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With the rapid development of artificial intelligence, bionic algorithm has been gradually
applied in various fields, and neural network has become an important and hot issue in the
field of scientific research and engineering in recent years. This article proposes a BP neural
network model to predict the capture ability and sensitivity of CO2 in monoethanolamine
(MEA) aqueous scrubbing technique from a 2 × 1,000MW coal-fired power plant
expansion project in eastern China. The predicted values agree well with the
experimental data with a satisfactory mean square root error (MSRE) ranging from
0.001945 to 0.002372, when the change in the circulation amount of MEA and the
accuracy of prediction results of the back propagation neural network (BPNN) algorithm is
as high as 96.6%. The sensitivity analysis results suggested that the flue gas amount has a
marginal effect on the system performance, while further attention should be paid to the
MEA circulation amount, which is crucial to the CO2 capture amount. The temperature
profiles show the typical behavior of the reactive absorption column where a temperature
bulge can be seen at the bottom of the column due to the high L/G ratio of the experimental
and prediction results. The coefficients of correlation R2 with the change of MEA circulation
amount, change of CO2 concentration, and steam consumption are 0.97722, 0.99801,
and 0.98258, respectively. These results have demonstrated that the present study has
established the BPNN algorithm as a consistent, reliable, and robust system identification
tool for CO2 capture by the amine solvent scrubbing technique of operation in coal-fired
power plants.
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1 INTRODUCTION

Artificial neural network technology is made up of a large number of neurons. The whole network
mainly includes three parts, namely, the input layer, hidden layer, and output layer. Neurons at each
layer of the network are connected to the threshold through weights. The training process of the
network is the process of constantly adjusting the weights between the layers according to errors
under the condition of a given target input and target output. Artificial neural network has not only a
powerful function in nonlinear data processing ability but also the advantages of self-organization,

Edited by:
Tinggui Chen,

Zhejiang Gongshang University, China

Reviewed by:
Salih Rushdi,

University of Al-Qadisiyah, Iraq
Aroonsri Nuchitprasittichai,

Suranaree University of Technology,
Thailand

Sholeh Ma’Mun,
Islamic University of Indonesia,

Indonesia

*Correspondence:
Bijie Huang

huangbijie1982@163.com

Specialty section:
This article was submitted to

Bionics and Biomimetics,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 30 March 2022
Accepted: 02 May 2022
Published: 20 June 2022

Citation:
Fu J, Chang Y and Huang B (2022)
Prediction and Sensitivity Analysis of

CO2 Capture by Amine Solvent
Scrubbing Technique Based on BP

Neural Network.
Front. Bioeng. Biotechnol. 10:907904.

doi: 10.3389/fbioe.2022.907904

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 9079041

ORIGINAL RESEARCH
published: 20 June 2022

doi: 10.3389/fbioe.2022.907904

http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.907904&domain=pdf&date_stamp=2022-06-20
https://www.frontiersin.org/articles/10.3389/fbioe.2022.907904/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.907904/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.907904/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.907904/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.907904/full
http://creativecommons.org/licenses/by/4.0/
mailto:huangbijie1982@163.com
https://doi.org/10.3389/fbioe.2022.907904
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.907904


self-adaptation, and self-learning. Its method is simple, and
strong operability can effectively predict the sensitivity analysis
of CO2 capture efficiency of monoethanolamine (MEA) water
scrubbing technology. BP neural network is a kind of multilayer
feed-forward neural network which corrects errors by the error
back propagation algorithm. Its core characteristic is such that the
signal goes forward, and the error is the back propagation. In the
process of forwarding propagation, the input signal passes
through the input layer, the hidden layer is processed layer by
layer, when it comes to the output layer. If the result does not
meet the expectation, then it goes into the process of back
propagation, and returns the error signal to modify the weight
of each layer. Aiming at the problem of low accuracy of reliability
prediction in CO2 capture, a back propagation neural network
(BPNN) model is developed.

