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Mayfly algorithm (MA) is a bioinspired algorithm based on population proposed in recent
years and has been applied to many engineering problems successfully. However, it has
too many parameters, which makes it difficult to set and adjust a set of appropriate
parameters for different problems. In order to avoid adjusting parameters, a bioinspired
bare bonesmayfly algorithm (BBMA) is proposed. The BBMA adopts Gaussian distribution
and Lévy flight, which improves the convergence speed and accuracy of the algorithm and
makes better exploration and exploitation of the search region. The minimum spanning
tree (MST) problem is a classic combinatorial optimization problem. This study provides a
mathematical model for solving a variant of the MST problem, in which all points and
solutions are on a sphere. Finally, the BBMA is used to solve the large-scale spherical MST
problems. By comparing and analyzing the results of BBMA and other swarm intelligence
algorithms in sixteen scales, the experimental results illustrate that the proposed algorithm
is superior to other algorithms for the MST problems on a sphere.

Keywords: mayfly algorithm, bare bones mayfly algorithm, large-scale spherical MST, Prüfer code, bioinspired
algorithm

INTRODUCTION

Tree is a connected graph with simple structure which contains no loops and widely applied in
graph theory (Diestel, 2000). The minimum spanning tree (MST) problem is a practical, well-
known, and widely studied problem in the field of combinatorial optimization (Graham and Hell,
1985). This problem has a long history, which was first put forward by Borüvka in 1926. Many
engineering problems are solved based on MST (Bo Jiang, 2009), such as communications network
design (Hsinghua et al., 2001), the construction of urban roads, the shortest path (Beardwood et al.,
1959), distribution network planning, and pavement crack detection. There are some classical
algorithms for solving MST, such as the Prim algorithm (Bo Jiang, 2009) and Kruskal algorithm
(Joseph, 1956). They all belong to greedy algorithms, and generally, only one minimum spanning
tree can be obtained. However, in practical application, it is usually necessary to find a group of
minimum or subminimum spanning trees as the basis for scheme evaluation or selection.
Therefore, finding an effective algorithm to solve MST problems is still a frontier topic. In
recent years, a large number of bioinspired algorithms have been proposed, such as the marine
predator algorithm (Faramarzi et al., 2020), chimp optimization algorithm (Khishe and Mosavi,
2020), arithmetic optimization algorithm (Abualigah et al., 2021), bald eagle search algorithm
(Alsattar et al., 2020), Harris hawks optimization algorithm (Heidari et al., 2019), squirrel search

Edited by:
Zhihua Cui,

Taiyuan University of Science and
Technology, China

Reviewed by:
Xiangtao Li,

Jilin University, China
Shixiong Zhang,

Xidian University, China

*Correspondence:
Yongquan Zhou

zhouyongquan@gxun.edu.cn

Specialty section:
This article was submitted to

Bionics and Biomimetics,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 06 December 2021
Accepted: 14 January 2022
Published: 01 March 2022

Citation:
Zhang T, Zhou Y, Zhou G, DengW and
Luo Q (2022) Bioinspired Bare Bones

Mayfly Algorithm for Large-Scale
Spherical Minimum Spanning Tree.

Front. Bioeng. Biotechnol. 10:830037.
doi: 10.3389/fbioe.2022.830037

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 8300371

ORIGINAL RESEARCH
published: 01 March 2022

doi: 10.3389/fbioe.2022.830037

http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.830037&domain=pdf&date_stamp=2022-03-01
https://www.frontiersin.org/articles/10.3389/fbioe.2022.830037/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.830037/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.830037/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhouyongquan@gxun.edu.cn
https://doi.org/10.3389/fbioe.2022.830037
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.830037


algorithm (Jain et al., 2018), pathfinder algorithm (Yapici and
Cetinkaya, 2019), equilibrium optimizer (Faramarzi et al.,
2019). The swarm intelligence algorithm has been widely
used in various optimization problems and achieved good
results, for example, path planning problems solved by the
central force optimization algorithm (Chen et al., 2016),
teaching–learning-based optimization algorithm (Majumder
et al., 2021), water wave optimization algorithm (Yan et al.,
2021), chicken swarm optimization algorithm (Liang et al.,
2020), etc. Location problems are solved by the genetic
algorithm (Li et al., 2021), particle swarm optimization (Yue
et al., 2019), flower pollination algorithm (Singh and Mittal,
2021), etc. Also, the design of a reconfigurable antenna array is
solved by the differential evolution algorithm (Li and Yin,
2011a), biogeography-based optimization (Li and Yin,
2011b), etc. In fact, the meta-heuristic algorithm can generate
a set of minimum or subminimum spanning trees rather than
one minimum spanning tree. The genetic algorithm (Zhou et al.,
1996), artificial bee colony algorithm (Singh, 2009), ant colony
optimization (Neumann and Witt, 2007), tabu search algorithm
(Katagiri et al., 2012), and simulated annealing algorithm have
been used for solving the MST problem.

For the MST problem, we usually calculate it in two-
dimensional space, but it is of practical significance to study
MST in three-dimensional space. For example, sockets are
connected with wires in cuboid rooms, and roads on hills and
mountains are planned. Also, as we all know, the surface of the
Earth where we live is very close to a sphere. In many research
fields, atoms, molecules, and proteins are represented as spheres,
and foods in life, such as eggs, seeds, onions, and pumpkins, are
close to spheres. Some buildings, glass, and plastics are made into
spheres. Similar to the traveling salesman problem (TSP), it is also
an NP-hard problem. Now scholars have applied the cuckoo
search algorithm (Ouyang et al., 2013), glowworm swarm
optimization (Chen et al., 2017), and flower pollination
algorithm (Zhou et al., 2019) to solve the spherical TSP. Thus,
it is of essence crucial to study the MST on a three-dimensional
sphere. Bi and Zhou have applied the improved artificial electric
field algorithm to the spherical MST problem (Bi et al., 2021). In
this article, we will further study the cases of more nodes on the
sphere.

The mayfly algorithm (MA) proposed by Konstantinos
Zervoudakis and Stelios Tsafarakis (2020) is a population-
based intelligent optimization bioinspired algorithm inspired
by the flight and mating behavior of adult mayflies. Due to its
high calculation accuracy and simple structure, researchers
employed it to address problems of numerous disciplines.
Guo and Kittisak Jermsittiparsert used improved MA to
optimize the component size of high-temperature PEMFC-
powered CCHP (Guo et al., 2021). Liu and Jiang proposed a
multiobjective MA for a short-term wind speed forecasting
system based on optimal sub-model selection (Liu et al.,
2021a). Trinav Bhattacharyya and Bitanu Chatterjee
combined MA with harmony search algorithm to solve the
feature selection problem (Bhattacharyya et al., 2020). Liu
and Chai used energy spectrum statistics and improved MA
for bearing fault diagnosis (Liu et al., 2021b). Chen and Song

proposed the balanced MA to optimize the configuration of
electric vehicle charging stations on the distribution system
(Chen et al., 2021). MohamedAbd and ElazizaS. Senthilraja
used MA to predict the performance of a solar photovoltaic
collector and electrolytic hydrogen production system
(AbdElaziz et al., 2021). To obtain a group of more perfect
minimum spanning trees or subminimum spanning trees on a
sphere in finite time, a bare bones mayfly algorithm (BBMA) is
proposed to solve spherical MST problems. By simplifying the
algorithm parameters and using the statistical update method,
the fast convergence and solution accuracy of the proposed
algorithm are better than before, and it shows superior ability in
solving large-scale problems.

