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Cell transplantation is an effective method for compensating for the loss of liver function
and improve patient survival. However, given that hepatocytes cultivated in vitro have
diverse developmental processes and physiological features, obtaining hepatocytes that
can properly function in vivo is difficult. In the present study, we present an advanced
computational analysis on single-cell transcriptional profiling to resolve the heterogeneity of
the hepatocyte differentiation process in vitro and tomine biomarkers at different periods of
differentiation. We obtained a batch of compressed and effective classification features
with the Boruta method and ranked them using the Max-Relevance and Min-Redundancy
method. Some key genes were identified during the in vitro culture of hepatocytes,
including CD147, which not only regulates terminally differentiated cells in the liver but
also affects cell differentiation. PPIA, which encodes a CD147 ligand, also appeared in the
identified gene list, and the combination of the two proteins mediated multiple biological
pathways. Other genes, such as TMSB10, TMEM176B, and CD63, which are involved in
the maturation and differentiation of hepatocytes and assist different hepatic cell types in
performing their roles were also identified. Then, several classifiers were trained and
evaluated to obtain optimal classifiers and optimal feature subsets, using three
classification algorithms (random forest, k-nearest neighbor, and decision tree) and the
incremental feature selection method. The best random forest classifier with a 0.940
Matthews correlation coefficient was constructed to distinguish different hepatic cell types.
Finally, classification rules were created for quantitatively describing hepatic cell types. In
summary, This study provided potential targets for cell transplantation associated liver
disease treatment strategies by elucidating the process and mechanism of hepatocyte
development at both qualitative and quantitative levels.
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INTRODUCTION

Over the past few decades, liver disease has gradually become one
of the leading causes of death worldwide. Acute hepatitis,
cirrhosis, and liver cancer account for approximately 4% of all
deaths globally (Xiao et al., 2019). The only treatment for an end-
stage liver disease that impairs the ability of the liver to regenerate
is liver transplantation (Zhang et al., 2018). However, the
practical use of liver transplantation is limited by the shortage
of liver grafts for transplantation (Iansante et al., 2018). A
potential alternative therapy for liver transplantation,
allogeneic hepatocyte transplantation requires the cultivation
of active hepatocytes in vitro (Iansante et al., 2018). However,
obtaining hepatocytes that can function properly in vivo is
difficult because of the different developmental processes and
physiological characteristics of hepatocytes cultured in vitro (Hu
and Li, 2015). Therefore, the development of functional
hepatocytes for liver regeneration is a priority. The
developmental mechanisms and heterogeneous characteristics
of hepatocytes in vitro have become major subjects of interest
because of the high clinical demand.

Liver transplant patients experience alloimmune rejection,
which may cause various complications and affect the long-
term survival of recipients (Du et al., 2020). Chronic allograft
injury, late graft failure, and the negative effects of anti-rejection
medication continue to be the major roadblocks to good
outcomes (Thomson et al., 2020). Following the development
of allogeneic hepatocyte transplantation technology, analysis
methods for hepatic cell types and immune cell characteristics
in vitro have become effective tools for the study of immune
rejection (Kawahara et al., 1998; Iansante et al., 2018). Different
hepatic cell types, including hepatoblasts, hepatocytes, and
cholangiocytes, which are cultured in vitro and can be
transplanted into a damaged liver, can repair the liver and
improve liver function. The challenge of culturing functional
hepatocytes in vitro is enormous. Primary hepatocytes have
difficulty maintaining stimulation by a complex set of factors
in vivo during in vitro culture, resulting in loss of hepatocyte
polarity and function (Lauschke et al., 2019). In addition, owing
to the shortage of donors and the lack of strategies that can
increase these donors, primary hepatocytes are extremely scarce
to meet the conditions for treatment. The selection of appropriate
original stem cells and an in vitro system suitable for stem cell
differentiation is crucial to the differentiation of stem cells into
mature liver type cells (Guo et al., 2017). It is particularly
significant to explore the process of differentiation of different
original stem cells in vitro and to elucidate the key pathways that
maintain the properties of primary hepatocytes.

Through single-cell sequencing, scientists can now investigate
the mechanisms of cell growth and differentiation in
unprecedented detail and resolve cell heterogeneity. Aizarani
et al. successfully resolved the heterogeneity of human
hepatocytes in vivo and the differentiation process (Aizarani
et al., 2019). However, owing to environmental differences,
hepatocytes cultured in vitro can show characteristics different
from those cultured in vivo. Logan et al. distinguish hepatocytes
cultured in vitro on the basis of cell shape with a machine learning

approach (Logan et al., 2016). However, distinguishing
hepatocytes at different stages of differentiation in vitro by this
method remains difficult because of the diversity and ambiguity
of cell morphology during development. In our study, the
transcriptional profiles of different hepatic cell types cultured
in vitro are combined using advanced machine learning methods,
and the characteristic markers of various hepatocyte populations
were identified. Results suggest the functional characteristics of
each population. Advanced computational methods for
describing liver cells cultured in vitro and resolving hepatocyte
developmental processes andmechanisms have become a focus of
research as the amount and variety of data grow.

