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When the human brain learns multiple related or continuous tasks, it will produce
knowledge sharing and transfer. Thus, fast and effective task learning can be realized.
This idea leads to multi-task learning. The key of multi-task learning is to find the correlation
between tasks and establish a fast and effective model based on these relationship
information. This paper proposes a multi-task learning framework based on stochastic
configuration networks. It organically combines the idea of the classical parameter sharing
multi-task learning with that of constraint sharing configuration in stochastic configuration
networks. Moreover, it provides an efficient multi-kernel function selectionmechanism. The
convergence of the proposed algorithm is proved theoretically. The experiment results on
one simulation data set and four real life data sets verify the effectiveness of the proposed
algorithm.

Keywords: multi-task learning, neural networks, stochastic configuration, knowledge sharing and transfer,
supervised mechanism

1 INTRODUCTION

In supervised machine learning, we often encounter situations that establishing models for several
related tasks, such as searching cancer sites, identifying cancer types, judging cancer stages and so on,
based on cancer image data. Generally, these tasks are undertaken separately, which we refer to as
single-task supervised learning (STSL) in traditional machine learning (Ben-David and Schuller,
2003). These models do not consider the correlation among multiple tasks so some common
information in model parameters or data features is lost. In particular, when the training sample size
of a single task is insufficient, it is difficult for STSL to capture enough information, which results in
poor generalization performance. Multi-task supervised learning (MTSL) provides a solution for
such a situation. It improves the performance of each task by setting shared representations among
related tasks (Baxter, 2000; Argyriou et al., 2007; Liu et al., 2017). In a sense, a very important reason
why human beings can learn based on a small number of samples is that human beings can make full
use of various senses to obtain enough information and synthesize relevant information. MTSL is one
of the ways to realize this idea.

Classical MTSL can be roughly divided into two categories, namely, MTSL based on
constraint sharing and MTSL based on parameter sharing. In relation to the first method,
Argyriou et al. (2008) proposed the MTL-L21 based on regularization strategies, that was
achieved by adding a regularization term for all the tasks’ objective function coefficients on the
cost function. But this method performs poorly when data features have the problem of
collinearity. To reduce the impact of this problem, Chen et al. (2012) added a quadratic
regularization term for all the tasks’ objective function coefficients based on MTL-L21. In 2015,
Duong et al. (2015) used L2 distance to regularize the parameters in their multi-task neural
networks, so that each task has similar but different model parameters. In 2017, Yang and
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Hospedales (2017) used the trace norm to implement Duong’s
model. In 2019, Oliveira et al. (2019) attempted to conceive a
group LASSO with asymmetric transference formulation in
multi-task learning, looking for the best of both worlds in a
framework that admits the overlap of groups. Since all of these
MTSL methods need to learn sparse features, their
performance is not ideal when the data has few features.
The MTSL methods based on parameter sharing (Caruana,
1997; Jacob et al., 2009) are not affected by this problem. In
1997, Caruana (Caruana, 1997) proposed a MTSL method
(MTL) based on backpropagation neural networks. He
mirrored the correlation information by sharing the input
and hidden layer neurons among different tasks. In 1998,
Lecun et al. (1998) used convolutional neural networks,
named as LeNet-5, for document recognition on the basis of
MTL. Their results clearly demonstrated the advantages of
training a recognizer at the word level, rather than training it
on presegmented, hand-labeled, isolated characters. In 2018,
Ma et al. (2018) proposed multi-gate mixture-of-experts
(MMoE), which adapted the mixture-of-experts (MoE)
structure to multi-task learning by sharing the expert
submodels across all tasks, while also had a gating network
trained to optimize each task. In 2021, Zhang et al. (Zhang
et al., 2021) developed a programming framework, AutoMTL,
which generates compact multi-task models given an arbitrary
input backbone convolutional neural network model and a set
of tasks. However, these methods have high computational
complexity and poor learning performance when the training
samples are insufficient.

To address the aforementioned problems, this paper proposes
a MTSL method based on a constraint sharing framework of
stochastic configuration networks (SCNs) proposed by Wang
et al. (Wang and Li, 2017a; Wang and Li, 2017b) Instead of the
complex gradient descent method for solving the weight
parameters of hidden layer nodes in general neural networks,
SCNs use a supervision mechanism to stochastically configure
these parameters. This stochastic configuration mechanism
greatly reduces the computational complexity. Inspired by this
idea, we establish a multi-task supervised learning algorithm
based on stochastic configuration radial basis networks
(MTSL-SCRBN). The main contributions of this study are as
follows.

1. We combine constraint sharing of SCNs and parameter
sharing of MTSL organically. The shared parameters are
stochastically configured under certain constraint, which
has low computational complexity. At the same time, to
improve learning performance, the radial basis functions
(Powell, 1987; Broomhead and Lowe, 1988) with different
scale parameters are used as the basis functions to replace the
original sigmoid functions of SCNs.