Carbon dioxide is the main emission during the coal-fired
power generation process, which is a kind of greenhouse gas and
the most important reason for causing global warming (Cui et al.,
2018; Tapia et al., 2018). Carbon Capture, Utilization, and Storage
(CCUS) technology demonstration projects were implemented
worldwide (Fragkos, 2021), and it has become a major and hot
topic in scientific research and engineering in recent years (Tapia
et al., 2018; Ling et al., 2019; Khoshraftar and Ghaemi, 2022;
Raidoo and Laubscher, 2022). MEA organic amine absorption,
compression, and refinery are widely used as the technical path in
fulfilling the CCUS targets (Ling et al., 2019; Zhang et al., 2017;
Khoshraftar and Ghaemi, 2022). MEA-based carbon capture
process is proven to be the most mature and economically
appealing option (Wu et al., 2020).

The modeling and simulation of CO2 capture processes with
amine solutions are considered important developments toward
the detailed study and analysis of these processes (Afkhamipour
and Mofarahi, 2014). Few previous studies have been published
on full-scale CO2 capture projects, and most of them have
involved very small sample sizes or pilot scales. Thus, a full-
scale project application of modeling and simulation of CO2

capture processes must be considered. It is necessary to develop
algorithms that are inexpensive and easy in predicting the
efficiency and energy consumption for CO2 capture in a
benchmark coal-fired power plant flue gas process. Bioinspired
optimization is a growing research topic with many competitive
algorithms being proposed every year and contains Evolutionary
Computation and Swarm Intelligence (LaTorre et al., 2021).
Particle Swarm Optimization (PSO) is an optimization
bioinspired algorithm for its promising performance in many
fields (Li et al., 2019). The artificial neural network (ANN)
algorithm simulates the social behavior of agents that interact
with each other by acting on their local environment (Alateeq and
Pedrycz, 2021). In this article, the back propagation neural
network (BPNN) is used as the algorithm to predict CO2

capture efficiency and sensitivity analysis based on the MEA
aqueous scrubbing technique.

The absorption mechanism (Danckwerts, 1979) and
regeneration mechanism (Zhang et al., 2008) is showed in Eq.
1 and Eq. 2

CO2 + 2RR′NH ↔ RR′NCOO− + RR′NH+
2 (1)

is the CO2 adsorption reaction by MEA, where R is alkyl group
and R′ is H for the primary amines and alkyl for the secondary
amines.

RR′NCOO− +H2O↔Heat

CO2 + RR′NH +OH− (2)
is the regeneration reaction of MEA. From the reaction, Eq. 2, it
can be seen that carbamate (RNHCOO−) transforms into amine
and CO2. The enthalpy of dissociation for CO2 release depends
on the stability of carbamate formation.

The key contributions of this work are

1) The present research status of CO2 capture capability and
sensitivity prediction of CO2 in MEA water scrubbing
technology were analyzed, and the shortcomings of the
existing research were pointed out.

2) A prediction method of CO2 capture capability and sensitivity
of MEA water scrubbing technology based on BPNN was
proposed.

3) The prediction results of the proposed network model are
compared with the experimental results to verify the
effectiveness of the proposed method. It is critical to
deduce the relationship between these results and the
circulation amount of MEA, steam consumption in the
regeneration tower, total flue gas flow, the ratio of
liquid–gas (L/G), and the average molecular weight of lean
liquid and heat required for the regeneration per unit of MEA,
and the key influencing factors being analyzed and evaluated.

This article is organized as follows. In Section 2, related work
comparing different algorithms and implementation is presented.
In Section 3, the ProTreat software is used to simulate the overall
process flow of the CO2 capture process and obtain the amount of
CO2 capture data. The BP algorithm is used to build a neural
network to train it. The key factors for CO2 capture and the MEA
regeneration process are investigated. In Section 4, the results are
presented along with the comparison and discussion of the
experimental data and prediction value by the BP model. The
network parameters are used to establish a corresponding
mathematical prediction model and analyze the sensitivity of
the capture process flow model. The conclusions are presented in
Section 5.

2 RELATED WORK

The ability of ANNs in modeling highly nonlinear systems lies in
possessing nonlinear transfer functions and their capability to
learn and recognize different patterns by adjusting their
parameters, i.e., synaptic weights (w) and biases (b), during
the training process. One of the advantages of ANN modeling
is that there is no need for prior consideration of any functional
relationship between the variables as it is common in proposing
correlations (Sipocz et al., 2011; Nguyen et al., 2007). The input
data are introduced to the network through the input layer and is
then transferred into the hidden layers. Eventually, the network
responses are stored in the output layer (Hagan et al., 2002). This
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type of neural network in which the data always flow in a forward
direction is typically called the multilayer feed-forward ANN.