Here, we uncovered a series of genes and classification rules
linked with in vitro hepatocyte differentiation processes and type
specificity by using advanced computational approaches based on
public single-cell RNA sequencing data. First, we used two
effective feature selection approaches (Boruta (Kursa and
Rudnicki, 2010) and Max-Relevance and Min-Redundancy
(Peng et al., 2005)) to filter and rank features. Based on
ranked features, several feature sets were constructed in
incremental feature selection (IFS) approaches (Liu and
Setiono, 1998), which were fed into three efficient
classification algorithms to build classifiers. The optimal
classifier and the optimal feature subset were obtained by
evaluating the performance of each classifier and observing the
IFS curve. A number of genes in the optimal feature subset are
associated with hepatocyte differentiation and function,
demonstrating the accuracy of our computational analysis. In
addition, a series of quantitative rules were established for
distinguishing specific cell types and functions during
hepatocyte differentiation in vitro. Overall, our study provided
a novel computational analysis for revealing the characteristic
markers of various hepatocyte populations, suggesting the
functional characteristics of each cell population. The top-
ranked features and decision rules identified by our analysis
provided a theoretical basis for resolving hepatocyte
developmental processes and mechanisms and potential targets
for the treatment of clinical liver diseases.

MATERIALS AND METHODS

Data
We obtained in vitro cultured human hepatocyte single-cell RNA
sequencing expression profiles from the Gene Expression
Omnibus (GEO) database under accession number GSE128060
(Feng S. et al., 2020). These data include 1,147 cells from 16
different hepatic cell types, each with 63,255 genes at different
expression levels obtained through Smart-Seq2 sequencing. The
sample sizes of each hepatic cell type are listed in Table 1. In each
cell, the expression levels of genes were quantified using the
transcript-per-million method.

Boruta Feature Filtering
The majority of the features is irrelevant to the classification.
When all features are selected for further analysis, redundancy
and noise are introduced, whichmight lead to biased calculations.
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We used the Boruta approach to filter extraneous features in this
case (Kursa and Rudnicki, 2010). The Boruta feature filtering
method has been widely used in biological data mining in the past
(Chen L. et al., 2021; Ding et al., 2021).

Boruta is based on the random forest (RF) classifier, which
adds randomness to a system and collects results from a collection
of random features. This function reduces the misleading effects
of random fluctuations and correlations for the generation of the
most relevant features for classification. Boruta includes the
following steps: 1) When modeling for the first time, copies of
the original variables as shadow variables are generated. 2) The
values of the corresponding shadow variables are randomly
shuffled. 3) The importance score of each variable is calculated
with RF modeling. 4) For each true characteristic variable, the
difference between its significance maximum and that of each
shadow variable is evaluated using statistical tests. The true
characteristic variables with significantly higher importance
than the shadow variables are defined as significant. Real
characteristic variables with significantly lower importance
than the shadow variables are defined as insignificant. 5) All
insignificant variables and shadow variables are removed. The
modeling and selection process is repeated and performed on the
basis of the new variable composition of the dataset until all
variables are classified as significant or insignificant, or a pre-set
number of iterations is reached.

We used the Boruta tool from https://github.com/scikit-learn-
contrib/boruta_py in this study and used the default parameters
for the analysis.

Max-Relevance and Min-Redundancy
mRMR is a filtered feature selection algorithm that maximizes the
relevance between features and targets and decreases the
redundancy between selected features (Peng et al., 2005; Zhu
et al., 2020; Chen et al., 2022). The algorithm analyzes each
feature and output category as an independent variable and
measures the similarity between two variables by using mutual
information, as expressed by

MI(x, y) � ∫∫ p(x, y)log p(x, y)
p(x)p(y) dxdy (1)

Where p(x, y) represents the joint probabilistic density of x and
y, and p(x) and p(y) represent the marginal probabilistic
densities of x and y, respectively. Each time a feature is
introduced to the mRMR process, the correlation between a
feature set and a target must be determined. However, in
feature selection, the combination of individual good features
does not necessarily increase the performance of classifiers
because the features may be highly correlated with each other
and thus show redundancy. That is, the correlation between
features and categorical variable are maximized, and the
correlation between features are minimized. The formulas for
maximizing correlation and minimizing redundancy are as
follows:

maxD(S, c),D � 1

|S| ∑f i∈S
MI(f i, c) (2)

minR(S),R � 1

|S|2 ∑f i ,f j∈S
MI(f i, f j) (3)

Where S is the feature subset, |S| is the number of features, fi is
the i-th feature, and c is the target category. Finally, the features
are selected by maximizing the equation ϕ as follows:

max ϕ(D,R), ϕ � D − R (4)
However, it is not easy to obtain such feature subset as this

problem is NP-hard. Accordingly, mRMR employs a heuristic
way to complete this task. It repeatedly selects one feature with
maximum relevance to target category and minimum
redundancies to already-selected features. This procedure stops
until all features have been selected. According to the selection
order, features are sorted in a feature list. Evidently, features with
high ranks are more important than those with low ranks.

We used the mRMR tool from http://home.penglab.com/proj/
mRMR/ and used the default parameters for the analysis.