2. Two types of difficult to choice hyper parameters of the
proposed model, the scale parameters and the centers of
the radial basis functions, are stochastically configured
during the learning process.

The rest of the paper is organized as follows. In Section 2, we
briefly review MTL-L21, MTEN, MTL, and SCNs. Section 3
details our proposed algorithm MTSL-SCRBN and proves its
convergence. The experimental results of these algorithms on one
simulation data set and five real data sets are detailed in Section 4.
Section 5 summarizes this paper.

2 RELATED WORK

Firstly, we introduce some notations. Suppose that there are M
supervised learning tasks. The samples of them-th task are given by,

xm1 , y
m
1( ), . . . , xmNm

, ym
Nm

( ){ }, (1)
where xmi � [xm

i,1, . . . , x
m
i,d]T ∈ Rd, ym

i ∈ R, i = 1, . . ., Nm, m = 1,
. . ., M, and T means transpose transform.

2.1 Multi-Task Learning Methods Based on
Constraint Sharing
Inspired by group sparsity, Argyrios et al. (Argyriou et al., 2008)
proposed the MTL-L21 method to learn the correlation among
multiple tasks under a regularization strategy. It can be described
as the following optimization problem,

Vp
MTL−L21 � arg min

V∈Rd×M

∑M
m�1

‖Xmvm − ym‖2F + λ‖V‖2,1,

where Xm � [xm1 , . . . , xmNm
]T ∈ RNm×d,

ym � [ym
1 , . . . , y

m
Nm

]T ∈ RNm , ‖ ·‖F is the Frobenius norm, V = [v1,
. . ., vM] on behalf of the model coefficient matrix, vm �
[vm1 , . . . , vmd ]T represents the m-th column of V, which is the
coefficient vector of them-th task. λ represents the regularization

coefficient and ‖V‖2,1 � ∑d
i�1










∑M
m�1(vmi )2

√
. For the input ~xm of the

m-th task, MTL-L21 gives the predicted value f(~xm) �
~xm

T
vmp
MTL−L21 .

When data features have the problem of collinearity, MTL-L21
will have an unstable prediction performance. Xi Chen et al.
(Chen et al., 2012) proposed the MTEN method by adding
another quadratic regularization term for the objective
function coefficients of all tasks on the basis of MTL-L21. It
can be described as the following optimization problem,

Vp
MTEN � arg min

V∈Rd×M

∑M
m�1

1
2n
‖Xmvm − ym‖2F + λρ‖V‖2,1

+ λ 1 − ρ( )
2

‖V‖2F,

where ρ ∈ [0, 1] represents the elastic net mixing parameter. For
the input ~xm of the m-th task, MTEN gives the predicted value
f(~xm) � ~xm

T
vmp
MTEN.

In the case of insufficient data features and data size, the two
algorithms MTL-L21 and MTEN cannot obtain enough
information by learning sparse features, which leads to poor
prediction performance.
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2.2 Multi-Task Learning Methods Based on
Parameter Sharing
Caruana (1997) implemented MTSL on backpropagation nets by
sharing input and hidden layer neurons among different tasks.
Essentially, this method optimizes the choice of function space by
the correlation among tasks and obtains better internal weight
parameters.

Figure 1 shows the process of traditional backpropagation
nets to deal with four related tasks. This method ignores the
information among related tasks. Especially in the case of
insufficient data samples, these models may have problems such
as over-fitting.

Figure 2 shows the multi-task backpropagation net (MTL)
conceived by Caruana. In MTL, each task shares input and
hidden layer neurons.

Compared with the data form given in Eq. 1, the data form
suitable for MTL is that different tasks have the same input,

X1 � . . . � XM � X � x1, . . . , xN[ ]T ∈ RN×d,

and the output is,

Y � y1, . . . , yM[ ] ∈ RN×M, ym � ym
1 , . . . , y

m
N[ ]T ∈ RN.

MTL can be described as follows

βp,Wp, bp( ) � arg min
β∈RS×M

W ∈ RS×d

b∈RS

∑M
m�1

ym −∑S
j�1

gjβ
m
j

����������
����������,

where S is the number of hidden layer nodes, βmj is the external
weight parameter of the m-th task in the j-th hidden layer node.
gj ≔ gj(X) � [g(xT1wj + bj), . . . , g(xTNwj + bj)]T (here g
represents the sigmoid function), wj � [wj,1, . . . , wj,d]T and bj
represent the internal weight parameter vector and the bias
internal weight parameter shared by the backpropagation net.
β ∈ RN×M, W ∈ Rd×N, b ∈ RN are the corresponding parameter
matrix. For the input ~xm of them-th task, MTL gives the predicted
value f(~xm) � ∑S

j�1g(~xm
T
wp

j + bpj)βmp
j .

From a mathematical point of view, the essence of the
backpropagation net is the gradient descent algorithm. In
single-task supervised learning, the backpropagation net may
fall into local optimum. However, in multi-task supervised
learning, the local optimum of different tasks is in different
positions, and the interaction among tasks can help the
hidden layer to escape from local optimums (Caruana, 1997).