The rest of this article is organized as follows: Related Work
describes the related work and basic mayfly algorithm. The
Proposed BBMA for Large-Scale Spherical MST introduces the
proposed bare bones mayfly algorithm for spherical MST.
Comparison and analysis of results evaluated by BBMA and
other algorithms are given in Experimental Results and
Discussion. This article is concluded in Conclusion and
Future Work.

RELATED WORK

Spherical Minimum Spanning Tree
Mathematical Model
A semicircle takes its diameter as its axis of rotation, and the
surface formed by rotation is called a sphere. The radius of the
semicircle is the radius of the sphere. In this study, the coordinate
origin (Figures 1A,B ) is set as the center of the sphere. The
equation of a sphere with radius r is

x2 + y2 + z2 � r2, (1)
where (x, y, z) is the coordinate of each point on the sphere.

Representation of Points on a Sphere
The coordinate position on the sphere can be expressed by the
following formula (Hearn and Pauline Baker, 2004):

p(u, v) � (x(u, v), y(u, v), z(u, v)). (2)
Each coordinate is represented by a function of the surface

parameters u and v. Usually, we normalize the three coordinate
functions and make u and v in the range of 0–1. Eqs. 3–5 show a
sphere with radius r, and the center is at the coordinate origin
(Eldem and Ülker, 2017).

x(u, v) � r cos(2πu) sin(πv), (3)
y(u, v) � r sin(2πu) sin(πv), (4)

z(u, v) � r cos(πv), (5)
where parameters u and v determine a position by representing
lines of constant longitude and lines of constant latitude,
respectively. To simplify calculations, a sphere with r � 1 is
used in this study. When the parameters u and v take
different values, the coordinate position on the sphere is as
shown in Figure 1C (Uğur et al., 2009).
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Geodesics Between Point Pairs on a Unit Sphere
The circle of a sphere cut by the plane passing through the center
of the sphere is called a great circle (Wikipedia, 2012). On the
sphere, the length of the shortest connecting line between two
points is the length of an inferior arc between the two points of the
great circle passing through the two points. We call this arc length
the geodesic (Lomnitz, 1995).

The geodesic between two points pi(xi, yi, zi) and
pj(xj, yj, zj) on a sphere is shown in Figure 1D. These two
points can be represented by two vectors �vi � (xi, yi, zi) and
�vj � (xj, yj, zj). The scalar product of the two vectors is

�vi• �vj �
∣∣∣∣∣ �vi∣∣∣∣∣∣∣∣∣∣ �vj∣∣∣∣∣ cos θ, (6)

where θ is the angle between two vectors. The scalar product is
calculated as

�vi• �vj � xixj + yiyj + zizj. (7)
Also, the shortest distance formula is

d̂pi,pj � rθ. (8)
From Eqs 6–8, we get

d̂pi,pj � r arccos(xixj + yiyj + zizj
r2

). (9)

The distance from point pi to point pj is the same as the
distance from pj to pi. If there are n points on the sphere, an

n × n symmetric distance matrix D will be obtained by
calculating the distance between each two points. The matrix
D is as follows:

D �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d̂11 d̂12 / d̂1n

d̂21 d̂21 / d̂2n

..

. ..
.

1 ..
.

d̂n1 d̂n2 / d̂nn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∞ d̂12 / d̂1n

d̂21 ∞ / d̂2n

..

. ..
.

1 ..
.

d̂n1 d̂n2 / ∞

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (10)

where d̂i,j represents the length of the geodesic between point pi

and point pj. In particular, d̂i,i � ∞ means that point pi cannot
reach itself.

Spherical Minimum Spanning Tree Mathematical
Model
For the two-dimensional MST problem,G � (V, E) represents an
undirected graph, where V � {v1, v2,/, vn} is a finite set of nodes
and E � {eij|vi, vj ∈ V} is a finite set of edges. Each has its
corresponding weight wij. xij(i, j � 1, 2,/, n) is set as 0 or 1.
If xij � 1, eij is selected; if xij � 0, eij is not selected. The variable
|S| is the number of nodes of the graph contained in the set S. The
mathematical model of the minimum spanning tree is as follows:

minf(x) � ∑n−1
i−1

∑n
j�1+1

wijxij, (11)

s.t.∑n−1
i−1

∑n
j�1+1

xij � n − 1, (12)

FIGURE 1 | Related definitions on the sphere. (A) Sphere. (B) Lines of longitudes and latitudes. (C) Different values of parameters u, v on the spherical surface.
(D) The shortest distance between pi and pj .
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∑
vi∈S

∑
vj∈S,i< j

xij ≤ |S| − 1,∀S ⊂ V, |S|≥ 2, (13)

xij ∈ {0, 1} i, j � 1, 2,/, n, (14)
where the constraint condition Eq. 12 ensures that the last
generated graph is a spanning tree. Also, constraint condition
Eq. 13 ensures that it is not a circle in the process of solving the
minimum spanning tree problem.

As for a 3D spherical minimum spanning tree problem, a finite
set of nodes P � {p1, p2,/, pn} are on a sphere. Each node is
represented bypi � (xi, yi, zi).A � {aij|pi, pj ∈ V} is a finite set of
geodesics. Each geodesic has its corresponding weight d̂ij which is
calculated by Eq. 9. An n × n symmetric distance matrix D can be
constructed as shown in Eq. 10. xij(i, j � 1, 2,/, n) is set as 0 or 1.
If xij � 1, aij is selected; if xij � 0, aij is not selected. The variable
|S| is the number of nodes on a sphere. The mathematical model of
the spherical MST is as follows:

minf(x) � ∑n−1
i−1

∑n
j�1+1

d̂ijxij. (15)

Similarly, constraint condition Eqs 12–14 are applied to Eq. 15.

Mayfly Algorithm
Mayfly algorithm is a new swarm intelligence bioinspired algorithm
proposed in 2020. Its inspiration comes from the flying and mating
behavior of male and female mayflies in nature. The algorithm can be
considered as a modification of particle swarm optimization (PSO)
(Kennedy and Eberhart, 1995), genetic algorithm (GA) (Goldberg,
1989), and firefly algorithm (FA) (Yang, 2009). At present, researchers
have applied MA to many engineering problems.

Mayflies are insects that live in water when they are young. The
feeding ability will be lost, and they only mate and reproduce when
they grow up. In order to attract females, most adult male mayflies
gather a few meters above the water to perform a nuptial dance.
Then, female mayflies fly into these swarms to mate with male
mayflies. After mating, the females lay their eggs on the water, and
the mated mayflies will die.