TABLE 1 | The sample sizes of different cell types cultured in vitro.

Class Index Cell types Sample size

1 5C-condition cultured human primary hepatocyte 96
2 Cultured human primary intrahepatic biliary epithelial cell 34
3 Definitive endoderm 15
4 Endoderm stem cell (EnSC) 24
5 EnSC-derived cholangiocyte 68
6 EnSC-derived EGFi-untreated hepatocyte 128
7 EnSC-derived hepatic endoderm 59
8 EnSC-derived hepatoblast 84
9 EnSC-derived hepatocyte 177
10 EnSC-derived immature hepatocyte 31
11 EnSC-derived TPPB-untreated cholangiocyte 75
12 Hepatocyte derived from ProliHH P2 through 3D maturation 22
13 Hepatocyte derived from ProliHH P5 through 3D maturation 32
14 Human embryonic stem cell-derived hepatocyte-like cell 140
15 Sorted ALB+ CYP3A4+ EnSC-derived hepatocyte 67
16 Uncultured adult human primary hepatocyte 95
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Incremental Feature Selection
Through mRMRmethod, we can obtain a feature list. However, it
is still a problem which features should be selected. To determine
the optimal features for one classification algorithm, the IFS
method (Liu and Setiono, 1998) was employed.

IFS is a frequently used method for determining the ideal
feature number for classification when combined with a
classification algorithm (Liu and Setiono, 1998; Zhang et al.,
2020; Zhang et al., 2021). Based on the feature list yielded by the
mRMR method, it first builds a succession of feature subsets by
one-step interval. The top feature in the list is included in the first
feature subset, the top two features are included in the second
feature subset, and so on. On each feature subset constructed, one
classifier is generated based on the given classification algorithm
and samples represented by the features in the subset. Such
classifier is assessed through ten-fold cross-validation (Kohavi,
1995). The best classifier can be found, which was termed as the
optimal classifier. The features used in such classifier were called
optimal features and they comprised the optimal feature subset.

Synthetic Minority Oversampling Technique
As shown in Table 1, various cell types have different sample
sizes. The sample size of hEnSC-derived hepatocytes was
approximately 12 times that of EnSCs, and thus the sample
size was highly unbalanced. This condition can lead to strong
preferences in the training process, resulting in unreliable results.
In the analysis of the effectiveness of each classifier, the synthetic
minority oversampling technique (SMOTE) was used to lessen
the impact of imbalance (Chawla et al., 2002; Ding et al., 2022;
Pan et al., 2022; Zhou et al., 2022). The SMOTE implementation
process consists of the following steps: 1) randomly select one
sample, say x, from aminority class; 2) the k closest neighbors of x
are obtained from all samples in the same minority class; 3)
sample xi(nn) is randomly selected from these k closest neighbors,
and a random number ζ1 between 0 and 1 is generated to
synthesize a new sample xi1 with the following formula:

xi1 � xi + ζ1 × (xi(nn) − xi) (5)
This new sample is put into the minority class; 4) above steps

are repeated several times until the minority class has same
number of samples in the majority class. In this project, the
“SMOTE” tool fromWeka was used. The new samples yielded by
SMOTE were only used in the IFS method.

Classification Algorithm
Three efficient classification algorithms were used as candidates
for the IFS method, which have been applied to tackle various
biological and medical problems (Chen W. et al., 2021; Carlos
et al., 2021; Liu et al., 2021; Li et al., 2022; Wu and Chen, 2022;
Yang and Chen, 2022). They were briefly described as follows.

Random Forest
RF is an emerging and highly flexible machine learning algorithm
that is widely used in biological data mining (Breiman, 2001). It is
a typical type of ensemble classifier. The idea of an ensemble is to
solve shortcomings inherent in a single model or a model with a

certain set of parameters, and thus more models can be
integrated, and limitations can be avoided. RFs are the
products of the idea of ensemble, where many decision trees
(DTs) are integrated into a forest for the prediction of a final
outcome. Here, we called RF model from python’s scikit-learn
package for classification. For convenience, we used default
parameters to execute RF package. The number of DTs was 100.

k-Nearest Neighbor
KNN is the earliest collaborative filtering algorithm (Cover and
Hart, 2003). The basic idea is to classify sample points that are
close to one another into the same class. The KNN first
determines a k-value which is used in selecting k-nearest
samples in a specific point. Then, a selected distance is used in
calculating the distance of the k-nearest samples to a specific
point. Finally, a voting-based classification rule is used to
determine the class to which the new sample belongs. We
adopted the KNN model in scikit-learn for subsequent
analysis. Default parameters were used, where the distance was
defined as Minkowsk distance, K was set to one.

Decision Tree
DTs are machine learning algorithms with good interpretation,
high training efficiency, and simple comprehension and
frequently used in classification and feature selection (Safavian
and Landgrebe, 1991). A DT splits in a recursive manner,
resulting in a tree structure with nodes and directed edges.
The classification of an instance is determined by sorting
along the tree until it reaches a leaf node. In this study, we
adopted DT implemented by the Scikit-learn package. It uses
CART method with Gini index to expand the tree.