The current research based on solvent-based carbon capture
lie primarily on steady optimization, which may consider the
effect of different solvents, operation parameters,
configurations, and techno-economic analysis (Mac Dowell
and Shah, 2015; Van De Haar et al., 2017; Zhang et al.,
2017; Bui et al., 2018). However, the steady-state models are
unable to replicate the transient behavior of the actual carbon
capture process and cannot provide precision information for
controller designing. Dynamic modelling that is based on two
different approaches, namely, the equilibrium approach and
rate-based approach is therefore presented. Lawal et al. (2010)
proved that the rate-based approach gives more accurate results
in predicting the temperature profile in an absorber. Various
simulation software have been used for modelling, including
gCCS, gPROMS, Aspen Plus, MATLAB, and Modelica (Liao
et al., 2018; Mac Dowell and Shah, 2015; Zhang et al., 2017; Arce
et al., 2012). Artificial neural networks (ANNs) with nonlinear
mapping capability have been successfully employed in
modeling the VLE (Vapor-Liquid Equilibrium) data of
various systems in chemical engineering (Lashkarbolooki
et al., 2013; Zarenezhad and Aminian, 2011; Pahlavanzadeh
et al., 2011). The ability of ANN to model the nonlinear
processes allows its implementation for a wide range of
diverse applications (Kim et al., 2017).

Chen et al. (2021a) developed a complex network dynamics
model to predict the multidimensional results in the context
of derived topics. Zheng et al. (2011) verified the feasibility of
a hybrid genetic algorithm for the optimization and pattern
search and put forward new challenges for the monitoring
mode. Chen et al. (2022) predict the effects of the dual
circulation promotion policy based on the system dynamics
model and achieve an accurate output. Braik et al. (2020) used
the hybrid neural network (NN) models to predict the PM and
ozone concentrations. The proposed models in this study
include recurrent multilayer perceptron (RMLP), recurrent
fuzzy neural network (RFNN), and hybridization of grey wolf
optimizer (GWO) and RFNN. Xu et al. (2022) propose a
genetic-based model to optimize the operation results of the
3D Burch–Schneider cage. Evolutionary game of multi-
subjects model was used to predict the live streaming
results by Chen et al. (2021b). Liu et al. (2022) optimize
the trajectory for digital twin robots by the genetic
algorithm (GA). Guo et al. (2020) proposed an air
pollution forecast model using a deep ensemble NN that
combines the efficiency of GRU, LSTM, and recurrent
neural networks (RNNs) to predict PM2.5 concentrations
which is presented.

3 MATERIALS AND METHODS

This study is based on a CO2 capture demonstration project in a
2 × 1,000 MW expansion project of a coal-fired power plant in
eastern China, and the operation data were collected from the
onsite engineering parameters.

3.1 Assumptions in ProTreat Modeling
In this study, a ProTreat method was used as the simulation tool
to acquire the data. Rochelle (2009) proposed a set of different
processing parameters in the simulation process. To simplify the
simulation process, the following basic assumptions are made:

1) The main components of power plant flue gas contained only
carbon dioxide, nitrogen, and oxygen.

2) There are no pressure drops in the operating units other than
in the absorption tower and regeneration tower, which is zero
during the simulation.

3) MEA is periodically recovered during CO2 capture, assuming
the return flow is 10% of the total flow.

4) TheMEA solution replenishment is 10% of the initial required
solution volume, and the circulating water replenishment is
130 m3/h. In the process of CO2 capture, there are MEA and
moisture loss.

3.2 Back Propagation Neural Network
Algorithm Basics
In terms of structural network, a general BPNN consists of an
input layer, hidden layer, and output layer. A fully established
BPNN has been depicted in Figure 1. In this input layer, the
number and structure of neurons have to be determined. The
input neurons strongly depend on the related physical quantities
and must be very sensitive to the predicted results. To some
extent, different hidden layers with more neuron numbers should
have a better potential for predictive performances. However, the
long train time and local convergence are very apparent. In
general, we can design the hidden structure from simple one
layer to more complex layers, if necessary. There is no evidence
that the structure with more hidden layers has an accurate
prediction.

