.128 (0.004) 0.128 (0.004) 0.129 (0.004)

90% 0.126 (0.004) 0.128 (0.004) 0.128 (0.004) 0.128 (0.004) 0.128 (0.004) 0.129 (0.004)

Moment-2 x 10−5, d.u.

0% 2.14 (8.84e-11) 1.04 (3.71e-11) 1.03 (3.45e-11) 1.03 (3.25e-11) 1.03 (3.20e-11) 1.03 (3.19e-11)

25% 1.89 (8.00e-11) 1.33 (4.77e-11) 1.33 (4.60e-11) 1.33 (4.43e-11) 1.33 (4.39e-11) 1.33 (4.38e-11)

50% 2.14 (8.84e-11) 1.28 (4.33e-11) 1.28 (3.91e-11) 1.28 (3.78e-11) 1.28 (3.73e-11) 1.28 (3.72e-11)

75% 2.24 (7.84e-11) 1.33 (3.99e-11) 1.33 (3.58e-11) 1.33 (3.44e-11) 1.33 (3.40e-11) 1.33 (3.39e-11)

90% 2.33 (7.95e-11) 1.33 (3.99e-11) 1.33 (3.57e-11) 1.33 (3.43e-11) 1.33 (3.39e-11) 1.33 (3.38e-11)

Moment-3, d.u.

0% −0.01 (0.41) 0.03 (0.42) 0.04 (0.41) 0.05 (0.41) 0.05 (0.41) 0.05 (0.41)

25% −0.01 (0.41) 0.03 (0.43) 0.05 (0.43) 0.05 (0.43) 0.06 (0.42) 0.06 (0.42)

50% 0.00 (0.42) 0.03 (0.42) 0.05 (0.41) 0.05 (0.42) 0.06 (0.41) 0.06 (0.41)

75% 0.00 (0.43) 0.03 (0.42) 0.05 (0.42) 0.05 (0.42) 0.06 (0.41) 0.06 (0.41)

90% 0.00 (0.43) 0.03 (0.42) 0.06 (0.42) 0.06 (0.41) 0.06 (0.41) 0.06 (0.41)

Moment-4, d.u.

0% 2.47 (0.80) 2.52 (0.82) 2.52 (0.83) 2.53 (0.83) 2.54 (0.85) 2.55 (0.85)

25% 2.46 (0.82) 2.49 (0.79) 2.50 (0.82) 2.52 (0.83) 2.52 (0.83) 2.52 (0.83)

50% 2.48 (0.80) 2.51 (0.80) 2.52 (0.82) 2.53 (0.82) 2.54 (0.83) 2.54 (0.83)

75% 2.47 (0.79) 2.50 (0.79) 2.51 (0.81) 2.52 (0.81) 2.53 (0.82) 2.53 (0.81)

90% 2.47 (0.79) 2.50 (0.80) 2.51 (0.81) 2.52 (0.81) 2.53 (0.82) 2.53 (0.82)

d.u. = dimensionless unit.

Data are expressed as the expected value (E[x]) of the histogram and variance of the expected value (E[x - E[x]]2).
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factors. The number of clusters with K-medoids was

evaluated as the sum of the ratio between the sum of that

within the Euclidean distance and Euclidean distance of each

point with their medoid found. Then, the elbow method

before convergence was chosen. The alpha error was equal

to 0.05 for all statistics. The volume and entropy behavior

were studied using a non-linear least square method, and

fuzzy sEMG polyhedrons were described in the UMAP space.

The zero-crossing of the fitted curve was described. All calculi

were made through MATLAB software (MathWorks, Inc.,

United States).

Results

The polyhedron volume increased when the overlap

was <25% and >75%. Entropy decreased when the overlap

was <25% and >75% and when the window length

was <100 ms and >500 ms. The polyhedron volume R2 was

73.5% and 16.9% for overlap and window length, respectively.

The polyhedron entropy R2 was 90.1% and <1% for overlap and

window length, respectively. The polyhedron zero-crossing for

volume in the overlap was at 25%, and between 75% and 90%.

The polyhedron zero-crossing for entropy in the overlap was

between 25% and 50%, and between 75% and 90%. Non-zero

crossings were found for window lengths. Figure 2 shows the

volume and entropy behavior of embedded sEMG

activation maps.