Performance Evaluation
The Matthews correlation coefficient (MCC) is a well-balanced
indicator that may be used when the sample size is imbalanced
(Matthews, 1975). It is used in measuring the binary classification
problem and is more reliable than other measurements in
biological data. Gorodkin proposed a widely used formulation
of MCC in multi-class classification problems (Gorodkin, 2004).
Such MCC can be determined using the formula below:

MCC � cov(X,Y)�����������������
cov(X,X)cov(Y ,Y)√

�
1
K ∑N

n�1∑K
k�1(Xnk − �Xk)(Ynk − �Yk)����������������������������������∑N

n�1∑K
k�1(Xnk − �Xk)2∑N

n�1∑K
k�1(Ynk − �Yk)2√ , (6)

Where X is the binary matrix into which one-hot encoding
converts the predicted class of each sample, Y is another
binary matrix into which one-hot encoding converts the real
class of each sample, and cov(X,Y) is the covariance of two
matrices. The average of the kth column of matrices X and Y are
represented by �Xk and �Yk, respectively. The elements in the n-th
row and k-th column of the matrices X and Y are referred to as
Xnk and Ynk, respectively. The MCC range is [−1, 1], and 1
indicates that the forecasts are identical to actual outcomes, 0
indicates that the predictions are no difference from random, and
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FIGURE 1 | Flow chart of the entire analysis process of this study. Single-cell RNA sequencing data acquired through the GEO database includes cells from 16
different hepatic cell types cultured in vitro. Following that, using feature selection methods, a sorted feature list is constructed. To recover efficient genes, develop
effective classifiers, and construct classification rules, this list is partitioned into feature subsets and put into the three classification algorithms.
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−1 indicates that the predictions are the polar opposites of the
actual results.

In addition, some other widely used measurements for multi-
class classification problems were also adopted in this study. They
were overall accuracy (ACC) and individual accuracy on each
class (cell type in this study). For the i-th class, its individual
accuracy is defined as

ACCi � ni

Ni
, (7)

WhereNi stands for the number of samples in the i-th class and ni
is the number of correctly predicted samples in this class. As for
ACC, it can be computed by

ACC � ∑16
i�1ni∑16
i�1Ni

, (8)

Above measurements were provided as reference.

Functional Enrichment Analysis
We can get the optimal features for one classification algorithm
using the IFS method. Functional enrichment analysis is critical for
uncovering key pathways involved with the in vitro culture process
and for unraveling the molecular processes of biomedicine. Thus,
Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment studies were performed
using the R package ClusterProfiler (Wu et al., 2021).

RESULTS

In the current research, we explored genes that characterize the
process of hepatocyte culture and differentiation in vitro and
created a series of rules for differentiating various hepatic cell
types. The entire calculation process is shown in Figure 1. The
outcomes of each step were discussed in full below.

Results of Boruta and mRMR Methods
We processed the original 63,255 features with the Boruta feature
filtering approach. 1901 features were selected, which are listed in
Supplementary Table S1. Subsequently, these features were
analyzed by mRMR method, to obtain a list of features ranked
by importance, which are also shown in Supplementary
Table S1.

Results of the IFS Method
Based on the feature list obtained in Results of Boruta and
mRMR Methods section, the IFS method was performed. It
constructed 1,901 feature subsets with one step interval. On
each feature subset, a classifier was built by applying one
classification algorithm (RF, KNN or DT) to samples
represented by features in this subset. Each classifier was
evaluated by 10-fold cross-validation. The evaluation results,
including measurements listed in Performance Evaluation
section, are provided in Supplementary Table S2. To clear
display the performance of one classification algorithm under
different feature subsets, an IFS curve was plotted, as shown in
Figure 2, which set MCC as Y-axis and number of features as
X-axis. For RF, the highest MCC was 0.940, which was obtained
by using top 1212 features in the list. Accordingly, the optimal RF
classifier can be built with these features. The ACC of this
classifier was 0.945, as listed in Table 2. Its detailed
performance on 16 cell types (i.e., individual accuracies) is
shown in Figure 3. It can be observed that several cell types
were perfectly predicted. All these suggested the excellent high
performance of the optimal RF classifier. As for another
classification algorithm, KNN, its highest MCC was 0.924,
which was produced by using top 829 features. With these
features, the optimal KNN classifier was set up. Such classifier
yielded the ACC of 0.930 (Table 2). The MCC and ACC were all
lower than those of the optimal RF classifier. Its individual
accuracies on 16 cell types were also generally lower than

FIGURE 2 | IFS curves for evaluating the performance of the three classification algorithms under different feature subsets according to MCC. RF/KNN/DT reaches
the maximum MCC value of 0.940/0.924/0.850 at the feature number of 1212/829/1774.
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those of the optimal RF classifier, which can be observed from
Figure 3.