In MA, the two idealized rules should be followed. First, after
mayflies are born, they are regarded as adults. Second, the mated
mayflies which have stronger ability to adapt to the environment can
continue to survive. The algorithm works as follows. First, male and
female populations are randomly generated. Each mayfly in the
search space is regarded as a candidate solution represented by a
d-dimensional vector X � (x1, x2,/, xd) for male and Y �
(y1, y2,/, yd) for female. Its performance is evaluated according
to the objective function f(·) shown in Eq. 15. The velocity of each
mayfly is expressed by V � (v1, v2,/, vd). The flying direction of
each male mayfly is guided by its best location in history and the
global optimal position in the population. Meanwhile, the female
mayflies fly to the corresponding male mayflies. The main steps of
mayfly algorithm are described as follows.

Movement of Male Mayflies
The gathering of male mayflies in a swarm is always a few meters
above water for performing the nuptial dance. The position of a
male mayfly is updated as follows:

xt+1
i � xt

i + vt+1i , (16)
where xti is the position ofmayfly i at time t and xt+1

i is the position at
time t + 1 and vt+1i is the velocity ofmayfly i at time t + 1. The velocity
is adjusted by its own velocity and individual and social experiences at
time t. However, the bestmalemayfly in the population is not affected
by other mayflies, which helps the algorithm escape the local optimal.
The velocity of a male mayfly i is calculated as

vt+1ij � ⎧⎨⎩ vtij + α1 · e−βr2p(pbestij − xt
ij) + α2 · e−βr2g(gbestj − xt

ij),
f(xt

i)>f(gbest)vtij + d · r, f(xt
i) � f(gbest),

(17)

rp �
���������������∑n
j�1
(xij − pbestij)2√√

, (18)

rg �
��������������∑n
j�1
(xij − gbestj)2√√

, (19)

where vtij represents the velocity ofmalemayfly i at time t in dimension
j(j � 1, 2,/, n), xtij represents the position of dimension j of mayfly
i at time t, α1 and α2 represent positive attraction constants used to
scale the contribution of the cognitive and social component,
respectively, and β is a fixed visibility coefficient used to limit a
mayfly’s visibility to others. Furthermore, the best individual
historical position of mayfly i is represented by pbesti and gbest is
the global best position at time step t, while rp is the Cartesian distance
between xi and pbesti and rg is the Cartesian distance between xi and
gbest. These distances are calculated according to Eq. 18, 19. Finally, d
is the nuptial dance coefficient and r ∈ [−1, 1] is a random value.

Movement of Female Mayflies
The female mayflies move toward the males for breeding. The
position of a female mayfly is updated as follows:

yt+1
i � yt

i + vt+1i , (20)
where yt

i is the position of female mayfly i at time t and yt+1
i is the

position at time step t + 1 and vt+1i represents the velocity of female
mayfly i at time t + 1. Its velocity is affected by its own velocity and
the corresponding male mayfly’s position. It means that according to
their fitness function, the best female should be attracted by the best
male, the second best female by the second best male, and so on.
However, the female mayfly which is better than the corresponding
malemayfly is not affected by amale, it flies randomly. Consequently,
considering minimization problems, their velocities are calculated as

vt+1ij � ⎧⎨⎩ vtij + α2 · e−βr2mf(xt
ij − yt

ij), f(yt
i)>f(xt

i)
vtij + fl · r, f(yt

i)≤f(xt
i) , (21)

rmf �
�����������∑n
j�1
(xij − yij)2√√

, (22)

where vtij is a velocity of female mayfly i at time t, yt
ij is the position in

dimension j at time t, α2 is the positive attraction constant, and β
represents an unchanged visibility coefficient. rmf represents the
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distance betweenxi andyi calculated according toEq. 22. Finally,fl is
the random fly coefficient, and r ∈ [−1, 1] is a random value.

Mating of Mayflies
The mating rules are the same as the way females are attracted by
males. The best female breeds with the best male, the second best
female with the second best male, and so on. The positions of two
offspring are generated by the arithmetic weighted sum of the
positions of parents as follows:

offspring1 � L ·male + (1 − L) · female
offspring2 � L · female + (1 − L) ·male

, (23)

wheremale is themalemayfly’s position,female is the femalemayfly’s
position, andL ∈ [−1, 1] is a randomvalue.Offspring’s initial velocities
are set to be zero, which helps the convergence of the algorithm.

After mating, the offspring are mixed with male and female
parents. Then, the fitness values are sorted. The mayflies with low
adaptability will die, and those with high adaptability will live for
the next iteration. Algorithm 1 shows the pseudocode of MA.

Algorithm 1. Mayfly algorithm.

THE PROPOSED BBMA FOR
LARGE-SCALE SPHERICAL MST

MST Based on Prüfer Coding
Acodingmethod formarking rootless trees is called Prüfer coding. The
initial population generated by this coding method will not produce
infeasible solutions after being improved. Prüfer coding is needed to
solve the spherical MST. Its idea comes from Cayley’s theorem, which
means that there are nn−2 different minimum spanning trees for a
complete graph with n nodes (Crabb, 2006). It shows that the
arrangement of n − 2 numbers can uniquely represent a tree, and
these numbers are integers between 1 and n. Such an arrangement that
can represent a tree is the Prüfer sequence. The process of converting a
tree into a Prüfer sequence is as follows:

Step 1: node i is the leaf node with the smallest value on the tree T
Step 2: the node j uniquely connected to i is taken as the first

coding number, and the coding order is from left to right

Step 3: node i and the edge from i to j are deleted, and a n − 1
node tree is obtained

Step 4: this is repeated until only one edge is left

Through the abovementioned steps, we can get a Prüfer sequence
of treeTwhich is n − 2 permutations of the numbers between 1 and n.

Code Design
We assume that there are n points on a sphere, and these points are
represented by different integers between 1 and n. The dimension
of the position of each individual is n − 2, and the value in each
dimension is a real number between 1 and n.

Suppose an individual is represented by

X1: (1.75, 7.13, 3.84, 2.12, 4.26, 5.06). (24)
The Prüfer sequence obtained by rounding X1 is as follows:

X1 → X2: (2, 7, 4, 2, 4, 5). (25)
According toX2, the spanning tree shown in Figure 2 is obtained.
The pseudo code of decoding the Prüfer sequence into a tree is

shown in Algorithm 2.

Algorithm 2. Decoding the Prüfer sequence into a tree.

FIGURE 2 | Spanning tree.
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The BBMA Algorithm
The basic MA has the problem of many initial parameters which
have a great impact on the results. Besides, the accuracy ofMA is not
high enough due to lack of exploitation ability. Bare bones mayfly
algorithm avoids the influence of parameters by cancelling the
velocity (Ning and Wang, 2020; Song et al., 2020), and individual
position is directly obtained by random sampling obeying Gaussian
distribution like bare bones PSO (Kennedy, 2003). In order to
enhance the exploitation ability and help the algorithm escape
from the local optimal solution, BBMA uses Lévy flight to
perform the nuptial dance of the optimal male and the random
flight of the excellent female (Nezamivand et al., 2018). In addition,

individuals crossing the border are pulled back into the search space
instead of the method of placing cross-border individuals on the
boundary so that it reduces the waste of search space (Wang et al.,
2016). The main steps of BBMA are described as follows.