The BPNN prediction model is divided into two parts: one is
the forward input of parameters information and the other is the
reverse input of error. The input layer obtains the effective
information from the outside and transmits it to the hidden
layer in the middle. After the information is transformed, it is
transmitted to the output layer to realize the forward propagation
of the signal. If the output result cannot meet the expected
condition, the error signal will be back propagated. The
number is calculated in the reverse direction according to its
connection method. The continuous input of information
variables and negative information variables keeps the weights
and thresholds in a state of dynamic adjustment by the error
gradient descent method and finally obtains the results close to
the expected values.

The BPNN with one hidden layer has the characteristic of
infinite approximation to any nonlinear continuous function, so a
three-layer forward-feed BPNN is constructed. The
accomplishment of success of an ANN model highly depends
on a clear understanding of the situation under study and the
selection of the most significant input variables (Kakatia et al.,
2019). This study considers the degree of influence of the control
parameters on the response parameters. Six factors were chosen
as the input neurons in the BPNN algorithm, namely,
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1) circulation amount of MEA (L),
2) steam consumption in the regeneration tower (Cs),
3) total flue gas flow (G),
4) the ratio of liquid–gas (L/G),
5) average molecular weight of lean liquid (mlean), and
6) heat required for the regeneration per unit of MEA (Q/L).

The structure of the BPNN is shown in Figure 1.
Neural network toolbox of MATLAB was employed to

develop the ANN model specifying the number of layers
and the training function. Network with the BPNN
algorithm, which is very well suited to the training of the
neural network, was used to construct the network architecture
of the ANN and to evaluate the method convergence (Saini and
Soni, 2002). In the BP algorithm, the responsibility for
reducing the output error is shared among all of the
connection weights. The network usually has one or more
hidden layers where one hidden layer is normally adequate for
modeling the nonlinear and complex functions. Thus, the
proposed network consisted of one input layer with up to 6
neurons, one hidden layer with up to 12 neurons, and one
output layer with up to 2 output neurons to obtain an accurate
prediction, as shown in Figure 1.

The experimental data used in this simulation study of CO2

absorption using MEA solutions are presented in Table 1.

These six neurons are the typical factors that will influence
the CO2 capture efficiency in the whole process. CO2 capture
amount and the temperature of gas and liquid are the two
output parameters. The basic processing unit of the neural
network is the nonlinear input–output relationship and the
sigmoid function is chosen as the transfer function of the BP
neural network, see Eq. 3.

f(x) � 1
1 + e−x

. (3)

In the training process of the neural network, by constantly
changing all the parameters in the neural network, the loss
function is continuously reduced, thereby a higher-accuracy
neural network model is proposed. The relationship between
the input and output values in the sigmoid function is shown in
Figure 2. According to the characteristics of the sigmoid function,
it is necessary to convert the input quantity and output quantity
between [0, 1]. A fully nonlinear relationship is established
between the input and output, and Eq. 3 is the main form of
neuron network representation.

To evaluate the prediction performance of the neural network,
the mean square root error (MSRE) is adopted in this article, and
the specific calculation formulas are as follows:

FIGURE 1 | Structure of the BPNN for amine solvent scrubbing CO2 capture in coal-fired power plant.

TABLE 1 | The experimental conditions for the CO2 absorption.

Parameters Units Values

Total gas flow rate m3/h 1,100,000
Liquid flow rate m3/m2h 10.0
MEA concentration kmol/m3 3.0
Inlet CO2 loading mol CO2/mol amine 0.25
CO2 content in feed gas mol% 10.0
CO2 removal efficiency % 95
Liquid temperature °C 42
Gas temperature °C 28
Pressure kPa 101.3

FIGURE 2 | The graph of sigmoid function.
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MSRE �
����������
∑n
i�1

(ti − oi)2
n

√√
, (4)

where ti is the observed value, oi is the predicted value, and n is the
number of samplings in the data set.