With RF and KNN, the efficient classifiers can be built.
However, they cannot provide useful clues to uncover the
heterogeneity of the hepatocyte differentiation process in vitro.
In view of this, this study further employed DT in the IFSmethod.
The IFS curve of DT is also shown in Figure 2. When top 1,774
features were used, DT provided the highest MCC of 0.850.
Likewise, the optimal DT classifier was constructed using these
features. Its ACC was 0.863, as listed in Table 2. Evidently, such
performance was much lower than that of the optimal RF/KNN
classifier. Its performance on 16 cell types was also much lower
than that of the other two optimal classifiers (Figure 3). Although
the performance of the optimal DT classifier is much lower than
the optimal KNN/RF classifier, it has its own merits, which would
be given in Classification Rules section.

With the above arguments, we can find that the optimal RF
classifier was best. Such classifier can be a useful tool to
differentiate hepatic cell types cultured in vitro. However,
the efficiency of this classifier was a problem because lots of
features were used in this classifier. In view of this, we carefully
checked the IFS results of RF and found that when top 222
features were adopted, RF can generate the MCC of 0.931. In
this case, the ACC was 0.937 (Table 2). They were slightly
lower than those of the optimal RF classifier. As for its
individual accuracies, they were also a little lower than
those of the optimal RF classifier, as shown in Figure 3.

Furthermore, this RF classifier was superior to the optimal
KNN and DT classifiers. Thus, it was more proper than the
optimal RF classifier to be a tool for differentiating hepatic cell
types cultured in vitro.

Classification Rules
By applying IFS method with DT to the in vitro cultured
human hepatocyte single-cell RNA sequencing expression
profiles, the optimal DT classifier was built. It used the top
1,774 features in the list. Although its performance was not
very high, it can provide novel clues to uncover the
heterogeneity of the hepatocyte differentiation process
in vitro. With top 1,774 features, we applied DT on all cells,
obtaining a large tree, from which 118 rules for classifying
hepatic cell types were obtained. These rules are available in
Supplementary Table S3. Each rule established a limit on the
quantity of gene expression, indicating the relevance of high or
low gene expression in distinguishing in vitro cultured cell
types. Each cell type received at least one rules. Figure 4 shows
the number of rules for each cell type. The cell type “EnSC-
derived hepatocyte” got the most rules (18), where four cell
types only got one rule. In Quantitative Rules for Stages of
Liver Cells Differentiation and Specific Function
Classification section, a detailed analysis of these rules
would be given.

Functional Enrichment Analyses
The IFS results showed that the optimal RF classifier provided the
best classification performance. Such classifier used the top
1,212 features in the list, suggesting that these features greatly
contributed to the model construction process for
distinguishing the samples of different cell types and were
directly or indirectly involved in the biological processes that
distinguished these cells. To support this result, GO and KEGG
pathway enrichment analysis was performed on the
corresponding genes of these features by using
ClusterProfiler (Wu et al., 2021) package in R. The FDR
<0.05 criterion was used in filtering GO terms and KEGG
pathways. Supplementary Table S4 shows the results of GO
and KEGG pathway enrichment analysis results. Then, we
selected the top five GO terms in each GO group and KEGG
pathways for visualization, as shown in Figure 5. Some terms,
such as cell–substrate junction and cadherin binding, were
linked to hepatocyte differentiation in vitro in these
enrichment results. Functional Enrichment Analysis of
Optimum Genes section presented a full analysis of the
enrichment results.

TABLE 2 | 10-fold cross-validation performance of some key classifiers based on different classification algorithms.

Classification algorithm Number of features Overall accuracy (ACC) Matthews correlation coefficient
(MCC)

Random Forest 1212 0.945 0.940
Random Forest 222 0.937 0.931
k-Nearest Neighbor 829 0.930 0.924
Decision Tree 1774 0.863 0.850

FIGURE 3 | Box plot to show performance of key classifiers on 16 cell
types. RF and KNN classifiers have superior classification performance, with
ACC reaching above 0.950 in most cell types. DT classifier has a weaker
classification performance compared to the other three classifiers.
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DISCUSSION

We used advanced computational methods to identify qualitative
features and quantitative rules for different stages of
differentiation and specific functional populations of liver cells,

which were cultured in vitro, at the single-cell level. The violin
plot and heatmap were drawn using highly ranked genes to show
expression patterns between different classes, which can be seen
in Figure 6. These features play important roles in hepatocyte
development, which also shows the accuracy of our analysis

FIGURE 4 | Bar chart to show the number of rules for each cell type.

FIGURE 5 | Gene ontology and KEGG pathway enrichment analysis on optimal genes for RF. The FDR<0.05 criterion was used to filter GO terms and KEGG
pathways. (A) The top five GO enrichment results for each GO group. (B) The top five KEGG pathway enrichment results.
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FIGURE 6 | Identified expression patterns of highly ranked genes among different classes. (A) The violin plot of five identified genes, C9, RBBP4,MYL9,GAL3ST1,
andCAPG, which have significant high expression level in specific classes. (B) The heatmap of genes ranked high in the feature list. The corresponding cell types of Class
1–16 can be found in Table 1.
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results. A detailed description of these features and rules can be
seen below.

Optimal Features for Distinguishing
Different Transplantable Liver Cells In Vitro
By the Boruta and mRMR methods, a feature list, indicating the
importance of genes, were obtained. Here, we selected five genes
with high ranks in the list for detailed analysis, which are listed in
Table 3.