Movement of Male Mayflies
Male mayflies can be renewed in two ways as before. First, for
individuals who are not the best, the Gaussian distribution based
on the global optimal position and individual historical optimal
position is used to calculate the position. In order to keep a
balance between the diversity and convergence of algorithm, a
disturbance which changes adaptively based on the diversity of

TABLE 1 | Experimental results for the twelve algorithms for 25, 50, 75, and 100 points.

Points Algorithms Best Worst Mean Std Rank

25 BBMA 13.6447 18.7544 15.8919 1.0202 1
MA 15.8860 20.9488 17.8316 1.2093 3
AEFA, Bi et al. (2021) 19.3017 28.3577 23.9500 1.9339 11
PSO, Bi et al. (2021) 18.6661 25.1622 22.1693 1.6687 8
ICA, Bi et al. (2021) 18.1877 25.3421 21.8561 1.7114 6
GA, Bi et al. (2021) 22.7281 28.0316 26.1953 1.2759 12
GOA, Bi et al. (2021) 19.8519 26.1873 23.0678 1.6544 10
GWO, Bi et al. (2021) 16.9782 27.0574 22.5108 2.3995 9
SOA, Bi et al. (2021) 18.8431 24.4946 21.9361 1.3878 7
SMA, Bi et al. (2021) 15.0231 19.8995 17.6528 1.2658 2
DE 16.9290 21.1576 18.8842 1.0401 4
AMO 16.5514 20.6010 19.0003 0.8266 5

50 BBMA 28.4447 37.2789 34.8170 1.7546 1
MA 34.3380 58.6173 42.2226 4.4855 2
AEFA, Bi et al. (2021) 50.2250 59.3597 55.1098 2.4704 8
PSO, Bi et al. (2021) 44.8040 57.2689 51.5060 3.0896 5
ICA, Bi et al. (2021) 45.7038 58.0749 52.4320 2.7355 7
GA, Bi et al. (2021) 55.3518 64.8996 61.6177 2.3682 12
GOA, Bi et al. (2021) 50.5135 58.4612 55.3181 2.0431 9
GWO, Bi et al. (2021) 51.8792 59.9504 57.8262 1.5102 11
SOA, Bi et al. (2021) 53.8901 58.4334 56.5395 1.2611 10
SMA, Bi et al. (2021) 41.6473 54.8003 47.6913 3.0873 3
DE 48.4642 54.5281 51.7636 1.6024 6
AMO 45.0359 51.8286 48.9038 1.4479 4

75 BBMA 48.6839 59.3288 54.7791 3.5118 1
MA 59.7131 93.1400 76.1626 11.7156 2
AEFA, Bi et al. (2021) 78.5702 93.0950 87.1792 3.7266 8
PSO, Bi et al. (2021) 76.2217 83.4455 83.4455 3.0984 5
ICA, Bi et al. (2021) 74.9482 95.2576 85.2616 4.4489 6
GA, Bi et al. (2021) 92.5715 104.4691 98.6174 2.8997 12
GOA, Bi et al. (2021) 82.9354 95.4337 87.8587 3.1684 9
GWO, Bi et al. (2021) 89.7958 96.8943 93.2198 1.9073 10
SOA, Bi et al. (2021) 88.1649 99.3988 95.7273 2.6763 11
SMA, Bi et al. (2021) 73.2677 88.9004 82.6417 4.0689 4
DE 81.4543 88.4035 85.4406 1.5659 7
AMO 72.7859 83.5528 79.9430 2.6396 3

100 BBMA 69.2455 82.8067 76.9687 3.358 1
MA 93.0942 132.0213 117.2067 13.3847 5
AEFA, Bi et al. (2021) 108.6233 132.4447 121.9061 5.5434 8
PSO, Bi et al. (2021) 105.3880 122.9785 114.8626 4.8750 2
ICA, Bi et al. (2021) 113.1387 130.8257 120.4606 4.4412 6
GA, Bi et al. (2021) 122.6827 141.3354 136.5707 3.5123 12
GOA, Bi et al. (2021) 115.5154 131.2544 124.3536 4.3611 9
GWO, Bi et al. (2021) 115.5757 132.9414 128.5117 3.6147 10
SOA, Bi et al. (2021) 124.2706 132.8262 129.5164 2.4841 11
SMA, Bi et al. (2021) 102.8094 127.4766 116.7717 4.8956 4
DE 115.9142 125.0204 120.9535 2.0062 7
AMO 111.0088 118.8614 115.6808 2.3881 3

The optimal values are shown in bold.
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the population and the convergence degree of the current
individual is added (Zhang et al., 2014). The new update
strategy is described as follows:

xt+1
i � N(μ, σ2), (26)

μ � (gbestj + pbestij)
2

, σ � ∣∣∣∣gbestj − pbestij
∣∣∣∣ + δ, (27)

δ � rand · ∣∣∣∣xk1,j − xk2,j

∣∣∣∣ · ef(gbest)−f(xi), (28)
where N(μ, σ2) is the Gaussian distribution with mean μ and
standard deviation σ, gbest represents the global optimal
individual, pbesti is the historical optimal solution of
individual i, rand ∈ [0, 1] is a random value, and xk1 and xk2

are two solutions selected from other male mayflies at random.
We know that the population is scattered in the early stage of

evolution, so σ is large, and the Gaussian distribution is scattered,
which is conducive for global search. In the later stage of evolution,
the population is relatively concentrated, and individuals search
carefully around μ. However, if thepbest of a individual happens to
be close or equal to gbest in the evolution process, this individual
will stop updating because the variance of Gaussian distribution

becomes 0. Also, if most individuals among the swarm stop
updating prematurely, the algorithm will converge to a false
global optimum with high probability. Thus, assigning a
disturbance on the variance of Gaussian distribution is a good
way. As shown in Eq. 28, on the assumption that |xk1,j − xk2,j|
remains constant, the smaller the differential fitness value between
gbest and xi, the higher the disturbance δ.When the individual has
the same fitness as gbest, this individual will be affected by a
disturbance with the maximal magnitude. In this case, this
disturbance may prevent the algorithm from trapping into a
local optimal solution. Furthermore, with the iteration of the
algorithm, individuals get denser and denser. The smaller the
value of |xk1,j − xk2,j|, the smaller the δ and σ, which ensures
the convergence of the algorithm.

As for the second individual update method, if the individual
is the global optimal solution, Lévy flight is adopted. The small
step size of Lévy flight improves the exploitation ability of the
algorithm, and the less long step increases the ability of avoiding
getting stuck in a local optimal value (Dinkar and Deep, 2018;
Ren et al., 2021). By using Lévy flight, the overall performance of
BBMA in solving large-scale problems has been greatly enhanced.

