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Microbes are essential in biofloc technology for controlling nitrogen levels in

water. The composition and function of microorganisms with biofloc systems

were reported; however, data on microorganisms other than bacteria, such as

algae (which are essential in the nitrogen cycle) and zooplankton (which are

bacterial and algal predators), remain limited. The microbial communities

(including bacteria, algae, zooplankton, and fungi) were investigated in

shrimp farms using biofloc technology. Using Illumina MiSeq sequencing,

the V4 region of 18S rRNA and the V3–V4 region of 16S rRNA were utilized

for the analysis of the eukaryotic and prokaryotic microbial communities. As a

result, it was found that the biofloc in the shrimp farm consisted of 48.73%–

73.04% eukaryotic organisms and 26.96%–51.27% prokaryotic organisms. In

these shrimp farms, prokaryotic microbial communities had higher specie

richness and diversity than eukaryotic microbial communities. However, the

eukaryotic microbial communities were more abundant than their prokaryotic

counterparts, while algae and zooplankton dominated them. It was discovered

that the structures of the microbial communities in the shrimp farms seemed to

depend on the effects of predation by zooplankton and other related

organisms. The results provided the nitrogen cycle in biofloc systems by the

algal and bacterial groups in microbial communities.
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1 Introduction

Given their roles as decomposers and producers,

microorganisms play crucial roles in various ecosystem

material cycles (Mickalide and Kuehn, 2019; López-

Mondéjar et al., 2020). This includes the nitrogen-related

material cycle (Cirri and Pohnert, 2019; Urakawa et al.,

2019), in which some microorganisms utilize nitrogen for

anabolic or catabolic processes (Takai, 2019; Dai et al., 2020).

Through such methods, pollutants, such as ammonia, are

removed, and nitrogen-based compounds, e.g., proteins, are

synthesized (Pilgrim et al., 1970). The action of

microorganisms in this context has become the basis for

their use on an industrial level (Huo et al., 2020; Zhang

et al., 2020). For example, microbial functions are applied

to treat nitrogen compounds in wastewater generated in cities

(Huo et al., 2020; Zhang et al., 2020). Additionally,

microorganisms are used in removing nitrogen-based

compounds from water containing aquatic organisms in

large-scale fish farms to small-scale home aquariums

(Miranda-Baeza et al., 2020; Putra et al., 2020). However,

until recently, microorganism-based removal of pollutants

was rarely used in aquatic organism-breeding programs;

indeed, the breeding of aquatic organisms was traditionally

sustained through water exchange (Timmons et al., 1998).

Given that the water exchange method needs substantial water

levels and generates wastewater, improved methods are now

being developed (Timmons et al., 1998).

Biofloc technology is a method that removes some

limitations associated with traditional aquatic organism-

breeding methods (Bakar et al., 2015; Chen et al., 2019).

With biofloc technology, pollutants, including ammonia

generated by aquatic organisms, are removed from water by

culturing microorganisms in the aquatic-organisms’ breeding

space (Bakar et al., 2015; Chen et al., 2019). These cultured

microorganisms remove pollutants and act as food for aquatic

organisms (Cardona et al., 2015; Bossier and Ekasari, 2017).

Consequently, the microbial-derived biomass reduces the

necessary feed input during the breeding of aquatic

organisms and increases productivity (Cardona et al., 2015;

Bossier and Ekasari, 2017). Moreover, effective removal of

pollutants using microorganisms has made the traditional

water exchange process unnecessary (Bakar et al., 2015;

Bossier and Ekasari, 2017; Chen et al., 2019). Therefore,

biofloc technology has reduced costs and increased

efficiency in the aquatic organism production and breeding

industry (Gaitán-Angulo et al., 2016).

To maximize the effects of biofloc technology, previous

research on the constituents of microbial communities in

biofloc systems has been conducted (Wei G et al., 2020;

Wei Y-F et al., 2020). Through previous studies, it has been

found that the structural characteristics of the microbial

community constituting biofloc can vary depending on the

method and carbon source applied to form biofloc (Vilani

et al., 2016; Arantes et al., 2017; Luo et al., 2022). Furthermore,

this revealed the need for a deeper understanding of the

characteristics of photo-autotrophic, heterotrophic, and

chemotrophic microbial organisms in biofloc (Vilani et al.,

2016; Arantes et al., 2017; Luo et al., 2022). Although previous

pollutant removal and floc formation-related research has

enhanced understanding of biofloc technology (D’Silva and

Kyndt, 2020; Dauda, 2020), more studies on microalgae are

needed to deepen this understanding (Ray et al., 2009; Wang

et al., 2019). It is known that microalgae can synthesize

nitrogen-related organic substances, such as proteins, using

ammonia and nitrate (Cui et al., 2020). Additionally,

hydrocarbons and lipids (including unsaturated fatty acids)

can be produced through photosynthesis, while antioxidants

such as astaxanthin and lutein are included among the

pigments manufactured for photosynthesis (Kawale and

Kishore, 2019; Cui et al., 2020; Li L. et al., 2020). These

microalgae-produced substances can be fed to

aquatic organisms, thereby increasing the productivity and

quality of farm products (Crab et al., 2012; Dauda, 2020;

Khanjani and Sharifinia, 2020). However, more research on

the role and features of microalgae in biofloc technology is still

needed.

In the Republic of Korea, biofloc technology is applied to

various aquatic organisms, including the shrimp species

Litopenaeus vannamei, which is now actively manufactured

with the use of biofloc (Taw, 2014; Hamidoghli et al., 2018). In

this study, Illumina MiSeq system was applied to characterize

the microbial communities that constitute the biofloc in

shrimp farms of the southern Korean Peninsula. The

structure of these communities, including eukaryotic and

prokaryotic microbial communities, was analyzed. The algal

and bacterial groups demonstrate the metabolic processes

involved in the nitrogen cycle in biofloc systems.