2.3 Stochastic Configuration Networks
Wang and Li (Wang and Li, 2017a; Wang and Li, 2017b)
proposed supervised stochastic configuration networks, and
implemented SCNs using three algorithms SC-i (i=I,II,III). SC-
i starts with a small network structure (Tin-Yan Kwok and Dit-
Yan Yeung, 1997), and uses a supervision mechanism to add
hidden layer neurons until the model meets a predetermined
error criterion. Since SC-III performs the best of the three
algorithms, we next describe the implementation of the SC-III
algorithm.

FIGURE 1 | Single-task backpropagation nets.

FIGURE 2 | The multi-task backpropagation net.
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Suppose a SC-III with L − 1 hidden layer nodes has already
been constructed, that is,

fL−1 xT( ) � ∑L−1
j�1

g xTwp
j + bpj( )βL−1j , L � 2, 3, . . . , f0 ∈ 0, 0, . . . , 0[ ] ∈ Rq( ),

where βL−1j � [βL−1j,1 , . . . , βL−1j,q ] ∈ Rq represents the optimal
external weight parameter of the j-th hidden layer node, wp

j
and bpj represent the optimal internal weight parameters of the j-
th hidden layer node.

For training data set X � [x1, . . . , xN]T ∈ RN×d, Y = [y1, . . .,
yq] ∈ RN×q, where xi � [xi,1, . . . , xi,d]T. Let fL−1 ≔ fL−1(X) �∑L−1

j�1gj(X)βL−1j and eL−1 ≔ Y − fL−1 ≔ [eL−11 , . . . , eL−1q ], which is
the residual error matrix of the (L − 1)-th hidden layer node. If
‖eL−1‖F does not meet the predetermined error criteria, SC-III
needs to generate a new hidden layer node, that is, stochastically
configure internal weight parameters wL, bL from an uniform
distribution Ud+1[ − Φ, Φ], Φ > 0. For new variables,

ξLn �
〈eL−1n , gL〉2

‖gL‖22
− 1 − r − μL( )‖eL−1n ‖22, n � 1, . . . , q,

if minn(ξLn)≥ 0, then wL, bL are considered to meet the condition,
otherwise wL, bL need to be configured again. With the qualified
internal weight parameterswL* and bL* , SC-III obtains the optimal
external weight parameter vector by the following optimization
problem,

βL � arg min
β∈RL×q

Y −∑L
j�1

gjβj

����������
����������
2

F

.

The leading model fL(x) � ∑L
j�1g(xTwj* + bj*)βLj will have an

improved residual error. Repeat the above steps to add hidden
layer nodes until the residual error meets the predetermined error
criteria.

3 MULTI-TASK SUPERVISED LEARNING
BASEDONSTOCHASTICCONFIGURATION
RADIAL BASIS NETWORKS
In this section, we introduce the proposed MTSL-SCRBN
algorithm.

3.1 Model Introduction
In order to combine SCNs and MTL organically, we need to
change the data form given in Eq. 1. In MTSL-SCRBN, first, we
require each task to have a same number of samples, namely,
N1 =. . .= NM =: N. (If the number of samples for each task is
different, this requirement can be achieved by random sampling.)
Then we merge the input data of different tasks into a new input
data, that is, the i-th new input data is
XT

i : � (x1Ti , . . . , xM
T

i ) ∈ R1×Md, where xmi ∈ Rd is the i-th input
of the m-th task, for i = 1, . . ., N and m = 1, . . ., M. The
corresponding i-th new output data is yi: � (y1

i , . . . , y
M
i )T,

where ym
i is the original output of xmi in the m-th task. The

goal of our MTSL-SCRBN is to establish an appropriate model
from RMd to RM based on these data {(Xi, yi)Ni�1}.

In order to obtain good learning performance, we use the
following radial basis function kσ(x, x′) as model’s basis function,

kσ x, x′( ) � exp −‖x − x′‖2
2σ2

( ),
where x is the input, x′ represents the center and σ is the scale
parameter.

Suppose f 0 = [0, 0, . . ., 0] ∈ RM, for L = 2, 3, . . ., it is assumed
that a MTSL-SCRBN with L − 1 hidden layer nodes has already
been constructed as follows,

fL−1 X( ) � ∑L−1
j�1

kσpj x1, xjp( ), . . . , kσpj xM, xjp( )[ ]βL−1
j ,

whereXT � (x1T , . . . , xMT) is a new input formed by the inputs of
M tasks, and βL−1j � [β1,L−1j , . . . , βM,L−1

j ] ∈ RM×M,where
βm,L−1
j ∈ RM represents the optimal external weight parameter
vector of them-th task in the j-th hidden layer node, xj* and σj* are
the optimal center and the optimal scale parameter of the radial basis
function in the j-th hidden layer node, respectively. Different from
the traditional learning of radial basis neural network, in ourMTSL-
SCRBN, the optimal centers and the optimal scale parameters at
each step are randomly assigned by a shared supervisionmechanism
given in the following. This is simple to implement and easy to
obtain a learning model with good performance.