The first identified gene in the list was TMSB10
(ENSG00000034510). TMSB10 encodes the conserved small
acid protein belonging to the beta-thymosin family, which
functions in actin function during cell motility. TMSB10
expression is related to the development of several tissues
(Bani-Yaghoub et al., 2001). Back in 1990, TMSB10 was found
to be highly expressed during the human fetal brain period (Hall
et al., 1990). In 2011, Fanni et al. found significant differences in
the expression of TSM10 among the different stages of salivary
gland organogenesis (Fanni et al., 2011). TSM10 is strongly
expressed in the early stages of physiological development of
human salivary glands (Nemolato et al., 2009; Fanni et al., 2011).
Although no studies have directly shown that TSM10 plays an
important role in liver formation and development, some studies
implied the important role of TSM10 in embryonic development,
revealing that TSM10 may be an important regulator in the
differentiation of embryonic cells into hepatocytes.

CD147 (ENSG00000172270), also known as basigin (BSG),
encodes a plasma membrane protein that plays important roles
in life processes, such as embryo implantation and tumor
progression. CD147 is one of the positive markers of a type
of mesenchymal stem cells that are isolated from fetal liver
(Zhao et al., 2004). This finding demonstrates the role of CD147
as a marker for identifying stem cells with high differentiation
potential. It helped us select good starting cells during the
in vitro culture of hepatocytes. CD147 regulates the
production of MMP in hepatocytes and bile duct cells and
reduces the degree of liver fibrosis (Calabro et al., 2014).
CD147 expression affects carcinogenesis development by
modulating the degree of cell differentiation in hepatocellular
carcinoma (Wu et al., 2016). Through previous studies, we
found that CD147 not only regulates terminally differentiated
cells in the liver but also affects the differentiation process of the
cells. Our method ranked it high in the list, indicating its
importance in the differentiation and maturation of
hepatocytes in vitro.

The next identified gene was TMEM176B
(ENSG00000106565), which was first found in human lung
fibroblasts (Lurton et al., 1999). TMEM176B was highly
expressed in transplanted livers with recurrent hepatitis C
virus, revealing its potential as a marker to distinguish
abnormal reactions occurring after liver transplantation
(Gehrau et al., 2011). Our study showed that TMEM176B was
one of the efficient classification features, implying a specific
pattern in TMEM176B expression among cell populations and
further suggesting that diverse in vitro cultured cell populations
have different adaptations for liver transplantation. In addition,
TMEM176B regulates the maturation process of monocytes and
dendritic cells in mice and humans (Condamine et al., 2010;
Picotto et al., 2020). No direct evidence of the role of TMEM176A
in hepatocyte differentiation was found, but the combination of
previous and our studies revealed that TMEM176A potentially
acts as a potential target for regulating hepatocyte maturation.

PPIA (ENSG00000196262), also known as CYPA, encodes a
peptidyl-prolyl cis-trans isomerase that plays an important role in
protein folding. It can act as a ligand to bind to CD147, thereby
affecting intracellular physiological activities (Yurchenko et al.,
2002). CD147, as described above, can affect the differentiation of
cells within the liver. Therefore, PPIA is a potential target that
influences hepatocyte differentiation. In addition, the inhibition
of PPIA activity leads to the blocked polymerization of hensin in
the extracellular matrix, thus preventing the full differentiation of
epithelial cells (Peng et al., 2009). In 2005, CYPA was
demonstrated to be involved in the early stages of neural
differentiation (Urano et al., 2006). PPIA mediates many
biological pathways, such as inflammation and apoptosis, but
its function in the differentiation of embryonic hepatocytes
in vitro has not been investigated. Previous studies and our
studies showed its potential influence on functional cell
differentiation.

The next identified gene was CD63 (ENSG00000135404),
which encodes a quadruple transmembrane protein localized
on the surface of the cell membrane. This protein-mediated
signal transduction event plays a role in the regulation of cell
development, activation, growth, and motility (Pols and
Klumperman, 2009). Exogenous TIMP-1 binds to CD63 and
activates a series of pathways that ultimately mediate human
hematopoietic stem or progenitor cells proliferation (Rossi et al.,
2015). Thus, CD63 may act as a signaling initiator molecule that
facilitates the proliferation and differentiation of stem cells
in vitro, leading to the formation of cells with specific
functions. In addition, CD63 interacts with ameloblastin in
osteoblasts and promotes the interaction between CD63 and
integrin β1, which ultimately promote osteogenic
differentiation (Iizuka et al., 2011). CD63 is associated with
cell differentiation in a variety of tissues and a potential target
that influences the in vitro culture and differentiation of
hepatocytes. Meanwhile, CD63 is one of the indicators for
assessing liver regeneration and prognosis in patients with
acute-on-chronic liver failure (Jiao et al., 2021). This result
suggested that CD63 is critical to hepatocytes cultured in vitro
and it may be directly related to the success of the subsequent
transplantation of these cells into damaged livers.

TABLE 3 | Important genes yielded by Boruta and mRMR methods.

