AUTHOR=Wang Xin , Yang Huimin TITLE=MGMSN: Multi-Granularity Matching Model Based on Siamese Neural Network JOURNAL=Frontiers in Bioengineering and Biotechnology VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2022.839586 DOI=10.3389/fbioe.2022.839586 ISSN=2296-4185 ABSTRACT=

Aiming to overcome the shortcomings of the existing text matching algorithms, in this research, we have studied the related technologies of sentence matching and dialogue retrieval and proposed a multi-granularity matching model based on Siamese neural networks. This method considers both deep semantic similarity and shallow semantic similarity of input sentences to completely mine similar information between sentences. Moreover, to alleviate the problem of out of vocabulary in sentences, we have combined both word and character granularity in deep semantic similarity to further learn information. Finally, comparative experiments were carried out on the Chinese data set LCQMC. The experimental results confirm the effectiveness and generalization ability of this method, and several ablation experiments also show the importance of each part of the model.