The activation function is the tansig function, and the training
function is the trainlm function. In the input layer, x is the input
data matrix, IW is the weight, and a is the threshold from the
input layer to the hidden layer. In the output layer, y is the output
data matrix, LW is the weight, and b is the threshold from the
hidden layer to the output layer. The relationship can be present
as in Eq. 5.

y � 2pLW
1 + e−2p(IWpx+a) − LW + b. (5)

In the algorithm, C, mlean, Tfg.in, L/G, Q/L, and yCO2 were
chosen as the input data, the output value of y can be calculated
according to Eq. 5, and the algorithms are listed in Table 2.

3.3 Algorithm Steps
Based on the BPNN model in Figure 1, concerning a variety of
algorithms in previous literature (Mudhasakul et al., 2013; Wang
et al., 2017; Li et al., 2016), the algorithm steps are designed in
Figure 3 (Talib and Hussin, 2017; Almeida and Leit, 2019).

In step 4, error calculation and the momentum term is
introduced in this study. In other words, the last weight
modification is taken into account in the current weight

TABLE 2 | Algorithm equations.

No. Input x Algorithm equations Output y

1 x1 = Tfg.in y1 � 2pLW1
1+e−2p(IW1px1+a1 ) − LW1 + b1 y1 = [Tfg.in,φlean, yCO2, C]

2 x2 = mlean y2 � 2pLW2
1+e−2p(IW2px2+a2 ) − LW2 + b2 y2 = [φlean,C]

3 x3 = ln(L/G) y3 � 2pLW3

1+e−2p(IW3px3+a3 ) − LW3 + b3 y3 = [Tfg.in,φlean, yCO2, C,ηCO2]

4 x4 = ln(Q/L) y4 � 2pLW4

1+e−2p(IW4px4+a4 ) − LW4 + b4 y4 = [φlean, yCO2, C,ηCO2]

FIGURE 3 | The steps of BPNN algorithm.

FIGURE 4 | The concrete implementation flow of CO2 prediction based
on the BPNN model.
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modification. At the same time, the modification of the weight of
the previous unit is also included. In the BPNN used in this
article, the weight modification from the hidden layer to the
output layer is expressed in C++ language as:

delta_out= y[m]*(1-y[m])*(out_tech[m]-y[m]);
w_hid_out[j]+ = alfa*delta_out*h[j]+ beita*temp_hid[j]+
eita*temp hid[j-1];
temp_hid[j]= alfa*delta_out*h[j]+ beita*temp_hid[j];

Among them, w_hid_out[j] represents the weight from the jth
unit of the hidden layer to the output unit; y[m] is the network
output value of a certain training mode; and out_tech[m] is the
corresponding target value; alfa represents the learning factor;
beita is a constant of 0 or greater than 0, indicating the degree of
inheritance of the last weight modification, which is called the
inheritance factor; eita is a constant of 0 or greater.

In step 4, the learning factors are modified to prevent a too-
slow convergence or oscillation or even divergence caused by the
improper selection of the learning factor alfa. The method of
changing the learning factor is adopted.

Figure 4 summarizes and shows the concrete implementation
flow in CO2 prediction based on the BPNN model (Sun et al.,
2021).

4 RESULTS AND DISCUSSION

The boiler operating parameters were downloaded from the
onsite real-time PI database from the coal-fired power plant,
and 115 groups of typical working conditions of the boiler during
load-up, load-down, and load stabilization periods were selected.
Among them, 80 groups were used as training samples, and 35
groups were used as test samples. Each set of samples includes the
input value and expected output value of the neural network.

4.1 The Relationship Between Mean
Squared Error and Training Sessions
Since the collected data contain noise, the artificial neural network
will record all the data containing noise. If the training times are too
many, it will not be able to output appropriate results and will not
have good generalization ability. The performance of the sample data
is mainly measured by its generalization ability. The stronger the
generalization ability, the stronger the essential connection between
the input and output in the sample data. Therefore, in this project,
the training and testing are carried out alternately, that is, for each
training time, the test is performed once, to roughly obtain the curve
of themean square error changing with the number of training times
as shown in Figure 5.Here, the mean square error D is defined as

D �
�������������������∑m
p�1

∑n
j�1
(dpi − ypi)2/2mn,

√√
(6)

wherem is the number of pattern pairs in the training sample, n is
the number of network output layer units, dpi is the expected

output value of the network, and ypi is the actual output value.
When the number of training sessions is less than 2,000, the mean
square error decreases rapidly with the increase of training
sessions. When the number of training sessions is more than
2,000 times, the degree of change in the mean squared error does
not change much with the increase in the number of training
sessions.