FIGURE 3 | The convergence curves for low dimensions. (A) The convergence curves for 25 points. (B) The convergence curves for 50 points. (C)The convergence
curves for 75 points. (D) The convergence curves for 100 points.
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In fact, Lévy flight is a random walk, which follows the Lévy
distribution of the following formulas:

Levy(s) ~ s−1−β, 0≤ β≤ 2, (29)
s � A

|B|1/β, A ~ N(0, σ2A), B ~ N(0, σ2B), (30)

σA � ⎛⎝Γ(1 + β) · sin(πβ2 )
Γ(1 + β

2) · β · 2β−1
2

⎞⎠1/β

, σB � 1, (31)

Γ(1 + β) � ∫∞

0
tβe−tdt, (32)

where s represents the step size and β is an index by which the
peak sharpness of the Lévy distribution can be adjusted. In this
work, we set β � 1.5. A and B follow the Gaussian distribution,
and Γ stands for the gamma function which is obtained by Eq. 32.
For the best individual, the update formula is as follows:

xt+1
i � xt

i + xt
i · Levy(β). (33)

By using Lévy flight to search the solution space, the global
exploration ability and local exploitation ability of the algorithm
are better balanced.

Movement of Female Mayflies
Female mayflies can be renewed in two ways as before. Firstly,
for individuals who are worse than their corresponding male
mayflies, the Gaussian distribution based on the current female
mayfly’s position and its corresponding male mayfly’s position is
used to calculate the position. The new update strategy is
described as follows:

yt+1
i � N(μ, σ2), (34)

μ � (xij + yij)
2

, σ �
��������∣∣∣∣∣xij − yij

∣∣∣∣∣√
, (35)

where N(μ, σ2) is the Gaussian distribution, yij is the position of
the female mayfly, and xij is the position of its corresponding male
mayfly. The root sign makes the Gaussian distribution relatively
concentrated so that it ensures female mayflies approach male
mayflies faster, which accelerates the convergence.

As for the second individual update method, if the female mayfly
is better than its corresponding male mayfly, the excellent female
mayfly, like the best male mayfly, should use the strategy of Lévy
flight which will make the algorithm get rid of the local optimum
(Barshandeh and Haghzadeh, 2020). For excellent female mayflies,
the update formula is as follows:

yt+1
i � yt

i + yt
i · Levy(β). (36)

Both Gaussian distribution and Lévy distribution are statistical
random distribution. The distribution of the former is regular, and the
distribution of the latter is irregular. Their cooperation can prevent the
lack of diversity of the algorithm and improve the convergence speed.

Mating of Mayflies
The mating process is the same as the basic MA as shown in Eq.
23. After mating, the offspring are mixed with parents. Then, the
mayflies with low adaptability will die, and those with high
adaptability will live for the next iteration.

Handling Cross-Border Mayflies
In the early stage of population evolution, the distance between
the historical optimal position and the global optimal position of
different individuals is far away, and the standard deviation σ of
Gaussian distribution used for updating positions is relatively
large, resulting in a greater opportunity for the new position to
cross the boundary of the search space. In basic MA, the position
of the cross-border individual is directly placed on the boundary,
which will result in a waste of resources. In this study, according
to the degree of individuals crossing the boundary, with the
expectation μ of Gaussian distribution as the center, the cross-
border individual x is pulled back to the search space to obtain x′,
and the cross-border individual is treated according to the
following equation:

x′ � μ + (xborder − μ)2
x − μ

, (37)

wherexborder is the boundary, we assumexmax is the upper bound and
xmin is the lower bound, if x> xmax, xborder � xmax, and if
x<xmin, xborder � xmin. According to Eq. 37, when x crosses the
upper bound, it is pulled back to the interval (μ, xmax). The less the x
crosses xmax, the closer it is pulled back toxmax; themore the x crosses
xmax, the closer it is pulled back to the center μ. When x crosses the
lower bound, it is pulled back to the interval (xmin, μ). Similarly, the
degree to which individuals are pulled back into the search space is
proportional to the degree of individuals crossing the boundary.

The concrete implementation steps of the bare bones mayfly
algorithm for spherical MST are as follows.

Algorithm 3. The BBMA for spherical MST.

EXPERIMENTAL RESULTS AND
DISCUSSION

A large number of cases with different number of points are used
to test the ability of BBMA in solving MST problems. All
experiments are carried out on a sphere with r � 1, and the
number of nodes the sphere is n = 25, 50, 75, 100, 150, 200, 250,
300, 350, 400, 500, 600, 700, 800, 900, and 1,000, The data and
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results of 400 nodes or less come from the literature (Bi et al., 2021)
and the node data in higher dimensions are randomly generated.
Due to the randomness of meta-heuristic algorithm, each case is run
30 times independently. The structure of this section is as follows: in
Experimental Setup, the experimental setup is given; Comparison of
Algorithms in Low-Dimensional Cases shows the comparison and
analysis of experimental results between BBMA and other
algorithms in the cases of low dimension; the comparison for
medium-dimensional cases is shown in Comparison of Algorithms
for Medium-Dimensional Cases; and the high-dimensional cases are
shown in Comparison of Algorithms for High-Dimensional Cases.

Experimental Setup
All of the experiments are compiled in MATLAB R2019a. System
specification: an Intel Core i3-6100 processor, 8 GB RAM is used. In
this work, we set the population size of all algorithms to 30, and each
algorithm iterates 300 generations. BBMA is compared with the
mayfly algorithm (MA), artificial electric field algorithm (AEFA)
(Anita and Yadav, 2019), GA (Holland, 1992), PSO (Kennedy and
Eberhart, 1995), imperialist competitive algorithm (ICA) (Atashpaz-
Gargari and Lucas, 2008), seagull optimization algorithm (SOA)
(Dhiman and Kumar, 2019), grasshopper optimization algorithm

(GOA) (Storn and Price, 1997), grey wolf optimization (GWO) (Li
et al., 2014), slime moth algorithm (SMA) (Saremi et al., 2017),
differential evolution (DE) (Mirjalili et al., 2014), and animal
migration optimization (AMO) (Li et al., 2020) in the best value,
worst value, mean value, and standard deviation. In addition, in
order to clearly prove the effectiveness of BBMA, the convergence
curves, ANOVA test, fitness values for 30 runs, running time, and
Wilcoxon rank-sum non-parametric statistical test (Derrac et al.,
2011; Gibbons and Chakraborti, 2011) are also compared. Also, the
minimum spanning tree is showed in spheres. The control
parameters of each algorithm are as follows (Bi et al., 2021):

• BBMA: no parameters
• MA: positive attraction constants α1 � 1, α2 � 1.5, visibility
coefficient β � 2, nuptial dance coefficient d � 0.1, and
random walk coefficient fl � 0.1 (Zervoudakis and
Tsafarakis, 2020)

• AEFA: Coulomb’s constant K0 � 500 (Anita and Yadav,
2019)

• PSO: inertia weight g � 0.2, self-cognitive coefficient
C1 � 0.7, and social learning coefficient C2 � 1 (Kennedy
and Eberhart, 1995)

FIGURE 4 | The ANOVA test for low dimensions. (A) The ANOVA test for 25 points. (B) The ANOVA test for 50 points. (C) The ANOVA test for 75 points. (D) The
ANOVA test for 100 points.
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• ICA: selection pressure is 1, assimilation coefficient is 2,
revolution probability is 0.5, revolution rate is 0.1, and
colony mean cost coefficient is 0.1 (Atashpaz-Gargari and
Lucas, 2008)

• GA: crossover probability is 0.8, and mutation probability is
0.8 (Holland, 1992)

• GOA: intensity of attraction f � 0.5, attractive length scale
l � 1.5, and the maximum and minimum values of the
decline coefficient are cmax � 1 and cmin � 0.00004
(Dhiman and Kumar, 2019)

• GWO: convergence factor a decreases linearly from 2 to 0
(Storn and Price, 1997)

• SOA: fc that controls migration behavior decreases linearly
from 2 to 0 (Li et al., 2014)

• SMA: foraging success probability z � 0.03 (Saremi et al., 2017)
• DE: scaling factor F � 0.5, and crossover constant CR � 0.5
(Mirjalili et al., 2014)

• AMO: no parameters (Li et al., 2020)

Comparison of Algorithms in
Low-Dimensional Cases
Cases with 25, 50, 75, and 100 points are used to compare the
performance of algorithmsmentioned above, and the results of 30

FIGURE 5 | Fitness values for low dimensions. (A) Fitness values for 30 runs for 25 points. (B) Fitness values for 30 runs for 50 points. (C) Fitness values for 30 runs
for 75 points. (D) Fitness values for 30 runs for 100 points.