Denote kmj ≔ [kσpj(xm1 , xjp), . . . , kσpj(xmN, xjp)]T, Kj ≔ [k1j
, . . . , kMj ] ∈ RN×M and fL−1 ≔ ∑L−1

j�1Kjβ
L−1
j ,

Y � [y1, . . . , yN]T ∈ RN×M. Then, let eL−1≔Y − f L−1≔[e1,L−1,

. . ., eM,L−1] be the residual error matrix of the (L − 1)-th

hidden layer node. If ‖eL−1‖F does not meet the predetermined
error criteria, MTSL-SCRBN needs to generate a new hidden
layer node, that is, stochastically configure the scale parameter σL
from U[0, Ω], Ω > 0 and the center of the radial basis function xL

from {xmi : i � 1, . . . , N, m � 1, . . . ,M}.
Similar to that in SCNs, we introduce a variable ξm,L in our

multi-task learning case as follows,

ξm,L � 1
M

〈em,L−1, km
L 〉2

‖km
L ‖22

− 1 − r − μL,r( )‖em,L−1‖22.

Here kmL � [kσL(xm1 , xL), . . . , kσL(xmN, xL)]T, 0 < r < 1 is a given
constant and μL,r � 1−r

L+1.
If∑M

m�1ξ
m,L ≥ 0, then σL, xL are considered to meet the condition,

otherwise, σL, x
L need to be configured again. With the qualified

parameters σL* and xLp, MTSL-SCRBN obtains the optimal external
weight parameter vector by the following optimization problem,

βL � arg min
β∈RLM×M

Y −∑L
j�1

Kjβj

����������
����������
2

F

.

The leading model,

fL X( ) � ∑L
j�1

kσpj x1, xjp( ), . . . , kσj* xM, xjp( ))[ ]βLj ,
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will have an improved residual error. Repeat the above steps to
add hidden layer nodes until the residual error meets the
predetermined error criteria.

The above implementation process of the proposed MTSL-
SCRBN algorithm is described as follows.

Algorithm 1. The MTSL-SCRBN algorithm

Notice that in step 19, we calculate the parameter matrix based
on the standard least squares method,

βL � arg min
β∈RLM×M

Y −∑L
j�1

Kjβj

����������
����������
2

F

� K†
LY,

where K†
L is the Moore-Penrose generalized inverse (Lancaster

and Tismenetsky, 1985) ofKL. The setting of μL,r in step 7 and the
updating idea of r in step 14 can be referred to literature (Wang
and Li, 2017a).

3.2 TheConvergence Theoremof theMTSL-
SCRBN Algorithm
We extend the method in (Wang and Li, 2017a) to the multi-task
learning framework of this paper and prove the convergence of
the proposed algorithm.
Theorem 1. Assume that there are some pk ∈ R+, satisfying
0< ‖kmj ‖2 <pk . Given 0 < r < 1 and a non-negative real value
sequence {μL} with limL→+∞μL = 0 and μL ≤ (1 − r). For L = 2,
3 . . ., denoted by

δL � ∑M
m�1

δm,L,

δm,L � 1 − r − μL( )‖em,L−1‖22.
If the basis function kmL is generated to satisfy the following

inequality,

∑M
m�1

〈em,L−1, kmL 〉2 ≥
M2

2M − 2
p2
kδL, (2)

and the external weight parameter vector is evaluated by,

TABLE 1 | Parameter description.

Algorithms Parameters Parameters’ Range

MTSL-SCRBN RBF scale σ σ ~ U[0, Ω], Ω ∈ (0, 100]
MTEN Regularization parameters λ, the elastic net mixing parameter ρ λ ∈ {10t, t = −6, − 5.5, . . ., 6}, ρ ∈ [0, 1]
SVM RBF scale σ, Penalty parameter C σ ∈ {2–5, 2–4, . . ., 24, 25}, C ∈ {10t, t = −4, − 3, . . ., 3, 4}
SC-III Internal weight parameters w, b (w, b) ~ Ud+1[ − Φ, Φ], Φ ∈ {1, 5, 15, 30, 50, 100, 150, 200}
DMTRL Factorisation method parameters {LAF, Tucker, TT}
MMoE Units u, NumExperts num u ∈ {5, 6, 7, . . ., 19, 20}, num ∈ {5, 6, 7, . . ., 19, 20}
AUTOMTL Weight LR, Policy p, Decay d, Iteration iter LR = 0.001, p = 0.01, d = 0.5, iter = 400

FIGURE 3 | Distribution of the simulation data set.
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βL � βL1 , . . . , β
L
L[ ]T � arg min

β∈RLM×M

Y −∑L
j�1

Kjβj

����������
����������
2

F

.