2 Materials and methods

2.1 Sample collection

Water samples from the shrimp farms were obtained from

five farm tanks (Figure 1; Tank A: 34°47′33.1″N
128°34′17.5″E, 2456, Geojenamseo-ro, Dongbu-myeon,

Geoje-si, Gyeongsangnam-do, Republic of Korea; Tank B:

34°47′33.2″N 128°34′17.8″E, 2456, Geojenamseo-ro,

Dongbu-myeon, Geoje-si, Gyeongsangnam-do, Republic of

Korea; Tank C: 34°56′08.7″N 128°11′44.8″E, 1656, Jaranman-

ro, Hail-myeon, Goseong-gun, Gyeongsangnam-do, Republic

of Korea; Tank D: 34°56′19.7″N 128°11′50.5″E, 1699,

Jaranman-ro, Hail-myeon, Goseong-gun, Gyeongsangnam-

do, Republic of Korea; Tank E: 34°56′36.1″N 128°14′53.1″E,
199, Sambong 1-gil, Samsan-myeon, Goseong-gun,
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Gyeongsangnam-do, Republic of Korea). The tanks of each

farm are designed and modified according to previous

research (Avnimelech, 1999; Arnold et al., 2009; Khanjani

and Sharifinia, 2020). The pumps and air stones were used to

circulate the water inside the tank, and molasses (48% total

carbon, EMzone, Thailand) were added to the tank water for

the formation of a biofloc-forming microbial community and

proceeded according to the calculation guided (Avnimelech,

1999; Arnold et al., 2009; Khanjani and Sharifinia, 2020). The

farm maintains a shrimp density of 250–350 individuals/m2.

The time when biofloc was investigated was nearing the

harvest time of shrimp. Shrimp purchased from shrimp

farms and weighed for each shrimp was found to be in the

range of 25–30 g for each shrimp from all shrimp farms. To

form and maintain bioflocs, all of the shrimp farms

investigated were using molasses. The water in the tanks

was sampled and the floc derived from the microorganisms

contained in the water. Five water samples were taken from

five sites in each tank. All samples (500-ml water) were

collected on 15 June 2020, and stored in refrigerated

containers before being transported to the laboratory.

From these main samples, further samples were taken on

FIGURE 1
Sampling sites on the southern coast of the Korean Peninsula. The location of the Litopenaeus vannamei shrimp farms using biofloc technology
is indicated by the black box. Additionally, locations (colored squares on the main map) and images of tanks A (red boxes), B (green boxes), C (blue
boxes), D (orange boxes), and E (purple boxes) are indicated. For exact tank locations, see Section 2.1.
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16 June 2020, for Illumina MiSeq analysis, which was

conducted by Macrogen Co., Ltd. (Seoul, South Korea;

https://dna.macrogen.com/kor/), with samples delivered

through an express courier service.

2.2 Measurement of physicochemical
environmental factors

A multiparameter instrument (U-50 Multiparameter Water

Quality Meter; HORIBA, Kyoto, Japan) was used to determine

the physicochemical and environmental factors of the shrimp farm-

water samples. Samples for measuring physicochemical and

environmental factors were collected on the same day and at the

same time separately from samples for IlluminaMiSeq analysis. The

measurement was carried out immediately after sampling, 500-ml

samples were placed in measuring tubes and evaluated for seven

measurement factors: temperature, pH, electrical conductivity (EC),

dissolved oxygen (DO), nephelometric turbidity unit (NTU), total

dissolved solids (TDS), and salinity.

2.3 Illumina MiSeq for microbial
community analysis

Illumina MiSeq analysis was conducted in the laboratory of

Macrogen (Vo and Jedlicka 2014). First, DNA was

extracted using a DNeasy PowerSoil Kit (Cat. No. 12888-100,

QIAGEN) according to the manufacturer’s instructions

(Claassen et al., 2013). Next, the quality of the extracted DNA

was quantified using PicoGreen (Promega) and a Nanodrop

system. PCR amplified each DNA sample, and the amplified

samples were prepared according to either the Illumina 18S

Metagenomic Sequencing Library protocol or the Illumina 16S

Metagenomic Sequencing Library protocol for eukaryotic or

prokaryotic microbial communities, respectively (Stoeck et al.,

2010; Klindworth et al., 2013; Vo and Jedlicka, 2014). The 18S

rRNA region was amplified using the 18S V4 primer set (forward

primer: TAReuk454FWD1, 5′-CCAGCA (G⁄C)C(C⁄T)

GCGGTAA TTCC-3’; reverse primer: TAReukREV3, 5′-

ACTTTCG TTCTTGAT (C⁄T) (A⁄G)A-3′) (Stoeck et al.,

2010); the 16S rRNA region was amplified using the 16S

V3–V4 primer set (forward primer: MiSeq341F, 5′-
TCGTCGGCAGCGTC AGATGTGTATAAGAGA CAGCCTA

CGGGNGGCWGCAG-3’; reverse primer: MiSeq805R, 5′-
GTCTCGT GGGCTCGGAGATGTGTATAAGAGACAGGAC

TACHVGGGTATCTAATCC-3′) (Klindworth et al., 2013). The

quality of the amplified DNA was quantified using PicoGreen

and a VICTOR Nivo system (PerkinElmer). Subsequent limited-

cycle amplification was performed to add multiplexing indices

and Illumina sequencing adapters to the amplified PCR products

(Meyer and Kircher, 2010). The final products were normalized

and pooled using PicoGreen, and the size of the libraries was

verified using TapeStation DNA D1000 ScreenTape system

(Agilent, Santa Clara, CA, United States). Subsequently, the

sequencing data were analyzed using the MiSeq

platform (Illumina, San Diego, CA, United States) (Kozich

et al., 2013).

2.4 Taxonomic identification

The raw data from MiSeq were demultiplexed using the

index sequence, and a FASTQ file was generated for each

sample. The adapter sequence was eliminated using SeqPurge,

and the barcode sequence was trimmed and filtered according

to the standard quality value (low-quality sequences: average

quality value <25) (Sturm et al., 2016). Based on the

barcode sequences included in the NCBI database, all

refined raw data were identified using a BLASTN search

(query coverage: > 99%) (Zhang Z et al., 2000). When the

results could not be classified into a sublevel, ‘-’ was added to

the end of the name. The operational taxonomic unit (OTU)

was determined by CD-HIT at a 97% sequence similarity level

(Li et al., 2012). Rarefaction curves and diversity indicators

were computed through the mothur platform (Heck et al.,

1975; Schloss et al., 2009). The results of beta diversity

(sample diversity information of the comparison group)

based on weighted UniFrac distance flexibility between the

samples were visualized using an UPGMA tree (FigTree,

TABLE 1 The seven physicochemical factors studied in the five tanks from Litopenaeus vannamei shrimp farms.