TABLE 2 | Wilcoxon rank-sum test results in low dimensions.

Points MA AEFA PSO ICA GA GOA GWO SOA SMA DE AMO

25 1.0570E-04 1.7344E-06 1.9209E-06 1.7344E-06 1.7344E-06 1.7344E-06 2.1266E-06 1.7344E-06 1.4773E-04 5.7517e-06 1.7344E-06
50 1.7344E-06 1.7344E-06 1.7344E-06 1.9209E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06
75 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06
100 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06
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TABLE 3 | Experimental results for the twelve algorithms for 150, 200, 250, 300, 350, and 400 points.

Points Algorithms Best Worst Mean Std Rank

150 BBMA 108.7044 128.5096 121.2003 6.0033 1
MA 159.5308 203.8459 187.3684 15.6695 5
AEFA, Bi et al. (2021) 177.1469 195.8829 186.8330 5.2970 4
PSO, Bi et al. (2021) 171.8660 192.5427 183.8670 5.7697 2
ICA, Bi et al. (2021) 170.6246 195.5246 187.3846 5.6297 6
GA, Bi et al. (2021) 203.0229 219.0789 210.6552 4.6014 12
GOA, Bi et al. (2021) 181.2130 205.7132 193.7471 5.9105 9
GWO, Bi et al. (2021) 198.1928 206.1991 201.7777 2.0473 10
SOA, Bi et al. (2021) 199.3280 210.1148 205.7050 2.7155 11
SMA, Bi et al. (2021) 184.0786 201.3937 193.6468 4.2731 8
DE 186.4958 194.9518 191.7888 2.0882 7
AMO 178.0064 195.1718 183.9280 3.8121 3

200 BBMA 158.8478 186.5355 175.9532 6.4658 1
MA 223.8146 277.646 255.0136 20.2298 4
AEFA, Bi et al. (2021) 250.5322 284.2144 263.1465 7.7213 8
PSO, Bi et al. (2021) 241.6883 269.7025 254.6991 6.8041 3
ICA, Bi et al. (2021) 243.7737 273.2664 257.9959 7.6342 5
GA, Bi et al. (2021) 268.7868 296.2953 284.4061 5.8340 12
GOA, Bi et al. (2021) 254.5294 271.1409 264.3730 4.4879 9
GWO, Bi et al. (2021) 266.3731 277.0690 273.0821 2.7613 10
SOA, Bi et al. (2021) 273.1784 282.3387 277.8522 2.4687 11
SMA, Bi et al. (2021) 241.7519 275.1255 260.9995 8.6126 6
DE 251.2678 265.8108 261.2612 3.3148 7
AMO 242.7951 260.4549 253.8667 4.4861 2

250 BBMA 222.9245 254.7082 235.7813 8.9879 1
MA 312.5237 352.2358 342.2936 10.0794 9
AEFA, Bi et al. (2021) 316.4191 357.8107 336.8645 8.4107 5
PSO, Bi et al. (2021) 314.2942 354.3313 337.7788 7.7460 6
ICA, Bi et al. (2021) 321.5577 348.8649 332.0370 6.6376 3
GA, Bi et al. (2021) 352.2579 372.6212 361.2289 6.5794 12
GOA, Bi et al. (2021) 320.2223 349.6514 338.6692 7.0944 7
GWO, Bi et al. (2021) 337.3628 353.7242 346.8830 4.0648 10
SOA, Bi et al. (2021) 339.6638 358.2409 351.6310 4.4290 11
SMA, Bi et al. (2021) 319.2010 348.9050 339.7043 6.3158 8
DE 322.9296 342.6385 334.8455 4.1294 4
AMO 314.4014 338.6204 329.3998 5.2065 2

300 BBMA 275.7485 320.7405 298.7668 10.9117 1
MA 379.1592 425.7837 413.7186 13.8915 9
AEFA, Bi et al. (2021) 381.9766 432.1147 406.6118 10.8638 6
PSO, Bi et al. (2021) 390.3274 425.3140 412.8644 8.6242 8
ICA, Bi et al. (2021) 383.9086 415.8944 400.3720 8.5896 2
GA, Bi et al. (2021) 422.2974 448.4215 437.9276 5.7820 12
GOA, Bi et al. (2021) 388.2968 421.3079 408.2574 8.2339 7
GWO, Bi et al. (2021) 416.0361 425.4912 420.2078 2.5851 11
SOA, Bi et al. (2021) 404.6652 424.1153 414.6620 4.0100 10
SMA, Bi et al. (2021) 391.2315 417.1096 404.5279 6.1692 5
DE 381.7567 410.6107 402.4801 5.3663 4
AMO 390.2933 413.9668 401.9473 5.3906 3

350 BBMA 330.6316 379.8724 356.8802 11.8212 1
MA 452.2005 501.0686 488.1878 14.4075 9
AEFA, Bi et al. (2021) 461.6761 501.5019 483.2021 9.3857 6
PSO, Bi et al. (2021) 453.2908 498.2213 484.1515 10.7357 8
ICA, Bi et al. (2021) 456.7770 493.9439 475.2845 9.5585 3
GA, Bi et al. (2021) 494.1726 526.2063 514.2878 8.1990 12
GOA, Bi et al. (2021) 461.8404 494.6949 479.9414 8.0381 4
GWO, Bi et al. (2021) 485.3296 502.2586 495.3422 3.6271 11
SOA, Bi et al. (2021) 469.5365 498.2843 490.9486 6.2352 10
SMA 466.6158 494.4263 483.9335 7.5615 7
DE 469.6890 487.5686 480.7679 4.0358 5
AMO 460.0170 482.6614 473.4664 5.3265 2

(Continued on following page)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 83003711

Zhang et al. BBMA

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


runs are obtained. Table 1 gives the best value, worst value, mean
value, standard deviation, and the ranking of mean value. The
bold data indicate that it is the best value of the twelve algorithms.
Figure 3 shows the convergence curves in these four situations,
Figure 4 shows the ANOVA test results, Figure 5 shows the
fitness values for 30 runs, and Figure 12A–D show the minimum
spanning tree for four low-dimensional cases, where “ROOT” is
the root of the minimum spanning tree. Figure 13A shows the
average running time of 30 runs of 12 algorithms in four
dimensions. Finally, the Wilcoxon rank-sum non-parametric
test results in low-dimensional cases are shown in Table 2.