4.2 Back Propagation Neural Network
Modelling Evaluation
The neural network model has been developed considering the
inputs as circulation amount of MEA, inlet flue gas temperature
in adsorption tower, total flue gas flow, the ratio of liquid–gas, the
average molecular weight of lean liquid, and the heat required for
regeneration per unit of MEA, which are acquired from the
experimental results to predict the output results as CO2

capture amount. The maximum experiment points were 60 in
each section, and the percentage of experiments that were trained
was between 10 and 20%. The forecasting ability of the model for
the engine response in this study has shown a good agreement
with the correlation statistics. However, the total uncertainty
associated with model prediction is the consequence of
different input aspects.

As observed from Figure 6 to Figure 13, the predicted values
are commendably concurrent with the actual monitor for the
experimental operation. The value of the CO2 capture amount
was from 1,200 to 1,800 kg/h during the implementation of the
experiments. The value of liquid temperature was between 40 and
70°C, and the gas temperature was between 20 and 75°C during
the implementation of the experiments. All these parameters were
related to the experiment variables. This implies that the
robustness of the prediction model to estimate CO2 capture
performance simultaneously with outstanding precision is
irrespective of the case of the experimental operation.

FIGURE 5 | Mean squared error as a function of the number of training
sessions.
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4.2.1 Sensitivity Analysis of the Monoethanolamine
Circulation Amount
The comparison of the predicted values vs. the experimental
values for CO2 capture is shown in Figure 6, with the change of
circulation amount of MEA from 34 to 40 m3/h when the other
parameters were stable. The predicted values exhibit an extremely
low MSRE of 0.002372. Additionally, the predicted results are
extremely consistent with the experimental results. The
increasing MEA circulation amount causes the increase of
CO2 capture amount during the experiment test. Also, the
CO2 capture amount is sensitive to the MEA circulation amount.

Figure 6 illustrates the fitting results of the predicted values
with the experimental results for CO2 capture amount by the
BPNN model. From Figure 7, it can be concluded that the CO2

capture amount is highly dependent on the circulation amount of
MEA. It reveals the value of MSRE content as 0.001945,
correlation R2 as 0.97722, and the CO2 capture accuracy of the
prediction results of the BPNN algorithm to be as high as 96.6%.

4.2.2 Sensitivity Analysis of the Total Flue Gas Flow
Figures 8, 9 reveal that the sensitivity of the CO2 capture amount
changed with the flue gas flow when the other parameters were
stable and the correlation between the predicted and
experimental CO2 capture amount. The flue gas flow is related
to the load of the boiler, and the content of CO2 in the flue gas
increases with increasing load. The standard CO2 content is at the
75% boiler load, and the CO2 capture amount changing rate is
based on the standard boiler load.

FIGURE 6 | Comparison of CO2 capture predicted data and
experimental data with the change of MEA circulation amount.

FIGURE 7 | Fitting results of CO2 capture predicted data and
experimental data with the change of MEA circulation amount.

FIGURE 8 | Comparison of CO2 capture predicted data and
experimental data with the change of CO2 concentration.

FIGURE 9 | Fitting results of CO2 capture predicted data and
experimental data with the change of CO2 concentration.
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Figure 9 illustrates that the CO2 concentration in the flue gas
increases, and the temperature of the flue gas exiting the
absorption tower increases accordingly because the reaction
heat will increase with the increase in carbon dioxide
concentration, so the temperature of the flue gas exiting the
absorption tower increases. The CO2 capture amount increases
with the increase of the boiler load and flue gas flow. The heat
required for unit regeneration of the absorbent increases
accordingly because the load rate of the rich liquid will also
increase correspondingly with the increase of carbon dioxide.
When the load rate of the lean liquid remains unchanged, the
energy required for the regeneration of the absorbent will also
correspondingly increase because the higher the temperature is,
the higher the regeneration efficiency will be.