Tank A Tank B Tank C Tank D Tank E

Temperature (°C) 28.20 24.80 25.47 24.40 26.42

pH 7.04 8.51 6.83 6.75 7.83

EC (mS/cm) 49.6 50.8 49.9 50.5 51.3

DO (mg/L) 7.21 7.62 7.66 7.86 7.05

Turbidity (NTU) 84.80 4.25 95.10 86.30 32.80

TDS (g/L) 30.3 30.5 30.4 30.3 30.8

Salinity (%) 32.5 33.3 32.7 33.1 33.7

EC: electrical conductivity; DO: dissolved oxygen; NTU: nephelometric turbidity unit; TDS: total dissolved solids.
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http://tree.bio.ed.ac.uk/software/figtree/) (Bokulich et al.,

2013).

2.5 Statistical analysis

We expressed the ratio of biomass present and the fatty acids

contents, which we defined as 100%. We compared individual

data points using Student’s t-test, and a p-value of <0.05 was

considered statistically significant. All experiments were

performed at least in triplicate, and the general microbiology

test data were expressed as mean ± standard deviation

(SD) (n = 3).

3 Results and Discussion

3.1 Physicochemical Characteristics of the
shrimp farm aquatic environment

The physicochemical and environmental features of the

aquatic environment in the shrimp farms are summarized in

FIGURE 2
Rarefaction curves and UPGMA trees calculated from the five tanks. (A–D) Rarefaction curves are for OTUs and species richness (Chao1). The
OTUs were analyzed using CD-HIT program at 97% sequence similarity, and the rarefaction curves and diversity indices for OTUs and Chao1 were
computed using the mothur platform. (E,F) The relationships among the microbial community diversities for the five tanks. The UPGMA trees were
formed using the weighted UniFrac distance. [For eukaryotic microbial communities: rarefaction curves of (A) OTUs and (C) Chao1, and (E)
UPGMA tree. For prokaryotic microbial communities: rarefaction curves of (B)OTUs and (D) Chao1, and (F) UPGMA tree]. The data underlying all the
graphs indicated in this figure can be found in the Supplementary Table S3.
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Table 1. Temperatures in tanks were 24.40°C–28.20°C (highest:

tank A, 28.20°C; lowest: tank D, 24.40°C; range: 3.80°C). For pH,

there was a difference of 1.76 between the highest (tank B, 8.51)

and lowest (tank D, 6.75) pH values. In all tanks, EC was around

50.0 mS/cm (highest: tank E, 51.3 mS/cm; lowest: tank A,

49.6 mS/cm; range: 1.7 mS/cm). DO in tanks was

7.05–7.86 mg/L (highest: tank D, 7.86 mg/L; lowest: tank E,

7.05 mg/L; range: 0.81 mg/L). The NTU values in samples

were 4.25–95.10 NTU (highest: tank C, 95.10 NTU; lowest:

tank B, 4.25 NTU; range: 90.85 NTU); thus, of all measured

features, NTU varied most among tanks. All measured TDS

values were around 30.0-g/L (highest: tank E, 30.8 g/L; lowest:

tank A and tank D, 30.3-g/L; range: 0.5 g/L). Salinity was around

33.0‰ in all tanks (highest: tank E, 33.7‰; lowest: tank A,

32.5‰; range: 1.2‰). From these features, the differences among

tanks were insignificant for four measured factors, namely EC,

DO, TDS, and salinity. Still, they were significant for three

measured factors, i.e., temperature, pH, and NTU.

In this study, the five tanks exhibited similar results for all

environmental features except pH and turbidity. Of all

FIGURE 3
Community composition of the organism groups and phyla from the five tanks. The four organism groups that composed the microbial
communities in each tank and the phyla from each group are indicated (black box, organism groups; yellow box, bacterial phyla; red box,
zooplankton/other related phyla; blue box, fungal phyla; green box, algal phyla). The data underlying all the graphs indicated in this figure can be
found in Supplementary Tables S1, S2.
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environmental features with similar results, the error range

was <10%. In contrast, the error range for pH and turbidity

was >10%. Additionally, the tendency of measuring low turbidity

in samples with high pH was confirmed. Generally, pH can

substantially affect aquatic organisms, but it can also be altered by

several microorganisms, including bacteria and algae (Shiraiwa

et al., 1993; García-de-la-Fuente et al., 2011; Giordani et al.,

2019). The observed differences in pH propose that the

composition of microbial communities differed among

samples and reflects the compositional features of the

community (Lei and VanderGheynst, 2000; Giordani et al.,

2019). The features of the microbial community are also

indicated by turbidity, which arises in phenomena such as

flocculation (Van Den Hende et al., 2011). In summary, the

high pH and low turbidity in this study suggest that the microbial

communities of shrimp farms using biofloc were affected by pH,

which altered turbidity.

3.2 Environmental characteristics and
microbial species diversity in shrimp farms
using biofloc systems

The results of Illumina MiSeq, and the species richness and

diversity of the microbial community (calculated based on

sequencing results), are indicated in Supplementary Table S3

and Figure 2. In the analyzed samples, 90,416–120,981 total reads

were obtained for the eukaryotic microbial community

depending on the tank, of which 23,414–70,926 reads were

validated. Although tank E had the largest number of total

reads (120,981) among all tanks, the difference between the

total and validated, reads was also the largest (difference:

96,575). In contrast, tank B had the least number of total

reads (90,416) with the least difference between total and

validated reads (difference: 19,490). For the prokaryotic

microbial community, 22,060–41,788 total reads were

obtained from samples depending on the tank, of which

21,321–41,533 reads were validated. The total and validated

reads were highest in tank B (41,788 and 41,533, respectively)

and lowest in tank E (22,060 and 21,321, respectively). Unlike in

the eukaryotic microbial community, the difference between the

total and validated reads was relatively small in the prokaryotic

microbial community (differences: tank A, 72; tank B, 255; tank

C, 1,505; tank D, 955; tank E, 739). The mean read-length of the

analyzed reads was 402.90–416.43 bp for the eukaryotic

microbial community and 438.33–450.89 bp for the

prokaryotic microbial community. The maximum read-lengths

for the eukaryotic and prokaryotic microbial communities were

419 and 461 bp, respectively. The number of OTUs detected from

the samples was 44–152 for the eukaryotic microbial community

FIGURE 4
Community composition at the phylum level from the five tanks. (A) The eukaryotic and (B) prokaryotic microbial communities are indicated
separately. The data underlying all the graphs indicated in this figure can be found in Table 2 and Supplementary Tables S1, S2.
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TABLE 2 Taxonomy and relative abundance of predominant strains in eukaryotic and prokaryotic microbial communities from the five tanks at the studied Litopenaeus vannamei shrimp farms.