Then, we have limL→+∞‖Y − f L‖F = 0.
Proof of Theorem 1. Define intermediate values

~βm,L

L � 〈em,L−1, k1L〉
M‖k1L‖22

, . . . ,
〈em,L−1, kML 〉
M‖kML ‖22

[ ]T

,

and ~eL � eL−1 − KL
~β
L

L, with ~β
L

L � [~β1,LL , . . . , ~βM,L

L ], e0 � Y.

It is clear that ‖eL‖2F≤‖~eL‖2F≤‖eL−1‖2F≤‖~eL−1‖2F, where L = 2, 3,
. . .. So {‖eL−1‖2F} is monotonically decreasing and convergent.
Hence, we have,

‖eL‖2F − r + μL( )‖eL−1‖2F
≤ ‖~eL‖2F − r + μL( )‖eL−1‖2F
� ∑M

m�1
〈em,L−1 − KL

~βm,L

L , em,L−1 −KL
~βm,L

L 〉 − r + μL( )〈em,L−1, em,L−1〉( )
� 1 − r − μL( )‖eL−1‖2F − ∑M

m�1
2〈em,L−1, KL

~βm,L

L 〉 − 〈KL
~βm,L

L , KL
~βm,L

L 〉( )
≤ 1 − r − μL( )‖eL−1‖2F− 2M − 2

M2 ∑M
m�1

〈em,L−1, k1L〉2

‖k1L‖22
+/ + 〈em,L−1, kML 〉2

‖kML ‖22
( )

≤ 1 − r − μL( )‖eL−1‖2F − 2M − 2

M2 ∑M
m�1

〈em,L−1, kmL 〉2

‖kmL ‖22
� δL − 2M − 2

M2 ∑M
m�1

〈em,L−1, kmL 〉2

‖kmL ‖22
≤ δL − 2M − 2

M2

∑M

m�1〈e
m,L−1, kmL 〉2

p2
k

≤ 0.

Then, the following inequality holds,

‖eL‖2F ≤ r‖eL−1‖2F + γL, γL � μL‖eL−1‖2F ≥ 0( ).
Since limL→+∞ μL = 0, and 0 < r < 1, we have limL→+∞‖eL‖2F � 0,

and limL→+∞‖eL‖F = 0.
Remark 1. Unlike SC-III, we relax the condition for the
configuration parameters in the formula (p). SC-III requires
each task to meet the inequality conditions, but MTSL-SCRBN
only requires the sum of all tasks to satisfy the inequality condition.
The rationality of this condition will also be verified in the
experiment results of next section.

4 EXPERIMENT RESULTS

In order to show the effectiveness of the proposed algorithm, this
section uses the classical STSL algorithms SVM (Cortes and

Vapnik, 1995), SC-III (Wang and Li, 2017a) and seven MTSL
algorithms MTSL-SCRBN, MTL (Caruana, 1997), MTEN (Chen
et al., 2012), DMTRL (Yang and Hospedales, 2017), MMoE (Ma
et al., 2018), GAMTL (Oliveira et al., 2019), AUTOMTL (Zhang
et al., 2021) to perform comparative experiments. All calculations
are conducted using Python 3.6.5 on a computer with 2.60 GHz
CPU and 8 GB RAM. The input features are scaled into [ − 1, 1]
and the output remains unchanged. All the results reported in this
paper take averages over 20 independent trials, except for the SVM
and MTEN algorithms, which have fixed experiment results. The
accuracy (ACC) and root mean square error (RMSE) are chosen as
the classification and regression evaluation indicators, where

RMSE � 1
N × M

∑M
m�1

∑N
i�1

ŷm
i − ym

i( )2⎡⎣ ⎤⎦12,
with ym

i and ŷm
i representing the target output and the learner’s

output of i − th sample for task m respectively.
For different data sets, some algorithms used in the following

experiments can stochastically configure hyperparameters within
specified ranges or determine parameters by cross-validation.
Table 1 gives the specific selection range of each parameter.

4.1 Experimental Results and Analysis on
Simulated Data
The simulation data set selected in this paper is generated by the
following five functions, which we refer as five tasks,

FIGURE 4 | Prediction performance of MTSL-SCRBN, SC-III and SVM
on Task 1 of simulation data set.

TABLE 2 | The results of MTSL-SCRBN, SC-III and SVM on the simulation data set.