Ensembl ID Gene symbol Description

ENSG00000034510 TMSB10 Thymosin Beta 10
ENSG00000172270 CD147/BSG Basigin (Ok Blood Group)
ENSG00000106565 TMEM176B Transmembrane Protein 176B
ENSG00000196262 PPIA Peptidylprolyl Isomerase A
ENSG00000135404 CD63 CD63 Molecule

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 91630910

Li et al. Identifying Cultured Human Hepatocytes Markers

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Functional Enrichment Analysis of Optimum
Genes
The IFS curve showed that the RF reached optimal performance
in 1,212 features. We performed enrichment analysis on these
1,212 feature genes and filtered. The FDR was <0.05. The GO
terms and KEGG pathways were directly or briefly involved in
hepatocyte differentiation and functional formation, confirming
the reliability of our selection method for the classification of
hepatocytes at different stages of differentiation and cells with
different functions. This result confirmed the validity of our
selection method for the classification of hepatocytes at
different stages of differentiation and different functions. We
selected some of the top GO and KEGG enrichment results for
detailed analysis.

In the biological process of GO enrichment results, GO:
0072599, which refers to the establishment of protein
localization to the endoplasmic reticulum, displayed
significant enrichment. Similar results were found for GO:
0070972, which refers to protein localization to the
endoplasmic reticulum. During hepatocyte differentiation,
changes in endoplasmic reticulum morphology and protein
content in the microsomes on the endoplasmic reticulum
were observed (Dallner et al., 1966; Kanamura et al., 1990). In
addition, during liver development, endoplasmic reticulum
processed large amounts of proteins and lipids to temporarily
direct and perform proper functions (Hetz, 2012). In the
cellular component of GO enrichment results, GO:0030055,
which refers to the cell–substrate junction, showed high
enrichment. Hepatocytes must interact with other cells and
with a chemically complex substrates to maintain activity and
function (Parsons-Wingerter and Saltzman, 1993). The
biomechanical effects of cell–substrate interactions affect
the differentiation of embryonic liver progenitor cells
(Kourouklis et al., 2016). In the molecular function of GO
enrichment results, GO:0045296, which refers to cadherin
binding, was found to be significantly enriched. Calnexin-
mediated intercellular contacts are essential to the in vitro
maintenance of functioning hepatocytes (Semler et al., 2005).
Moreover, the incorporation of E-calcineurin in cells
containing appropriate substrates can maintain cell-specific
functions in the liver and induce hepatocyte differentiation
processes in vitro (Semler et al., 2005; Haque et al., 2011).
Interestingly, in the KEGG enrichment analysis, we found
hsa05171, which refers to the coronavirus disease (COVID-
19), to be significantly enriched. Hepatocytes and
cholangiocytes cultured in vitro are extremely permissive
to SARS-CoV-2 infection (Yang et al., 2020). Hence,
COVID19-related genes may be involved in the functional
formation of hepatocytes and cholangiocytes in vitro.

Quantitative Rules for Stages of Liver Cells
Differentiation and Specific Function
Classification
In addition to qualitative features, we established a series of
quantitative rules for distinguishing in vitro cultured liver cells.

We classified these rules and cell clusters into two main
categories. The first category included rules that distinguish
specific cell clusters at different stages of hepatocyte
differentiation in vitro. The second category included rules
used in distinguishing specific hepatocyte clusters formed by
the differentiation of different original cells in vitro. A detailed
description of the rules can be found below.