Community Organism Taxonomy Relative abundance (%)

Phylum Class Order Family Species Tank A Tank B Tank C Tank D Tank E

Eukaryotic Algae Bacillariophyta Bacillariophyceae Bacillariales Bacillariaceae Psammodictyon panduriforme 0.10 0.00 0.00 0.00 11.74

Chlorophyta Chlorodendrophyceae Chlorodendrales Chlorodendraceae Tetraselmis marina 0.21 90.28 0.00 0.00 0.00

Chlorophyta Trebouxiophyceae Chlorellales Chlorellaceae Nannochloris sp. 25.26 0.43 3.23 94.69 5.92

Ciliophora Phyllopharyngea Endogenida Acinetidae Acineta tuberosa 0.00 0.00 0.00 0.00 59.01

Zoo plankton/Other Ciliophora Spirotrichea __ Strombidiidae Strombidium guangdongense 31.09 1.71 0.00 0.00 0.00

Discosea __ Stygamoebida __ Vermistella sp. 0.00 0.00 5.22 0.00 0.00

Gastrotricha __ Chaetonotida Chaetonotidae Halichaetonotus aculifer 40.44 0.00 79.11 0.00 5.35

Rotifera Monogononta Ploima Brachionidae Brachionus plicatilis 0.14 0.00 8.80 0.00 0.00

Total abundance of marked species in the eukaryotic microbial community 97.24 92.42 97.33 94.76 87.25

Prokaryotic Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Formosa haliotis 2.31 0.00 4.70 4.30 5.45

Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Lutimonas halocynthiae 0.00 0.00 27.66 0.00 0.00

Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Lutimonas saemankumensis 0.15 0.00 0.11 14.74 3.78

Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Muricauda lutimaris 17.73 0.05 2.29 0.01 0.76

Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Polaribacter marinivivus 0.04 56.47 0.53 0.08 0.75

Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Tenacibaculum aestuarii 5.24 0.05 2.72 2.36 20.91

Chloroflexi Caldilineae Caldilineales Caldilineaceae Litorilinea aerophila 0.46 0.00 0.14 10.32 1.97

Cyanobacteria __ Nostocales Symphyonemataceae Loriellopsis cavernicola 0.80 0.01 0.02 11.59 27.90

Proteobacteria AlphaProteobacteria Rhodobacterales Rhodobacteraceae Donghicola eburneus 8.43 2.79 0.70 22.65 0.64

Proteobacteria AlphaProteobacteria Rhodobacterales Rhodobacteraceae Ruegeria marisrubri 7.39 0.07 1.25 0.20 3.86

Proteobacteria DeltaProteobacteria Desulfuromonadales Geobacteraceae Geoalkalibacter subterraneus 21.51 0.03 0.00 0.00 0.25

Proteobacteria GammaProteobacteria Alteromonadales Alteromonadaceae Mangrovitalea sediminis 0.00 0.00 0.00 6.71 0.45

Total abundance of marked species in the prokaryotic microbial community 64.06 59.47 40.12 72.96 66.72

The microbial species detected in at least one of the five samples are indicated. Unclassified taxonomic names (phylum, class, order, family, and species) are replaced using underlining (__).
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and 115–228 for the prokaryotic microbial community. Thus,

across all samples, the number of OTUs was greater in the

prokaryotic microbial community than in the eukaryotic

microbial community.

In the microbial communities of the shrimp farms using

biofloc technology, the scale of the eukaryotic microbial

community was relatively larger than that of the prokaryotic

microbial community; however, there was more species richness

and diversity in the prokaryotic microbial community.

Comparing the eukaryotic or prokaryotic microbial

communities in each sample, no specific patterns among the

number of reads, species richness, and species diversity was

found. These results support previous findings of lack of

association between community scale, species richness, and

species diversity (Sanjit and Bhatt, 2005). Additionally, no

obvious relationship between the eukaryotic microbial

community and prokaryotic microbial community were found

in samples (Santi et al., 2019), e.g., the number of eukaryotic

microbial OTUs was highest in tank C (152), but the number of

prokaryotic microbial OTUs was highest in tank E (228); the

FIGURE 5
The investigatedmodel of relationships and communications in themicrobial communities of Litopenaeus vannamei shrimp farms with biofloc
technology. The microbial communities coincide with biofloc technology. The environmental features of the aquatic environment in the shrimp
farms. The data underlying all the diagrams indicated in this figure can be found in Table 2 and Supplementary Tables S1, S2.
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number of eukaryotic microbial OTUs was lowest in tank D (44),

but the number of prokaryotic microbial OTUs in tank D was

relatively high (183).

Chao1, an indicator of species richness, exhibited a similar

trend to that observed in OTUs. In the eukaryotic microbial

community, species richness was lowest in tank D (44.00) and

highest in tank C (154.50). In the prokaryotic microbial

community, species richness was generally higher; it was

lowest in tank B (137.75) and highest in tank E (276.24).

When considering the same sample, the species richness of

the eukaryotic microbial community was lower than that of

the prokaryotic microbial community. Two diversity

indicators (Shannon and inverse Simpson) were used to

quantify species diversity; however, results for the two

diversity indicators were inconsistent. In the eukaryotic

microbial community, the Shannon value was ordered as

follows: tank C (2.83) > tank A (2.37) > tank B (2.00) > tank

E (1.55) > tank D (1.36). In contrast, the inverse Simpson value

was ordered as follows: tank A (0.73) > tank C (0.68) > tank B

(0.57) > tank D (0.53) > tank E (0.41). Among the analyzed

samples, the eukaryotic microbial communities of tank A

(Shannon, 2.37; inverse Simpson, 0.73) and tank C (Shannon,

2.83; inverse Simpson, 0.68) exhibited relatively high species

diversity, while the species diversity of tank D (Shannon, 1.36;

inverse Simpson, 0.53) and tank E (Shannon, 1.55; inverse

Simpson, 0.41) was relatively low. In the prokaryotic

microbial community, Shannon values were ordered as

follows: tank C (5.03) > tank E (4.56) > tank D (4.52) > tank

A (4.35) > tank B (3.11). In contrast, inverse Simpson values in

this community were as follows: tank C (0.92) > tank D (0.91) >

FIGURE 6
The investigatedmodel of the nitrogen cycle in themicrobial communities found in the studied Litopenaeus vannamei shrimp farmwith biofloc
technology. The nitrogen cycle followed in the studied Litopenaeus vannamei shrimp farms. Litopenaeus vannamei shrimp farms studied in biofloc
technology. Physicochemical Characteristics of the Shrimp farm aquatic environment. The data underlying all the diagrams indicated in this figure
can be found in Table 1 and Supplementary Tables S1, S2.
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tank A (0.90) > tank E (0.88) > tank B (0.68). In the prokaryotic

microbial community, tank C had relatively high species diversity

(Shannon, 5.03; inverse Simpson, 0.92), while the species

diversity of tank B (Shannon, 3.11; inverse Simpson, 0.68)

was low.