When the loading rate of the lean liquid increases, the energy
required for unit regeneration of the absorbent drops significantly
because the loading rate of the lean liquid represents the effect of
solvent regeneration. The increase in the amount of solvent
required for absorbing unit flue gas is because a large load rate
of lean liquid means that the solvent cannot be fully used for
absorption, so more solvent is needed to absorb carbon dioxide in
the flue gas. When the CO2 concentration in the flue gas increases,
the rich loading increases. Since the regeneration energy remains
unchanged, the CO2 that can be desorbed could also be constant,
therefore the lean loading will increase.

When the capture rate increases and the load rate of the lean
and rich liquid remains unchanged, to increase the capture rate of
carbon dioxide, the total flow rate of the absorbent must be
increased under the condition that the total flow rate of flue gas
remains unchanged. When the absorbent flow rate increases, the
gas–liquid (G/L) ratio decreases. Similarly, when the total heat
required for the absorbent regeneration remains unchanged, the
total flow rate of the absorbent must be increased, so when the
capture rate increases, the heat required for unit regeneration of
the absorbent will increase accordingly. The correlation between
the experimental and predicted value R2 is 0.99801.

Compared with the results of Figure 7, the correlation
between the CO2 capture amount and the concentration of

CO2 is better than that of MEA circulation influence on the
CO2 capture amount, which proves that MEA circulation is more
sensitive to the effect of CO2 absorption. The amount of CO2

capture is not very sensitive to the effect of different boiler load
conditions compared with the sensitive effect of MEA circulation
amount.

4.2.3 Sensitivity Analysis of Steam Consumption
Figures 10, 11 reveal the sensitivity of the CO2 capture amount
changed with steam consumption when the other parameters
were stable and the correlation between the predicted and
experimental CO2 capture amount. The steam consumption is
related to the concentration of MEA solution. It is the main factor
for the regeneration efficiency and is related to the CO2

absorption amount at the same time.
The comparison of the predicted values vs. experimental values

for CO2 capture is shown in Figure 10, with the change in steam
consumption when the other parameters were stable. The predicted
values exhibit an extremely lowMSRE of 0.001987. Additionally, the
predicted results are extremely consistent with the experimental
results. The change in steam consumption plays an important role
in the CO2 capture amount during the experiment test. Figure 11
illustrates the fitting results of the predicted values with the
experimental results for CO2 capture amount by the BPNN
model. It can be concluded that the CO2 capture amount is
dependent on steam consumption. The correlation between the
experimental and predicted value R2 is 0.98258.

4.2.4 Sensitivity Analysis of the Absorption
Temperature
Temperature is a critical parameter in the absorption and
regeneration process for its importance on the CO2 capture
amount and energy consumption during the MEA aqueous
regeneration process. Various operation parameters such as
the solubility of CO2 in an amine solution, transport
parameters, kinetic reaction rates, and L/G ratio are all due to

FIGURE 10 | Comparison of CO2 capture predicted data and
experimental data with the change of steam consumption.

FIGURE 11 | Fitting results of CO2 capture predicted data and
experimental data with the change of steam consumption.
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temperature. The absorbing column operates in a counter-
current mode (Afkhamipour and Mofarahi, 2014), and rich
CO2 flue gas is fed to the bottom of the absorber, while lean
amine is fed to the top of the absorber. As CO2 is absorbed by the
amine solution, the heat released from the reactions increases the
temperature of the solution coming down from the top of the
absorber. The flue gas at the bottom of the absorber takes up
part of the heat evolved from the rich amine. Hence, the flue gas
temperature increases from the bottom upward to the near top of the
absorber, where the lean amine is heated by contact with the up-
flowing flue gas. Because of the heat of the reaction, water is
vaporized and is then condensed by the colder lean amine at the
top of the absorber. When the temperature of the flue gas entering
the absorption tower increases, the amount of solvent required to
absorb a unit volume of flue gas increases rapidly because the

absorption reaction is exothermic. When the temperature
increases, the CO2 solubility decreases, thus the CO2

concentration in the liquid phase decreases. It is required to add
more solvent to absorb more CO2. In Figure 12, the flue gas
temperature of the absorption tower increases accordingly
because when the reaction heat is constant, the inlet temperature
is increased, and the outlet temperature also increases accordingly.

