AUTHOR=Barguilla Irene , Unzueta Ugutz , Carratalá Jose Vicente , Cano-Garrido Olivia , Villaverde Antonio , Hernández Alba , Ferrer-Miralles Neus TITLE=Toxicity Profiling of Bacterial Inclusion Bodies in Human Caco-2 Cells JOURNAL=Frontiers in Bioengineering and Biotechnology VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2022.842256 DOI=10.3389/fbioe.2022.842256 ISSN=2296-4185 ABSTRACT=

Bacterial inclusion bodies (IBs) are discrete macromolecular complexes that appear in recombinant prokaryotic cells under stress conditions. These structures are often discarded for biotechnological uses given the difficulty in recovering proteins of interest from them in a soluble form. However, recent approaches have revealed the potential of these protein clusters as biomaterials to promote cell growth and as protein depots for the release of recombinant proteins for biotechnological and biomedical applications. Although these kinds of natural supramolecular complexes have attracted great interest, no comprehensive study of their toxicity in cell cultures has been carried out. In this study, caco-2 cells were exposed to natural IBs, soluble protein-only nanoparticles (NPs), and non-assembled versions of the same protein for comparative purposes. Cytotoxicity, oxidative stress, and genotoxicity were analyzed for all these protein formats. Natural IBs and soluble protein formats demonstrated their safety in eukaryotic cells. No cytotoxicity, genotoxicity, or oxidative stress was detected in caco-2 cells exposed to the protein samples in any of the experimental conditions evaluated, which covered protein concentrations used in previous biological activity assays. These conditions evaluated the activity of protein samples obtained from three prokaryotic hosts [Escherichia coli and the endotoxin-free expression systems Lactococcus lactis and ClearColi® BL21 (DE3)]. Our results demonstrate that natural IBs and soluble protein nanoparticles are non-toxic materials for eukaryotic cells and that this may represent an interesting alternative to the classical unassembled format of recombinant proteins for certain applications in biotechnology and biomedicine.