Task MTSL-SCRBN SC-III SVM

training test training test training test

Task 1 0.1080 0.2589 0.1735 0.4264 0.6624 0.8129
Task 2 0.5320 1.2773 0.8595 2.1120 3.4796 4.2842
Task 3 0.9589 2.2985 1.5501 3.7974 6.0838 7.6899
Task 4 1.3853 3.3163 2.2385 5.4810 8.8058 11.1654
Task 5 1.8116 4.3383 2.9267 7.1716 11.5199 14.6416

The results with the minimum test errors are marked in bold.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2022 | Volume 10 | Article 8901326

Dong et al. Multi-Task Learning Neural Networks

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Task 1: f1 x( ) � 2e− 10x−4( )2 + 5e− 80x−40( )2 + 3e− 80x−20( )2 + 4e− 90x−60( )2

Task 2: f2 x( ) � 10e− 10x−4( )2 + 25e− 80x−40( )2 + 15e− 80x−20( )2 + 20e− 90x−60( )2

Task 3: f3 x( ) � 18e− 10x−4( )2 + 45e− 80x−40( )2 + 27e− 80x−20( )2 + 36e− 90x−60( )2 .
Task 4: f4 x( ) � 26e− 10x−4( )2 + 65e− 80x−40( )2 + 39e− 80x−20( )2 + 52e− 90x−60( )2

Task 5: f5 x( ) � 34e− 10x−4( )2 + 85e− 80x−40( )2 + 51e− 80x−20( )2 + 68e− 90x−60( )2

Figure 3 depicts the distributions of five functions on [0, 1]. As
we can see, when the independent variables of the five functions
are the same, the function values follow similar trends. Therefore,
learning the function values of five functions with the same
independent variable can be regarded as a multi-task learning.
Here, we independently extract 100 one-dimensional input data
from the same uniform distribution, then calculate the
corresponding function values according to these five
functions, and add white Gaussian noise with a standard
deviation of 0.01 to form 100 five-dimensional output data. In
the following experiments, we randomly select 70% of the data as
training data and 30% of the data as test data. From the figures of
the five functions, it can be seen that only 70 training samples are
not enough to achieve good single-task learning results. We verify
this point by experimenting with single-task and multi-task
algorithms.

Firstly, we compare the learning performance of the
proposed MTSL-SCRBN with other two STSL algorithms,
SVM and SC-III, on five tasks. For MTSL-SCRBN, these five
tasks are combined to learn together. The training and test
RMSEs on five tasks for these three methods are given in
Table 2. Clearly, the proposed multi-task learning model can
product better performance on each task than the two STSL
models, which only use 70 samples to learn each task
independently. Furthermore, we show the learning effects of

the three algorithms on Task 1 in Figure 4. It is can be seen that
the proposed MTSL-SCRBN has good learning performance
where the data changes dramatically.

Next, the comparison results of three MTSL algorithms,
MTSL-SCRBN, MTL, MTEN, on the simulation data set are
recorded in Table 3 and Figure 5. In Table 3, the values in
parentheses represent the standard deviations of 20 experiments’
results. According to these results, compared with MTEN and
MTL, the proposed MTSL-SCRBN has better approximation
ability.

4.2 Experimental Results and Analysis on
Benchmark Datasets
This subsection further compares sevenMTSL algorithms on four
benchmark datasets. They are MTL, MTEN, DMTRL, MMoE,
GAMTL, AUTOMTL and the proposed MTSL-SCRBN.
According to the characteristics of data sets and algorithms,
different algorithms will be selected for comparative analysis
on different data sets. The four benchmark datasets include
three regression problems on the stock portfolio performance
data set, the bionic robot data set SARCOS and the School data
set, one classification problem on the Mnist data set from Yann
LeCun1 The basic information of the four datasets are
summarized in Table 4.

Firstly, we compare the performance of MTL, MTEN,
DMTRL, MMoE, GAMTL and MTSL-SCRBN on different
sizes of three regression data sets. For the three data sets, we
randomly choose 15/30/3,500 samples outside the training set as
test set, respectively. At the same time, we select 5 tasks, all of
which have more than 230 samples, from 139 tasks in School data
set. Table 5 below shows the specific experiment results. As we
can see, the performance of each algorithm tends to be better and
more stable with an increasing number of training samples.
Furthermore, the proposed MTSL-SCRBN algorithm exhibits
good performance even with a small number of training
observations.

Then, in order to further verify the performance of MTSL-
SCRBN for classification cases, we compare the results of MTSL-
SCRBN, DMTRL,MMoE, GAMTL and AUTOMTL on theMnist
data set. We randomly choose 50/100/150 samples from each task
in the Mnist data set as training set, and 10000 samples in the
remaining samples as test set. Considering that this is a high

TABLE 3 | The results of MTSL-SCRBN, MTL, MTEN on the simulation data set.

MTSL-SCRBN MTL MTEN

training test training test training test

1.2836 2.6383 6.7430 5.1472 7.8274 6.2219
(0.1763) (0.0929) (0.0336) (0.0187)

The results with the minimum test errors are marked in bold.

FIGURE 5 | Prediction performance of MTSL-SCRBN, MTL, MTEN on
Task 1 of simulation data set.