Map LoCx (Table 1) showed a main effect for both overlap

(p < 0.001, η2 = 0.998, large effect size) and window length (η2 <
0.04, small effect size), and there was interaction (p < 0.001, η2 <
0.04, small effect size). Overlap showed differences between all

multiple comparisons (p < 0.001). Window length showed

multicomparison differences between 50 ms and all window

lengths (p < 0.001). Data were grouped into five clusters with

centroids: 3.2 mm, 7.7 mm, 16.4 mm, 24.1 mm, and 32.8 mm.

Map LoCy (Table 1) showed only a main effect for overlap (p <
0.001, η2 = 0.998, large effect size). There were multiple

comparison differences between all overlaps (p < 0.001), and

data were grouped into six clusters with centroids: 3.5 mm,

8.2 mm, 17.6 mm, 25.9 mm, 34.5 mm, and 35.9 mm.

Map entropy (Table 1) showed a main effect for both

overlap (p < 0.001, η2 = 0.998, large effect size) and window

length (p < 0.001, η2 < 0.04, small effect size), and there was

interaction (p < 0.001, η2 < 0.04, small effect size). There were

multiple comparison differences between 50 ms and all

window lengths (p < 0.001). Data were grouped into five

clusters with centroids: 1.8 d.u., 2.4 d.u., 2.9 d.u., 3.0 d.u., and

4.3 d.u.

Map moment-1 (Table 1) showed a main effect for the

window length (p < 0.001, η2 < 0.04, small effect size). There

were differences between 50 ms and 1,000 ms (p = 0.036),

50 ms and 150 ms (p = 0.004), 50 ms and 250 ms (p = 0.001),

50 ms and 500 ms (p = 0.001), and 50 ms and 1000 ms (p <
0.004). Data were grouped into five clusters with centroids:

0.06 d.u., 0.09 d.u., 0.13 d.u., 0.18 d.u., and 0.24 d.u. Map

moment-2 (Table 1) showed a main effect for the window

length (p < 0.001, η2 < 0.04, small effect size). There were

differences between 50 ms and all window lengths (p < 0.001).

Data were grouped into one cluster. Map moment-3 (Table 1)

showed a main effect for the window length (p < 0.001, η2 <
0.04, small effect size). There were differences between 50 ms

and all window lengths (p < 0.001), 100 ms and 150 ms (p =

0.005), and 100 ms and the rest of the window lengths (p <
0.001). Data were grouped into one cluster. Map moment-4

(Table 1) showed a main effect for the window length (p <
0.001, η2 < 0.04, small effect size). There were differences

between 50 ms and the rest of the window lengths (p < 0.001),

100 ms and 250 ms (p = 0.006), 100 ms and 500 ms (p <
0.001), 100 ms and 1,000 ms (p < 0.001), and 150 ms and

1000 ms (p = 0.017). Data were grouped into one cluster.

Discussion

The most important finding in our study was that the

sEMG segmentation parameters (overlap and window length)

of activation maps introduce bias, resulting in distorted

regional muscle activation compromising the map

inferences. For example, we can conclude about regional

sEMG activation with or without clear regional sEMG

activation when there were not, e.g., the statistical error

types (Akobeng, 2016). The topological dimensional

reduction and feature extraction of the sEMG maps

confirmed it. Outer segmentation parameters tested here

have caused the highest distortion in the activation maps;

independently, no-overlap and small window length trends

reduce the activation map region, while large overlap and

window length trends increase the activation map region.

Thus, sEMG map generation can modify the spatial

myoelectrical activity and should be carefully considered

by their physiological and clinical repercussions,

i.e., wrong rehabilitation or performance planning.

Furthermore, many clinical and sport science studies did

not fully consider it in the past, and there is high

variability in the choice of segmentation parameters

(Botter and Vieira, 2015; Guzmán-Venegas et al., 2015;

Jordanic et al., 2016; Falla et al., 2017; Jordanić et al.,

2017; Zhu et al., 2017; Martinez-Valdes et al., 2018; Vinti

et al., 2018; Watanabe et al., 2018; Hegyi et al., 2019) and

truncation use (Stadler et al., 2007; Guzmán-Venegas et al.,

2015; Falla et al., 2017; Jordanić et al., 2017).