Based on UPGMA trees, the eukaryotic microbial

community of tank B was similar only to that of tank D. In

contrast, the prokaryotic microbial community of tank B was

comparable only to that of tank C. The fact that the microbial

community of tank B exhibited no similarities with other tank

communities seemed to be due to differences in tank B’s pH and

turbidity relative to other tanks (Santi et al., 2019). Based on these

results, it was suggest that differences in microbial communities

can occur when environmental features, such as pH and

turbidity, differ (Santi et al., 2019). The similarity between

microbial communities was visualized using an UPGMA tree

(Figures 2E,F). Throughout the eukaryotic and prokaryotic

microbial communities, similarities were high in the order

tank E, tank A, and tank C based on tank D. For tank B, the

eukaryotic microbial community was highly similar to that of

tank D. In contrast, the prokaryotic microbial community was

highly similar to that of tank C. These results indicate that there

were no association between the number of reads, species

richness, and diversity in the microbial communities from the

biofloc of the shrimp farms. Additionally, species richness and

diversity had little relevance to the similarity between the

microbial communities. Even though the number of reads

analyzed from the prokaryotic microbial community was less

than that from the eukaryotic microbial community, the species

richness and diversity were higher.

In the results, unique microbial communities were formed in

each shrimp farm using biofloc according to the subtle

environmental differences related to each sample. Although

the features of the unique microbial community did not

manifest as differences in species richness and diversity, they

are expected to be revealed by the similarities between microbial

communities. Additionally, prokaryotic microbial communities

tend to have higher species richness and diversity than eukaryotic

microbial communities, but one community type did not

influence the diversity of the other.

3.3 Compositional characteristics of the
microbial communities in shrimp farms
with biofloc technology

Microbial organisms in shrimp farms using biofloc systems

can decompose nitrogen compounds, including ammonia, or

convert them into substances that are nontoxic to aquatic

organisms (Abakari et al., 2020). This function is conducted

by bacteria involved in some denitrification and nitrification

processes or by an algal group that synthesizes organic

compounds containing nitrogen through photosynthesis (Ray

et al., 2009; Abakari et al., 2020; Luo et al., 2020). According to the

results, there are relatively large-scale eukaryotic microbial

communities with abundant algal or zooplankton/other

groups in the studied shrimp farms using biofloc technology.

Therefore, the biological mechanisms related to nitrogen

compounds are expected to have different properties

depending on the composition of the microbial community

(Ray et al., 2009; Abakari et al., 2020). In microbial

communities, in which the eukaryotic microbial community is

dominated by zooplankton/other related organisms (such as in

tanks A, C, and E) the mechanisms related to nitrogen

compounds would be dependent on the bacterial group (Ray

et al., 2009; Abakari et al., 2020). Alternatively, where the algal

group occupies most of the eukaryotic microbial community

(such as in tanks B and D, in which algae also occupiedmore than

50% of the total microbial community), the metabolic process

would be dominated by the algal group (Ray et al., 2009).

Based on the results of taxonomic identification, members of

eukaryotic and prokaryotic microbial communities was classified

into four organism groups (algae, fungi, zooplankton/other, and

bacteria), and the phylum composition of each group were

compared (Figure 3). In tank A, the microbial community

comprised 12.89% algae, 0.08% fungi, 35.76% zooplankton/

other groups, and 51.27% bacteria. In tank B, it consisted of

60.38% algae, 0.82% of fungi, 1.95% of zooplankton/other

groups, and 36.85% bacteria. In tank C, it comprised 2.81%

algae, 0.16% fungi, 68.21% zooplankton/other groups, and

28.82% bacteria. In tank D, it consisted of 70.60% algae,

1.96% fungi, 0.48% zooplankton/other groups, and 26.96%

bacteria. Finally, in tank E, it comprised 10.49% algae, 0.02%

fungi, 42.86% zooplankton/other groups, and 46.62% bacteria.

Based on these findings, the microbial community was composed

of 48.73%–73.04% eukaryotic organisms (i.e., algae, fungi, and

zooplankton/other groups) and 26.96%–51.27% prokaryotic

organisms (bacteria). Therefore, there was a more abundant

eukaryotic microbial community in the analyzed samples.

Furthermore, the features of the eukaryotic microbial

community were divided into two types: algal group-

dominant (tanks B and D) and zooplankton/other group-

dominant (tanks A, C, and E). Notably, fungi were detected at

low levels in all samples (0.02%–1.96%).

For a more detailed among-sample comparison of the

eukaryotic and prokaryotic microbial communities, their

compositions at the phylum level were analyzed separately

(Figure 4). In total, 19 phyla were detected in the eukaryotic

microbial community (five samples); they consisted of three algal

phyla (Bacillariophyta, Chlorophyta, and Rhodophyta), four

fungal phyla (Ascomycota, Basidiomycota, Chytridiomycota,

and Cryptomycota), and 12 zooplankton/other related phyla

(Apicomplexa, Arthropoda, Bryozoa, Cercozoa, Ciliophora,

Discosea, Gastrotricha, Imbricatea, Nematoda, Perkinsozoa,

Rotifera, and Tubulinea) (Figure 4A). In tank A, three algal

phyla (Bacillariophyta, 0.31%; Chlorophyta, 25.99%; Rhodophyta,
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0.16%), one fungal phylum (Ascomycota, 0.17%), and four

zooplankton/other related phyla (Ciliophora, 32.13%;

Gastrotricha, 40.44%; Nematoda, 0.66%; Rotifera, 0.14%) were

detected. In tank B, two algal phyla (Bacillariophyta, 1.16%;

Chlorophyta, 94.78%), two fungal phyla (Ascomycota, 1.29%;

Basidiomycota, 0.01%), and two zooplankton/other related

phyla (Ciliophora, 2.63%; Tubulinea, 0.13%) were detected. In

tank C, three algal phyla (Bacillariophyta, 0.07%; Chlorophyta,

3.72%; Rhodophyta, 0.16%), three fungal phyla (Ascomycota,

0.14%; Basidiomycota, < 0.01%; Cryptomycota, 0.09%), and

11 zooplankton/other related phyla (Apicomplexa, 0.03%;