First, the classification rules of six cell groups derived from the
development of endodermal stem cells into hepatocytes and
cholangiocytes were resolved. In developmental stages originating
from endodermal stem cells, all the six cell types exhibited restricted
SAA1, TMEM123, and CD36 expression. During the differentiation
of stem cells into hepatocytes, SAA1 expression is upregulated in favor
of liver metabolism, but the overexpression of SAA1 determines the
development of inflammation (Shi et al., 2020; Choi et al., 2021). This
findingwas consistentwith our results and showed the accuracy of our
method. CD36 is involved in themetabolismof fat in hepatocytes, and
high CD36 expression leads to fat accumulation and affects the
normal functions of hepatocytes (Wilson et al., 2016; Li et al.,
2019). PABPAC1 had high expression levels in Class 9
(hepatocyte) and Class 10 (immature hepatocyte) and low
expression in other cells. The upregulated expression of PABPAC1
is associated with hepatocyte proliferation and growth (Hsieh et al.,
2009). The classification rules for Class 4 (endoderm stem cell) and
Class 7 (hepatic endoderm) showed a high degree of similarity,
exhibiting the low expression of HAMP and SPTBN1 and high
expression of APOE. HAMP, a protein specifically expressed in
the liver, constitutes a major circulating regulator of iron uptake
and distribution across tissues (Fang et al., 2020). Class 4 and Class 7
hepatocytes are cell populations in the early stages of differentiation
and therefore have lower expression levels on hepatocyte-specific
expressed genes. The inhibition of SPTBN1 in hepatocellular
carcinoma cells increases the expression of stem cell markers, and
this process is consistent with the less differentiated nature of these
two types of cells (Zhi et al., 2015; Hu and Wu, 2021). APOE
deficiency leads to liver senescence and is detrimental to
hepatocyte differentiation (Bonomini et al., 2013). Thus, the high
expression of APOE retains the strong differentiation abilities of Class
4 and Class 7 cells. In rule11, which was used in distinguishing Class 4
(endodermal stem cells), FOXH1 showed high expression levels.
FOXH1 acts as a transcriptional co-activator and promotes the
expression of MixL1, which plays an important role in the
morphogenesis and endodermal differentiation of mouse embryos.
In rule 7, which was used in distinguishing Class 5 (cholangiocyte),
S100A6, GSTA1, and NOCA7 showed low expression levels, whereas
QSOX1, BTG1 showed high expression levels. S100A6 plays a
regulatory role in a variety of cell differentiation processes and has
a low expression level in terminally differentiated cholangiocytes
(Grahn et al., 2020). Given that high BTG1 expression inhibits cell
proliferation and differentiation, cholangiocytes were presumed to
have reached a stable state. Class 9 (hepatocyte) and Class 10
(immature hepatocyte) contained RPS27 in their classification
rules, which had low expression in Class 9 and high expression in
Class 10. High RPS27 expression has been reported in regenerating
hepatocytes (Ganger et al., 2001). We hypothesized that RPS27 is a
potential target for the transformation of immature hepatocytes into
active mature hepatocytes.
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The classification rules for the six classes of cell subtypes were
resolved. These classes were hepatocytes obtained from the
differentiation and development of three distinct original cells
under different conditions. Class 1 included the primary
hepatocytes maintained in vitro under 5C conditions, which
brings the primary hepatocytes to a steady state by inhibiting
a series of signaling pathways (Xiang et al., 2019). In rule 2, which
was used for distinguishing Class 1, RAB5IF and CRIM1 showed
low expression levels, whereas EMC7 showed high expression
levels. In hepatocellular carcinoma, the RAB5I with low
expression level binds to FLGR5, thereby inhibiting the
proliferation of hepatocellular carcinoma cells (Koo et al.,
2019). Inhibitory effect of RAB5I is similar to the inhibition of
proliferation of primary hepatocytes under 5C conditions,
indicating the accuracy of our method. CRIM1 is an
important regulator of organ development and is highly
expressed during differentiation (Iyer et al., 2016). primary
cells maintained under 5C conditions are more stable and
have lower differentiation indexes that those that are not, and
CRIM1 has low expression level (Xiang et al., 2019). The function
of EMC7 is currently undefined, but it is a potential target for
maintaining the stability of primary hepatocytes in vitro. As for
Class 16 (rule 3, uncultured adult human primary hepatocyte),
SAA1 showed a high expression level in the classification rule.
SAA1 encodes an acute phase protein that is highly expressed
during tissue injury, inflammation, or infection (Li and Liao,
1999). Uncultured primary hepatocytes cannot maintain function
in vitro for long periods of time. The cells may internally generate
responses related to SAA1 function. In rule 16, which was used
for distinguishing Class 13, XIST and CAT showed high
expression levels. Highly expressed XIST binds miRNAs that
inhibit cell differentiation, thereby promoting cell differentiation
(Feng Y. et al., 2020). CAT is more highly expressed in immature
cells than in mature cells, indicating that it is a maturation-
associated gene (Tomisato et al., 2002). This finding is consistent
with the characteristics of ProliHHs, which exhibits progenitor
cell properties after multiple generations of culture (Zhang et al.,
2018). As for Class 14 (rule 17, Human embryonic stem cell-
derived hepatocyte-like cell), NRAGE and SPTBN1 showed high
expression levels in the classification rule. The high expression of
NRAGE facilitates the repair of homologous recombination and
can make cells radioresistant by altering subcellular localization
(Xue et al., 2010; Chang et al., 2018; Liu et al., 2020). The high
expression of SPTBN1 can suppress inflammation in the liver
(Lin et al., 2021). Our rule demonstrated the specificity of the
function of hepatocytes differentiated from different original
cells, proving the superiority of our method.

CONCLUSION

We used innovative and widely used computational
approaches on single-cell RNA sequencing data to reveal
the markers of various hepatic cell types. The results

suggested the functional characteristics of each population
of cells. The following three major aspects of our work are
the end results of our efforts. The first is a list of genes that are
potential targets for hepatocyte populations cultivated in vitro
and related to specific markers. Some markers such as CD147,
PPIA, TMSB10, TMEM176B, and CD63 were identified, and
these markers have been proven to be associated with
hepatocyte differentiation and maturation in vitro. This
aspect provides a theoretical foundation for understanding
hepatocyte developmental processes and mechanisms and
possible targets for clinical liver disease treatment. The
second is the efficient classifier for determining the types of
cells in the liver. The best random forest classifier with a 0.940
Matthews correlation coefficient had been constructed to
distinguish different hepatic cell types. This classifier was
trained on a vast amount of single-cell data and achieved
outstanding classification results. The third aspect
encompassed a set of classification rules as direct indicators
of distinct cell types. The classification rules reveal the features
of hepatic cell types at the level of quantitative gene expression,
providing a theoretical foundation for the modification of
hepatocytes to better function in vivo.
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