The high-dimensional sEMG maps embedded into a low-

dimensional dataset were studied through their entropy and

volume. These variables permitted an understanding of three

regions of activation. Overlap showed an increased volume
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and decreased entropy at outer parameters (two regions) and

increased entropy with low volume at central parameters

(one region). The window length showed decreased entropy

at outer parameters (two regions) and higher entropy at

central parameters (one region), while the volume trended

to be constant. The entropy of sEMG polyhedrons quantified

the geometrical heterogeneity of the embedding data (Franch

et al., 2019), which represents the chance to order the fuzzy

nodes projected from the RMS of MUAPs spatially

distributed in our study. Thus, the decreased entropy

shows a most regular geometry (homogeneity) due to

decreased local connectivity (McInnes et al., 2020;

Sánchez-Rico and Alvarado, 2019), which occurred with a

large volume, suggesting more distance between nodes (less

similar RMS of MUAPs). Consequently, there was less chance

to order the fuzzy nodes projected from the RMS of MUAPs.

This last distorted muscle activation suggests that two

scenarios occurred in the outer parameters, an attenuated

map for small overlap and window length, where there was a

more significant proportion of low RMS of MUAPs (blue

pixels; please visualize the sEMG maps of Figure 1), and a

blurred map for large overlap and window length, where

there was a more significant proportion of high RMS of

MUAPs (yellow pixels; please visualize the sEMG maps of

Figure 1).

On the other hand, an increased entropy shows a most

irregular geometry (heterogeneity) due to increased local

connectivity (McInnes et al., 2020; McInnes, 2018; Sánchez-

Rico and Alvarado, 2019), which occurred with a small

volume suggesting a lower distance between nodes (more

similar RMS of MUAPs). Central parameters with higher

entropy and lower volume were found near 50% overlap,

while for window length, higher entropy and lower volume

were found between 100 ms and 500 ms. A case of the total

loss of connectivity was found for 1,000 ms, and 90% of overlap

in coherence with findings of gene studies using UMAP (please,

see Figure 2) (Dorrity et al., 2020).

Regarding the extracted features from sEMG activation

maps, the LoCx, LoCy, and entropy confirmed a main

distorted effect of the overlap on maps. The clustering

analysis permitted decomposing data in coherence with the

multiple comparison results. For y-coordinates, six clusters

were found, suggesting that overlap 0% had two centroids,

meaning that there were two sub-groups of 50 ms. For

x-coordinates and entropy, five clusters were found in

coherence with overlapping. Regarding the window length,

only the x-coordinate and entropy showed differences (small

effect size). In consequence, the 50 ms without overlap generated

the most dissimilar sEMG map. These findings agree with

discontinuities that can be introduced by small window

lengths and the artifacts caused without window sliding (Yip

et al., 2017). This last issue is caused by truncation ringing (Gibbs

artifact), where small windowing abruptly magnifies intensity

changes like a high-pass filter (Stadler et al., 2007). Thus,

overlapping and small windowing can be an essential source

to create a synthetic bias on the sEMG activity distorting the

MUAP visualization techniques (Stadler et al., 2007; Vigotsky

et al., 2017).

Finally, the image moments changed the sEMG

activation maps but with a small effect size. This change

suggests a lower sensitivity of image moments to detect

biased sEMG maps compared to UMAP, LoC, and

entropy of map features. The main limitation to the

current study was the sEMG available grid used, which is

related to the level of the spatial resolution of the sEMG

intensity maps. The space aliasing was set according to our

available electrode (inter-electrode distance of 10 mm). The

standard acquisition of sEMG map indicates a relative

acceptable use of 10 mm and sampling frequency in space

higher than 200 samples/m (Merletti and Muceli, 2019;

Merletti and Cerone, 2020). Also, the maximal spatial

sampling may be appreciated using 90% of the spatial

power density distribution on the x-axis, y-axis, or both

(Afsharipour et al., 2019). However, electrodes lower or

equal to 8 mm would obtain better spatial resolution.

Although there are many options for selecting the shape

of the window function, we used a rectangular one as a fixed

and controlled experimental factor. Here, the effect of the

window type on myoelectric manifestations is outside the

scope of our study, and these limitations have been

addressed in a previous publication (Tan and Jiang,

1984). The pinnate architecture of medial gastrocnemius

limits our results only for this kind of muscle.

Conclusion

Here, we demonstrate that embedded sEMG maps and

features of image extraction change the spatial muscle

activation by segmentation parameters. The instantaneous

sEMG maps were primarily affected by outer parameters of

the overlap, followed by the outer parameters of the window

length. Consequently, choosing the window length and overlap

parameters can introduce bias in sEMG activation maps,

resulting in distorted regional muscle activation.
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