Arthropoda, 0.02%; Bryozoa, 0.01%; Cercozoa, 0.32%;

Ciliophora, 0.99%; Discosea, 5.22%; Gastrotricha, 79.14%;

Imbricatea, 0.02%; Nematoda, 0.31%; Perkinsozoa, 0.96%;

Rotifera, 8.80%) were detected. In tank D, three algal phyla

(Bacillariophyta, 1.93%; Chlorophyta, 94.69%; Rhodophyta,

6.05%), three fungal phyla (Ascomycota, 0.21%; Basidiomycota,

0.02%; Chytridiomycota, 2.46%), and four zooplankton/other

related phyla (Bryozoa, 0.04%; Ciliophora, 0.30%; Nematoda,

0.25%; Perkinsozoa, 0.06%) were detected. Finally, in tank E,

three algal phyla (Bacillariophyta, 12.17%; Chlorophyta, 6.86%;

Rhodophyta, 0.63%), one fungal phylum (Ascomycota, 0.04%),

and six zooplankton/other related phyla (Bryozoa, 0.03%;

Cercozoa, 0.06%; Ciliophora, 59.59%; Gastrotricha, 5.45%;

Nematoda, 10.76%; Perkinsozoa, 4.41%) were detected. Among

the detected phyla, Bacillariophyta (tank E, 12.17%), Chlorophyta

(tank A, 25.99%; tank B, 94.78%; tank D, 94.69%; tank E, 6.05%),

Ciliophora (tank A, 32.13%; tank E, 59.59%), Discosea (tank C,

5.22%), Gastrotricha (tank A, 40.44%; tank C, 79.14%; tank E,

5.45%),Nematoda (tank E, 10.76%), and Rotifera (tank C, 8.80%)

had a relative abundance >5% in the eukaryotic microbial

community. Specific trends were observed in the eukaryotic

microbial community composition of each sample. For

example, the communities in tanks B and D, algal group-

dominated, were dominant in Chlorophyta (>94% relative

abundance). Alternatively, the communities in tanks A, C, and

tank E, which were zooplankton/other group-dominated,

consisted of three or more phyla, including algal phyla, with a

relative abundance >5%.

In the prokaryotic microbial communities of the biofloc,

13 bacterial phyla (Acidobacteria, Actinobacteria, Bacteroidetes,

Balneolaeota, Candidatus Melainabacteria, Chlamydiae,

Chloroflexi, Cyanobacteria, Firmicutes, Planctomycetes,

Proteobacteria, Tenericutes, and Verrucomicrobia) were

detected (Figure 4B). In tank A, the prokaryotic microbial

community consisted of ten bacterial phyla (Actinobacteria,

1.49%; Bacteroidetes, 44.52%; Candidatus Melainabacteria,

0.03%; Chlamydiae, 0.18%; Chloroflexi, 0.49%; Cyanobacteria,

3.74%; Firmicutes, 0.07%; Planctomycetes, 0.75%; Proteobacteria,

48.72%; Verrucomicrobia, 0.01%). In tank B, it comprised nine

bacterial phyla (Actinobacteria, 0.87%; Bacteroidetes, 76.30%;

Balneolaeota, 3.44%; Chlamydiae, 0.01%; Cyanobacteria,

0.87%; Firmicutes, 0.01%; Proteobacteria, 18.10%; Tenericutes,

0.02%; Verrucomicrobia, 0.38%). In tank C, it consisted of ten

bacterial phyla (Acidobacteria, less than 0.01%; Actinobacteria,

4.83%; Bacteroidetes, 65.70%; Chlamydiae, 0.09%; Chloroflexi,

2.28%; Cyanobacteria, 0.02%; Firmicutes, 0.22%; Planctomycetes,

2.45%; Proteobacteria, 22.86%; Verrucomicrobia, 1.55%). In tank

D, it comprised nine bacterial phyla (Actinobacteria, 1.99%;

Bacteroidetes, 33.74%; Balneolaeota, 0.07%; Chlamydiae,

0.02%; Chloroflexi, 10.35%; Cyanobacteria, 11.76%;

Planctomycetes, 0.34%; Proteobacteria, 41.05%;

Verrucomicrobia, 0.68%). Lastly, in tank E, it consisted of

11 bacterial phyla (Acidobacteria, 0.03%; Actinobacteria,

3.46%; Bacteroidetes, 42.18%; Balneolaeota, 0.03%;

Chlamydiae, 0.01%; Chloroflexi, 2.47%; Cyanobacteria, 28.46%;

Firmicutes, 0.34%; Planctomycetes, 1.94%; Proteobacteria,

19.20%; Verrucomicrobia, 1.88%). Among the 13 bacterial

phyla detected, Bacteroidetes (tank A, 44.52%; tank B, 76.30%;

tank C, 65.70%; tank D, 33.74%; tank E, 42.18%), Chloroflexi

(tank D, 10.35%), Cyanobacteria (tank D, 11.76%; tank E,

28.46%), and Proteobacteria (tank A, 48.72%; tank B, 18.10%;

tank C, 22.86%; tank D, 41.05%; tank E, 19.20%) all had a relative

abundance >5% in the prokaryotic microbial community. In all

samples, Bacteroidetes and Proteobacteria tended to be

dominant, whereas Chloroflexi and Cyanobacteria appeared at

high levels, with Bacteroidetes and Proteobacteria, in tanks D and

E only.

In this study, the composition of the microbial community

was determined at the phylum level. The zooplankton/other

groups in the studied shrimp farms were mostly composed of

Ciliophora, Discosea, Gastrotricha, and Nematoda, which are

phyla containing algal and bacterial predators (Nosek and

Bereczky, 1983; Poinar, 2010; Riera and Todaro, 2012;

Santoferrara et al., 2017; Fisher et al., 2019; Lotonin and

Smirnov, 2020). The algal group mostly consisted of

Bacillariophyta (diatom) and Chlorophyta (green algae)

containing suspended microalgae (Car et al., 2020; Mohseni

et al., 2020; Tahir et al., 2020). The bacterial group was

mainly composed of Bacteroidetes, Chloroflexi, Cyanobacteria,

and Proteobacteria (Kawaichi et al., 2013; Chen et al., 2019; Liu

et al., 2019; Zammit, 2019; Tanay et al., 2020). Species associated

with nitrogen-related metabolism may be present among these

phyla (Kawaichi et al., 2013; Chen et al., 2019; Liu et al., 2019;

Tanay et al., 2020). Additionally, Cyanobacteria is involved in

nitrogen-related metabolism through functions such as

photosynthesis and nitrogen fixation (Zammit, 2019). In the

studied microbial communities, algal and bacterial groups would

therefore be consumed by zooplankton and related organisms

(Abakari et al., 2020; Sgnaulin et al., 2020), while the algal and

bacterial groups would compete for nitrogen (Liu et al., 2019;

Urakawa et al., 2019; D’Silva and Kyndt, 2020). Given that the

bacterial group was more abundant than the algal group under

conditions in which the zooplankton/other groups were

dominant (e.g., tanks A, C, and E), predation by the

zooplankton and related organisms has a greater impact on
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the algal group than on the bacterial group (Fisher et al., 2019).