A noticeable temperature increase can be seen in the
temperature profiles of the absorber as shown in Figures 12,
13. Due to the high L/G ratio in the operation, the location of
the temperature increase was captured reasonably well in all the
cases. The comparisons between the calculated results of
temperature profiles and experimental data under the operating
conditions are given in Table 1. The shapes of the temperature
profiles predicted by the rate-based model using different mass
transfer correlations and kinetic models vary considerably.

The increase of the temperature bulge typically increases the
kinetics of CO2 absorption, but it will disrupt the vapor–liquid
equilibrium (Versteeg et al., 1996). At high temperatures, the CO2

equilibrium partial pressure may begin to approach the CO2 partial
pressure in the bulk gas. These conditions create a lack of a driving
force, which results in a “pinch”where additional CO2 is not absorbed
by the amine solution. As a result, the mass transfer performance of
the column is reduced. InFigure 13, the temperature profiles show the
typical behavior of the reactive absorption column, where a
temperature bulge can be seen at the bottom of the column due to
the high L/G ratio of the operation and simulation.

In general, the accuracy parameters chosen in the BPNN
model cause discrepancies between the prediction profiles and
experimental data. Therefore, the use of accuracy parameters in
BPNNmodel in CO2 sensitivity analysis has greater confidence in
the accuracy of the prediction model.

5 CONCLUSION

In this article, the BPNN algorithm is applied to the prediction of
CO2 capture of amine solvent washing technology running in
coal-fired power plants. The developed BPNN contains an input
layer with 6 neurons, a single hidden layer with 10 neurons, and
an output layer with 2 neurons. The prediction characteristic with
interpolation and extrapolation along with the robustness of the
model has been evaluated on a statistical platform containing
different errors and performance analysis. The error analysis
revealed that the developed model predicted the experimental
results with a very high degree of accuracy with the value of
MSRE ranging from 0.001945 to 0.002372 when the circulation
amount of MEA changed. Sensitivity analysis suggests that under
the given conditions, the flue gas amount has a marginal effect on
the system performance, while further attention should be paid to
the MEA circulation amount, which is crucial to the CO2 capture
amount. The temperature profiles show the typical behavior of the
reactive absorption column where a temperature bulge can be seen
at the bottom of the column due to the high L/G ratio of the
experimental and prediction results. The coefficient of correlation
R2 with the change of MEA circulation amount, change of CO2

concentration, and steam consumption are 0.97722, 0.99801, and

FIGURE 12 | Sensitivity analysis of the liquid temperature along the
packed column of the absorber.

FIGURE 13 | Sensitivity analysis of the gas temperature along the
packed column of the absorber.
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0.98258, respectively. It also proves that the parameter of MEA
circulation is the most sensitive factor among the input parameters
for CO2 capture. The experimental results show that the accuracy
of prediction results of the BPNN algorithm is as high as 96.6%,
which is better than several existing prediction methods. It shows
that the BPNN algorithm is a consistent, reliable, and robust
system identification tool for CO2 capture by the amine solvent
scrubbing technique of operation in coal-fired power plants.
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NOMENCLATURE

a the threshold from the input layer to hidden layer

b the threshold from the hidden layer to output layer

dpi the expected output value of the network

ypi the actual output value

C MEA concentration, kmol/m3

Cs steam consumption in regeneration tower

G total flue gas flow rate, m3/h

L speed of MEA, kmole/hr

L/G the ratio of liquid–gas

mlean average molecular weight of the lean liquid

n the numbers of samplings

oi the predicted value

Q total heat required for MEA regeneration, GJ/hr

Q/L heat required for regeneration per unit of MEA, GJ/kmole

Tfg.in inlet flue gas temperature in adsorption tower, K

Tfg.out outlet flue gas temperature in adsorption tower, K

ti the observed value

W weight vectors

x the input in the neural network

y the output in the neural network

yCO2 amount of carbon dioxide absorbed per unit of MEA, mole/%

Greek Symbol
φlean lean liquid loading rate

ηCO2 CO2 capture efficiency, %

Abbreviations
BPNN back propagation neural network

MSRE mean square root error

MEA monoethanolamine
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