The comparison results for 25 points are shown in Table 1.
BBMA performs best in the best, worst, and mean value, but its
standard deviation is 1.0202 which is worse than that of AMO,
while the algorithm with the worst performance is GA.
Figure 3A is the convergence curves of all algorithms;
obviously, BBMA has the fastest convergence speed of twelve
mentioned algorithms. As can be seen from Figure 4A, BBMA
has the highest stability, and GWO is the worst. Figure 5A
shows that, among the fitness values of 30 runs, BBMA is better
than other algorithms in most cases, but AMO is three times
better than BBMA, SMA is three times better than it, and MA is
six times better than it. Figure 12A shows the minimum
spanning tree for 25 points.

The comparison results of twelve algorithms at 50 points are
shown in Table 1. It can be seen that the best value, worst value,
and mean value of BBMA are the best, but the standard
deviation ranks fifth, behind SOA, AMO, GWO, and DE.
Figure 3B and Figure 4B show the convergence curve and
analysis of variance results, respectively. By observing the
convergence curve, we can clearly see that BBMA has the
highest accuracy and the fastest convergence speed. Also, the
result of variance analysis shows that BBMA is stable for solving
this problem. The fitness values for 30 runs is shown in
Figure 5B, and it can be seen that BBMA outperforms all
other algorithms in 30 runs. Figure 12B shows the minimum
spanning tree for 50 points.

The comparison of 75 points is shown in Table 1. BBMA is
better than others in the best value, worst value, and mean value,
but its standard deviation is 3.5118 which is worse than the
standard deviation of PSO, GA, GOA, GWO, and SOA. Besides,

GA has the worst accuracy. By observing Figure 3C, it can be
noticed that both convergence accuracy and convergence speed
are the highest for BBMA. As can be seen from Figure 4C, BBMA
is still stable. The fitness values of 30 runs and the minimum
spanning tree of 75 points can be seen in Figure 5C and
Figure 12C.

The experience results for 100 points are shown in Table 1.
The performance of BBMA is superior to that of others in the
best, worst, and mean value. The best value of BBMA is
69.2455, and the best value of MA is 93.0942. BBMA is
25.83% better than the original algorithm. Figure 3D
shows that BBMA has the highest accuracy and it still has
excellent exploitation ability when other algorithms are stuck
in a local optimal value. Figure 4D shows that BBMA has high
stability. Figure 5D and Figure 12D show the fitness values for
30 runs and the minimum spanning tree path optimized for
100 points.

It can be seen from Figure 13A that BBMA runs the longest at
each case, and GA and GWO are the two fastest algorithms. In
addition to the running time, by comparing with other eleven
algorithms, BBMA has the best performance in low dimensions.
In addition, this study statistically tests the proposed algorithm.
TheWilcoxon rank-sum non-parametric test results are shown in
Table 2. BBMA is tested with others at the d � 0.05 significance
level. If p values in the table are all less than 0.05, it will prove
that BBMA is obviously better than others. Statistically, the
experimental results are significant.

Comparison of Algorithms for
Medium-Dimensional Cases
In this section, BBMA and other eleven algorithms are tested
in six medium-dimensional cases from 150 points, 200
points, 250 points, 300 points, 350 points, and 400 points.
Table 3 records the best, worst, and mean value, standard
deviation, and the ranking of the mean value. The bold data
indicates that it is the best value of the twelve algorithms.
Figure 6 shows the convergence curves of these six cases, and
Figure 7 shows the ANOVA test results for each case. The
fitness values for 30 runs are shown in Figure 8. Also, the
minimum spanning tree for these cases is listed in

TABLE 3 | (Continued) Experimental results for the twelve algorithms for 150, 200, 250, 300, 350, and 400 points.

Points Algorithms Best Worst Mean Std Rank

400 BBMA 382.1640 438.9316 415.9261 13.1962 1
MA 508.5346 569.2624 551.9432 18.5577 4
AEFA, Bi et al. (2021) 533.7028 575.2738 558.5251 10.7157 8
PSO, Bi et al. (2021) 535.9726 563.4369 552.9052 7.1746 5
ICA, Bi et al. (2021) 527.6904 576.9956 549.9101 11.2322 3
GA, Bi et al. (2021) 562.2246 601.2813 586.7195 7.9634 12
GOA, Bi et al. (2021) 533.5131 573.5504 555.9482 10.8102 7
GWO, Bi et al. (2021) 558.2885 576.4934 568.7354 4.3849 10
SOA, Bi et al. (2021) 562.1377 580.3801 575.1273 4.3925 11
SMA, Bi et al. (2021) 545.4407 577.0593 561.7902 8.3622 9
DE 534.0305 561.5491 554.6098 4.9569 6
AMO 530.8524 552.8364 543.4986 5.3476 2

The optimal values are shown in bold.
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Figure 12E–J, where “ROOT” is the root of the minimum
spanning tree. In addition, Figure 13B shows the average
running time of the twelve algorithms in different

dimensions. Finally, the Wilcoxon rank-sum non-
parametric test results in medium-dimensional cases are
shown in Table 4.

FIGURE 6 | The convergence curves for medium dimensions. (A) The convergence curves for 150 points. (B) The convergence curves for 200 points. (C) The
convergence curves for 250 points. (D) The convergence curves for 300 points. (E) The convergence curves for 350 points. (F) The convergence curves for 400 points.
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Table 3 displays the experience results of 150 points and 200
points. Also, the statistical data shown in these tables reflect
the great difference between different algorithms in

searching ability. We can discover that except standard
deviation, the best value, worst value, and mean value of
BBMA are all the optimal. Also, the performance of GA is

FIGURE 7 | The ANOVA test for medium dimensions. (A) The ANOVA test for 150 points. (B) The ANOVA test for 200 points. (C) The ANOVA test for 250 points.
(D) The ANOVA test for 300 points. (E) The ANOVA test for 350 points. (F) The ANOVA test for 400 points.
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the worst. Figures 6A,B are the convergence curves for the two
cases, and it can be seen that BBMA has a faster convergence
speed and accuracy and strong exploration ability. Figures 7A,B

show the analysis of variance results for the two cases, and we
can see that the stability of BBMA is at a relatively high level.
Figures 8A,B are the fitness values in 30 runs for 150 and 200

FIGURE 8 | Fitness values for medium dimensions. (A) Fitness values for 30 runs for 150 points. (B) Fitness values for 30 runs for 200 points. (C) Fitness values for
30 runs for 250 points. (D) Fitness values for 30 runs for 300 points. (E) Fitness values for 30 runs for 350 points. (F) Fitness values for 30 runs for 400 points.
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points. The MST for the two cases can be found in
Figures 12E,F.

Table 3 also shows the comparison results of different
algorithms at 250 points and 300 points. BBMA is the best
in the best, worst, and mean value, and GA is the worst.
However, as for the standard deviation, GWO is the best at
250 and 300 points. Figures 6C,D show the convergence curves
in these two cases. The convergence speed and accuracy of
BBMA are much superior to others. When other algorithms fall
into local optimization, it still has good performance. The
results of analysis of variance can be seen in Figures 7C,D, and
BBMA has high stability. Figures 8C,D show the curves of the
fitness values of 12 algorithms running independently for
30 times in these two cases. The search accuracy of BBMA
is much better than that of the other 11 algorithms. Figures
12G,H show the MST at 250 points and 300 points,
respectively.