1These four datasets can be obtained from http://archive.ics.uci.edu/ml/datasets/
Stock+portfolio+performance, http://gaussianprocess.org/gpml/data, http://
bristol.ac.uk/cmm/learning/support/datasets and http://yann.lecun.com/exdb/
mnist/, respectively.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2022 | Volume 10 | Article 8901327

Dong et al. Multi-Task Learning Neural Networks

http://archive.ics.uci.edu/ml/datasets/Stock+portfolio+performance
http://archive.ics.uci.edu/ml/datasets/Stock+portfolio+performance
http://gaussianprocess.org/gpml/data
http://bristol.ac.uk/cmm/learning/support/datasets
http://bristol.ac.uk/cmm/learning/support/datasets
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


TABLE 5 | The comparison results of six MSTL algorithms on three data sets.

Data
set

Size MTSL-SCRBN MTL MTEN DMTRL MMoE GAMTL

training test training test training test training test training test training test

Stock 0.0796 0.1105 0.1524 0.3016 0.1155 0.1397 0.1441 0.1649 0.0885 0.1536
10 (0.0039) (0.0040) (0.0619) (0.0667) 0.1370 0.1387 (0.0268) (0.0089) (0.0045) (0.0040) (0.0072) (0.0018)

0.0661 0.0904 0.1149 0.2207 0.0973 0.1008 0.1362 0.1577 0.0811 0.1342
20 (0.0050) (0.0069) (0.0158) (0.0754) 0.1313 0.1379 (0.0188) (0.0112) (0.0091) (0.0057) (0.0074) (0.0065)

0.0542 0.0793 0.1055 0.1712 0.0839 0.0975 0.1282 0.1505 0.0769 0.1186
30 (0.0054) (0.0078) (0.0117) (0.0366) 0.1380 0.1339 (0.0156) (0.0078) (0.0019) (0.0010) (0.0033) (0.0022)

Sarcos 2.3921 3.6667 5.1595 5.9636 4.8021 5.4138 3.5679 4.3704 3.6894 4.5503
700 (0.0221) (0.0364) (0.0395) (0.0895) 4.2165 4.2680 (0.1312) (0.1128) (0.0165) (0.0112) (0.0315) (0.0489)

2.2732 3.1740 4.7317 5.6063 4.2588 4.7137 2.7236 3.4125 2.9128 3.6810
1,400 (0.0250) (0.0179) (0.0342) (0.0808) 4.1334 4.2281 (0.0610) (0.1084) (0.0100) (0.0101) (0.0147) (0.0286)

2.1128 2.9291 4.5611 5.0693 3.4181 4.0180 2.6235 2.9898 2.7503 3.0137
2,100 (0.0255) (0.0392) (0.0370) (0.0899) 4.1552 4.1818 (0.0683) (0.0639) (0.0115) (0.0123) (0.0239) (0.0317)

School 8.9122 12.1368 11.9488 13.6566 12.0246 13.2983 11.9107 13.5805 11.7439 12.3742
100 (0.1221) (0.0634) (0.1356) (0.1284) 12.1952 13.9454 (0.1411) (0.1155) (0.1286) (0.2422) (0.1280) (0.1560)

8.4406 11.5972 11.4453 13.3710 11.7838 13.1285 11.6480 13.2517 11.3313 11.7067
150 (0.0736) (0.0828) (0.1141) (0.1089) 11.7394 13.5306 (0.1562) (0.1371) (0.0907) (0.1108) (0.0899) (0.0249)

7.6262 10.6699 11.1923 12.9307 11.4090 12.9873 11.3628 12.9779 10.8133 11.3346
200 (0.1177) (0.1067) (0.0874) (0.1145) 11.3253 12.8915 (0.1589) (0.2015) (0.0748) (0.0612) (0.0546) (0.0307)

The results with the minimum test errors are marked in bold.

TABLE 6 | The accuracy of MTSL-SCRBN, DMTRL, MMoE, GAMTL and AUTOMTL on Mnist data set.

Size MTSL-SCRBN DMTRL MMoE GAMTL AUTOMTL

training test training test training test training test training test

92.00% 67.14% 91.80.00% 64.67% 94.16% 62.22% 69.47% 57.01% 93.26% 60.78%
50 (0.0065) (0.0067) (0.0111) (0.0099) (0.0077) (0.0086) (0.0303) (0.0124) (0.0231) (0.0212)

96.15% 72.25% 95.90% 70.793% 95.92% 68.15% 84.62% 68.51% 94.56% 70.45%
100 (0.0067) (0.0066) (0.0117) (0.0101) (0.0084) (0.0061) (0.0144) (0.0158) (0.0128) (0.0094)

97.27% 82.49% 97.97% 80.05% 97.04% 74.61% 95.52% 78.89% 96.87% 79.34%
150 (0.0099) (0.0064) (0.0082) (0.0097) (0.0081) (0.0063) (0.0119) (0.0087) (0.0097) (0.0084)

The results with the minimum test errors are marked in bold.

TABLE 7 | Parameter description for the four models.