Concurrently, the algal group thrived relative to the bacterial

group under conditions in which the influence of the

zooplankton/other group was weak (e.g., tanks B and C).

Thus, shrimp farms using biofloc systems are more suitable

environments for algae to bloom than for bacteria to thrive

(Cirri and Pohnert, 2019; González-Camejo et al., 2020). In

summary, this study suggests that nitrogen-related metabolism

in shrimp farms using biofloc technology is mainly carried out by

algae. Still, when predation by zooplankton is predominant,

nitrogen-related metabolism is instead conducted mainly by

bacteria. This phenomenon is expected to occur because the

zooplankton and related organisms in shrimp farms affect algae

more than bacteria.

3.4 Expected roles and functionality of
major microbial species in shrimp farms
with biofloc systems

Among the microbial species that mainly constituted the

microbial communities of the studied shrimp farms, the three

algal species were diatom (P. panduriforme) and green algae (T.

marina and Nannochloris sp.) types, which are photosynthetic

floating microalgae (Car et al., 2020; Mohseni et al., 2020; Tahir

et al., 2020). They absorb nitrogen sources, such as ammonia, and

synthesize proteins through metabolism, including

photosynthesis (El-Sheekh et al., 1994; González-Camejo et al.,

2020). Therefore, the algal species in these shrimp farms are

expected to play significant roles in the nitrogen cycle and as

producers in the ecosystems of the microbial community and

shrimp farm (Peace et al., 2014; González-Camejo et al., 2020).

From the taxonomic identification results, the detected

species (from the phylum level to the species level) are

summarized in Supplementary Tables S1, S2. Among the

detected species (91 eukaryotic species and 276 prokaryotic

species), the species for which relative abundance was >5% in

each of the eukaryotic and prokaryotic microbial communities

are listed in Table 2. In tank A, Nannochloris sp. (25.26%),

Strombidium guangdongense (31.09%), and Halichaetonotus

aculifer (40.44%) were most abundant in the eukaryotic

microbial community. In comparison, Donghicola eburneus

(8.43%), Muricauda lutimaris (17.73%), and Geoalkalibacter

subterraneus (21.51%) were highly prevalent in the

prokaryotic microbial community. Tetraselmis marina

(90.28%) dominated the eukaryotic microbial community in

tank B, while Polaribacter marinivivus (56.47%) dominated

the prokaryotic microbial community. In tank C, H. aculifer

(79.11%) dominated the eukaryotic microbial community, while

Lutimonas halocynthiae (27.66%) was the most prevalent in the

prokaryotic microbial community. In tank D, Nannochloris sp.

(94.69%) dominated the eukaryotic microbial community,

whereas D. eburneus (22.65%) was the most abundant in the

prokaryotic microbial community. Finally, in tank E,

Psammodictyon panduriforme (11.74%) and Acineta tuberosa

(59.01%) were particularly abundant in the eukaryotic

microbial community. In comparison, Tenacibaculum

aestuarii (20.91%) and Loriellopsis cavernicola (27.90%) were

the most prevalent in the prokaryotic microbial community.

The five major zooplankton/other related species in the

studied microbial communities included unicellular amoebae

(Discosea: Vermistella sp.) and multicellular zooplankton

(Ciliophora: A. tuberosa and S. guangdongense; Gastrotricha:

H. aculifer; Rotifera: Brachionus plicatilis) (Nosek and

Bereczky, 1983; Poinar, 2010; Santoferrara et al., 2017; Fisher

et al., 2019; Lotonin and Smirnov, 2020). These algal and

bacterial predators consume decaying organic matter (Nosek

and Bereczky, 1983; Riera and Todaro, 2012; Santoferrara et al.,

2017; Fisher et al., 2019; Lotonin and Smirnov, 2020); however,

they unexpected to be primarily involved in the nitrogen cycle or

organic compound synthesis because they do not

photosynthesize and use inorganic-type nitrogen sources

(Caron, 1991; Li Y. et al., 2020). Therefore, zooplankton/other

related species will play a role in nitrogen cycle as mediators that

convert organic nitrogen into inorganic nitrogen or transfer

organic nitrogen to other organisms (Caron, 1991; Li Y. et al.,

2020). These processes occur because the zooplankton or related

species are primary consumers (Caron, 1991; Li Y. et al., 2020).

Previous studies on the influence of consumers on producers

suggest that the features of the consumption process can affect

the selection of producer species and change the species diversity

of communities (Li Y. et al., 2020; Ling and Moreau, 2020;

Williams et al., 2020). In this study, it was confirmed that

algal group atrophy and relative bacterial group prosperity

occurred in environments dominated by the zooplankton/

other groups and that the algal group conversely prospered in

environments in which the zooplankton/other groups were weak.

Therefore, zooplankton and related species in shrimp farms

using biofloc technology will directly and indirectly affect the

nitrogen cycle as consumers (Caron, 1991; Li Y. et al., 2020).

In the eukaryotic microbial communities of all samples,

1–4 dominant species accounted for 82.02%–96.79% of the

total abundance (tank A, 96.79%; tank B, 90.28%; tank C,

93.13%; tank D, 94.69%; tank E, 82.02%), whereas

1–5 dominant species accounted for 27.66%–66.01% of the

total abundance in the prokaryotic microbial community

(tank A, 60.30%; tank B, 56.47%; tank C, 27.66%; tank D,

66.01%; tank E, 54.26%). There were examples of dominant

species with a relative abundance >90% in the eukaryotic

microbial community: T. marina (tank B, 90.28%) and

Nannochloris sp. (tank D, 94.69%). Others dominated with

lower relative abundances >50%: A. tuberosa (tank E, 59.01%)

and H. aculifer (tank C, 79.11%). However, in the prokaryotic

microbial community, all highly abundant species except P.

marinivivus (tank B, 56.47%) had a relative abundance <30%.

These results show that the eukaryotic microbial communities
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were populated by extremely dominant species, whereas species

with relatively lower abundance were prevalent in prokaryotic

microbial communities.

The bacterial group in the studied microbial communities

contained 12 major species. These bacterial species have been

detected and reported in sources involved in the elimination

of substances such as ammonia and nitrates (Kawaichi et al.,

2013; Chen et al., 2019; Liu et al., 2019; Zammit, 2019; Tanay

et al., 2020), e.g., sewage treatment plants, and have been

studied for their involvement in nitrogen-related metabolic

processes such as nitrification and denitrification (Liu et al.,

2019; Abakari et al., 2020; D’Silva and Kyndt, 2020).

Additionally, the Cyanobacteria L. cavernicola can

photosynthesize and is expected to function similarly to

members of the algal group (Zammit, 2019). Furthermore,

several previous studies have shown that the synthesis of

proteins by bacteria is involved in the ammonia and

nitrogen cycles and in nitrate-related metabolism (Liu

et al., 2019; Tanay et al., 2020). Given these diverse

metabolic functions, members of the bacterial group would

not be limited to ecological roles as decomposers but may also

serve as producers (Riley and Gordon, 1999; Denef and

Banfield, 2012). Given that prokaryotic microbial

communities in the studied shrimp farms had higher

species richness and diversity than the eukaryotic microbial

communities, the major species of the bacterial group were

diverse, and their nitrogen-related metabolism and ecological

roles are likely to be multifarious (Liu et al., 2019; Abakari

et al., 2020; Tanay et al., 2020).

In result, in shrimp farms using biofloc technology, microbial

communities differ in terms of the major species in each

organism group. Still, they seem to have common features in

terms of their function and ecological role (Abakari et al., 2020).

However, as the bacterial group consists of various major species,

relatively clear differences exist among microbial communities

with the function of bacterial species (Abakari et al., 2020).

Generally, the studied microbial communities had similarities

in nitrogen-related metabolism and ecological roles, despite

observed differences in environmental factors and the

composition of microbial communities. Thus, this study

proposes that various metabolic processes are conducted by

various species from the bacterial group, which plays many

roles in shrimp farms with biofloc systems.

3.5 Ecological communication between
microbial groups and the nitrogen cycle in
shrimp farms using biofloc technology

Referring to previous research and the results, the ecological

communication and nitrogen cycle of the microbial

communities in shrimp farms using biofloc systems was

illustrated (Figures 5, 6). In these microbial communities,

the algal group comprised photoautotrophic organisms, and

the zooplankton/other groups comprised heterotrophic

organisms (Browdy et al., 2012; Loureiro et al., 2012).

Alternatively, the bacterial groups consisted of

photoautotrophic, autotrophic, and heterotrophic organisms

(Miranda-Baeza et al., 2017; Tanay et al., 2020). Considering

the ecological features of the members, competition for limited

nitrogen resources would likely occur between the algal and

bacterial groups (Figure 5) (Riley and Gordon, 1999; González-

Camejo et al., 2020). Additionally, the zooplankton/other

groups would affect the algal and bacterial group through

predation (Figure 5) (Fisher et al., 2019). This model is

supported by the structure of the microbial communities in

the investigated samples. For example, the algal group

dominates the microbial communities of tanks B and D,

which had a relatively low abundance of the zooplankton/

other groups. Alternatively, in the microbial communities of

tanks A, C, and E, which had a relatively large abundance of the

zooplankton/other groups, the bacterial groups were more

dominant than the algal groups. Thus, the zooplankton/other

groups in shrimp farms using biofloc systems has a stronger

influence on the algal groups than the bacterial groups (Fisher

et al., 2019; Stoecker and Pierson, 2019). Additionally, under

conditions in which the influence of predation is excluded, the

algal groups outcompete the bacterial groups because it is more

adept at using nitrogen resources than the bacterial groups

(Zhu et al., 2019).

The nitrogen cycle also indicates why algal groups are

more dominant than bacterial groups when the selection

pressure due to predation is low (Figure 6) (Riley and

Gordon, 1999; González-Camejo et al., 2020). According to

previous studies, algae can use several nitrogen sources,

including ammonia and nitric acid, and the abundance of

these sources is related to the phenomenon of algal bloom

(Zhu et al., 2019; Yao et al., 2020). In contrast, although

species associated with nitrogen in the bacterial group use

several metabolic processes (e.g., nitrification and

assimilation), the type of nitrogen source available to a

particular species is limited, or the metabolism process is

not actively conducted (Jordan et al., 2005). Additionally, the

prosperity of the bacterial group is more dependent on organic

carbon sources than on nitrogen (Liu et al., 2019; Tanay et al.,

2020). In shrimp farms, a certain amount of nitrogen can be

maintained through the nitrogen cycle (Abakari et al., 2020).

Alternatively, organic carbon sources depend on externally

derived organic carbon sources, except for those produced by

photosynthetic organisms. The carbon cycle is not fully part of

the shrimp farm ecosystem (Crab et al., 2012). Therefore, the

microbial communities of shrimp farms depend on the

nitrogen cycle and external organic carbon sources. In

conclusion, the effects of predation and the nitrogen cycle
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strongly affect the composition of microbial communities in

shrimp farms in biofloc systems.

4 Conclusions

In biofloc systems of the investigated shrimp farms, the

prokaryotic microbial communities tended to have higher

species richness and diversity than the eukaryotic microbial

communities. However, the eukaryotic microbial

communities were more abundant and dominant than their

prokaryotic counterparts. Overall, the eukaryotic microbial

communities were dominated by algae and zooplankton/other

related organisms. Therefore, there seem to be unique

microbial communities in individual shrimp farms using

biofloc technology, but commonalities and patterns appear

in these microbial communities. Particularly, the structures of

the microbial communities in these shrimp farms depend on

the effects of predation by zooplankton and other related

organisms; this structure is likely to be shown in the

characteristics of the nitrogen cycle in the biofloc system.

In this study, we provided many insights into the microbial

communities existing in shrimp farms using biofloc

technology on the southern coast of the Korean Peninsula.

The results provided nitrogen circulation and nitrogen-

related metabolism by microorganisms, such as bacteria

and algae.
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