Models Parameters Parameters’ Range

MTSL-SCRBN RBF scale σ σ ~ U[0, Ω], Ω ∈ (0, 100]
MTSL-SCSGM Internal weight parameters w, b, (w, b) ∈ ~ Ud+1[ − Φ, Φ], Φ ∈ {1, 5, 15, 30, 50, 100, 150, 200}
MTSL-SCTANH Internal weight parameters w, b, (w, b) ∈ ~ Ud+1[ − Φ, Φ], Φ ∈ {1, 5, 15, 30, 50, 100, 150, 200}
MTSL-SCReLU Internal weight parameters w, b (w, b) ~ Ud+1[ − Φ, Φ], Φ ∈ {1, 5, 15, 30, 50, 100, 150, 200}

TABLE 4 | Descriptions of benchmark datasets.

Data Set Size Feature Number Task Number

Stock 63 6 6
SARCOS 48933 21 7
School 15362 8 139
Mnist 70000 28*28 10
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dimensional small sample problem, we firstly reduce the
dimensionality of the data set, and then use MTSL-SCRBN for
training and prediction. There are many dimensionality reduction
methods, such as Principal Component Analysis(PCA) (Pearson,
1901), Latent Dirichlet Allocation(LDA) (Blei et al., 2003),
Sequential Markov Blanket Criterion (SMBC) (Pratama et al.,
2017), Auto Encoder (Hinton and Salakhutdinov, 2006) and so
on. Here, we use the performance of the dimensionality-reduced
data in the MTSL-SCRBN as the selection criterion, and choose
Auto Encoder to reduce the dimension of original data set into
30 dimensions. It can be seen fromTable 6 that the performance of
MTSL-SCRBN which uses dimensionality reduction data set is a
little bit better than that of other Multi-task deep learning
algorithms, but as the sample size increases, the performance of
the two algorithms gradually approaches.

4.3 Comparison Experiment Results for
Different Activation Functions
The previous results show that the proposed MTSL-SCRBN
algorithm is effective for multi-task learning in the case of
small samples. This subsection mainly discusses the impact of
selecting different activation functions on algorithm
performance. Here we select other three usually used
activation functions. They are sigmoid function, Tanh function
and ReLU function. After replacing the radial basis functions in
MTSL-SCRBN with these three functions respectively, the model
names are respectively called MTSL-SCSGM, MTSL-SCTANH
and MTSL-SCReLU. We choose to conduct comparative
experiments on the Stock and SARCOS data sets.

For different data sets, the parameters contained in each
algorithm need to be randomly set or cross verified within a
certain range. The specific selection range of each parameter is
given in Table 7.

Table 8 depicts the RMSE results of stochastic configuration
multi-task learning models based on four different activation
functions. Under the training samples with different sample sizes
in the two data sets, the MTSL-SCRBN, which based on radial
basis functions, has certain advantages over other three models in
terms of performance.

5 CONCLUSION

In this paper, we propose a multi-task supervised learning
framework based on stochastic configuration radial basis
network. It can be effectively used in classification and
regression problems when a single task has a small number of
samples. The series experiment results on the four data sets
show the proposed MTSL-SCRBN achieves a good
performance compared with some existing methods.

Interesting areas for further directions include using the
proposed algorithm in hyperspectral remote sensing image
classification and other related research areas, considering the
impact of using different activation functions in the network,
and trying to explore the range of the sample size of the data set
to use the multi-task learning method.
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TABLE 8 | The comparison results of different activation functions based models on two data sets.

Data set Size MTSL-SCRBN MTSL-SCSGM MTSL-SCTANH MTSL-SCReLU

training test training test training test training test

Stock 0.0796 0.1105 0.0819 0.1566 0.0814 0.1586 0.0853 0.1424
10 (0.0039) (0.0040) (0.0048) (0.0057) (0.0036) (0.0036) (0.0035) (0.0055)

0.0661 0.0904 0.0766 0.1231 0.0758 0.1242 0.0759 0.1194
20 (0.0050) (0.0069) (0.0032) (0.0098) (0.0034) (0.0076) (0.0028) (0.0051)

0.0542 0.0793 0.0671 0.1128 0.0665 0.1037 0.0678 0.1009
30 (0.0054) (0.0078) (0.0020) (0.0061) (0.0021) (0.0076) (0.0012) (0.0046)

Sarcos 2.3921 3.6667 3.3670 5.1386 3.2588 4.9160 3.1868 5.5491
700 (0.0221) (0.0364) (0.0263) (0.0868) (0.0308) (0.0746) (0.0140) (0.0824)

2.2732 3.1740 3.1829 4.0958 3.0747 4.1529 2.9880 4.1854
1,400 (0.0250) (0.0179) (0.0161) (0.0713) (0.0178) (0.0598) (0.0112) (0.0767)

2.1128 2.9291 2.9860 3.8698 2.8853 3.8420 2.8539 3.8211
2,100 (0.0255) (0.0392) (0.0136) (0.0764) (0.0127) (0.0494) (0.0705) (0.0506)

The results with the minimum test errors are marked in bold.
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