The situation at 350 points and 400 points is shown in Table 3.
BBMA performs best in the best, worst, and mean value.
Compared with the best value of MA, the accuracy of BBMA
is improved by 26.88% at 350 points and 24.85% at 400 points. As
shown in Figures 6E,F, with the growth of dimension, the
performance of BBMA is getting better and better. Most
algorithms fall into local optimal solution at generation 100,
but BBMA always has strong search ability. Figures 7E,F show
the analysis of variance results in two cases, Figures 8E,F show
the fitness values of 30 runs, and Figures 12I,F show the MST. It
can be seen that BBMA has high stability and has better ability to
solve spherical MST problems in medium-dimension cases than
in low-dimension cases.

In addition, Figure 13B shows that the average running
time of BBMA is the longest in the six cases. Compared
with other algorithms, MA, DE, and AMO also run longer.
Through the abovementioned analysis, we have noticed
that BBMA has the outstanding performance in the medium-
dimensional cases. The Wilcoxon rank-sum test results
are shown in Table 4. Similarly, the p values in the table
are all less than 0.05, which proves that BBMA algorithm is
better than others in medium dimensions.

Comparison of Algorithms for
High-Dimensional Cases
In Comparison of Algorithms in Low-Dimensional Cases and
Comparison of Algorithms for Medium-Dimensional Cases,
BBMA has been compared with other 11 algorithms in low
and medium dimensions. BBMA shows very superior
performance. Most of the problems encountered in real life
are complex and high-dimensional problems, so in this
section, BBMA and MA are tested in higher dimensions where
n = 500, 600, 700, 800, 900, and 1,000 (see Table 5).

Table 5 shows the comparison results of BBMA and MA in
six high-dimensional cases and also compares the best, worst,
and mean value and standard deviation. The bold data
indicate that it is the optimal result of the two. It can be
seen that BBMA is superior to its original algorithm in the
first three items in each case. The convergence curves of
the two algorithms are shown in Figures 9A–F; obviously,
the convergence speed and convergence accuracy of BBMA are
better, and both exploration and exploitation capabilities
have been greatly improved. The results of analysis of
variance are shown in Figures 10A–F, and MA is more
stable than BBMA. The fitness values of 30 independent
operations are shown in Figures 11A–F. Also, Figures
12A–P show the MST of BBMA in different cases, where
“ROOT” is the root of the MST, and the minimum
spanning tree produced by BBMA is of high quality.
Figure 13C is a histogram of the average running time of
BBMA and MA, and we find that BBMA runs longer. Finally,

TABLE 4 | Wilcoxon rank-sum test results in medium dimensions.

Points MA AEFA PSO ICA GA GOA GWO SOA SMA DE AMO

150 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06
200 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06
250 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06
300 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06
350 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06
400 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06 1.7344E-06

TABLE 5 | Experimental results for the two algorithms for 500, 600, 700, 800, 900,
and 1,000 points.

Points Algorithms Best Worst Mean Std Rank

500 BBMA 526.7288 576.1991 551.4301 10.9296 1
MA 671.1059 726.2274 713.1005 13.0341 2

600 BBMA 661.5117 720.9847 687.1937 15.486 1
MA 827.6303 881.1784 869.5585 11.0172 2

700 BBMA 795.8841 887.1201 826.7429 20.7736 1
MA 973.2014 1029.001 1014.8361 14.729 2

800 BBMA 920.5137 1003.6668 961.2036 21.599 1
MA 1150.4318 1184.9458 1172.4426 9.8713 2

900 BBMA 1072.6695 1167.2939 1107.1993 28.7825 1
MA 1285.7222 1342.1227 1324.583 11.7061 2

1000 BBMA 1167.5382 1344.4605 1248.6469 34.2288 1
MA 1427.1684 1490.0547 1476.1061 12.4662 2

The optimal values are shown in bold.

TABLE 6 | Wilcoxon rank-sum test results in high dimensions.

Points 500 600 700 800 900 1000

MA 1.7344E-
06

1.7344E-
06

1.7344E-
06

1.7344E-
06

1.7344E-
06

1.7344E-
06
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FIGURE 9 | The convergence curves for high dimensions. (A) The convergence curves for 500 points. (B) The convergence curves for 600 points. (C) The
convergence curves for 700 points. (D) The convergence curves for 800 points. (E) The convergence curves for 900 points. (F) The convergence curves for 1000 points.
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FIGURE 10 | The ANOVA test for high dimensions. (A) The ANOVA test for 500 points. (B) The ANOVA test for 600 points. (C) The ANOVA test for 700 points.
(D) The ANOVA test for 800 points. (E) The ANOVA test for 900 points. (F) The ANOVA test for 1000 points.
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FIGURE 11 | Fitness values for high dimensions. (A) Fitness values for 30 runs for 500 points. (B) Fitness values for 30 runs for 600 points. (C) Fitness values for 30
runs for 700 points. (D) Fitness values for 30 runs for 800 points. (E) Fitness values for 30 runs for 900 points. (F) Fitness values for 30 runs for 1000 points.
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FIGURE 12 | The minimum spanning tree for 16 cases. (A) 25 points. (B) 50 points. (C) 75 points. (D) 100 points. (E) 150 points. (F) 200 points. (G) 250 points. (H)
300 points. (G) 250 points. (H) 300 points. (I) 350 points. (J) 400 points. (K) 500 points. (L) 600 points. (M) 700 points. (N) 800 points. (O) 900 points. (P) 1000 points.
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FIGURE 12 | (Continued).
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Table 6 shows the results of the Wilcoxon rank-sum test in
high-dimensional cases. The p values are so small that we can
know that BBMA is significantly better than MA.

CONCLUSION AND FUTURE WORK

Mayfly algorithm is a new population-based bioinspired
algorithm, which has strong ability to solve continuous
problems. It combines the advantages of PSO, FA, and GA
and has superior exploration ability, high solution accuracy,
and fast convergence. It improves the shortcoming that MA
has many initial parameters and the parameters have a large
impact on the results. Furthermore, Lévy flight is used for
updating the position of the optimal male and excellent female
to help the algorithm escape from local optimal solution. In
addition, in order to make effective use of the search space, a
cross-border punishment mechanism similar to “mirror wall”
is used to deal with cross-border individuals. In order to
demonstrate the effectiveness of BBMA, the MST problems
are solved on a sphere. Compared with MA, AEFA, GA, PSO,
ICA, SOA, GOA, GWO, SMA, DE, and AMO in 16 different
cases, the test results show that BBMA has superior solving
ability, and the higher the dimension is, the more obvious the
superiority of BBMA will be. Therefore, BBMA is a good
method for large-scale problems in real life. According to
the NFL theorem, there is no algorithm that has superior
performance for any problem. BBMA has some limitations
in solving the spherical MST problems: its running time is
relatively long, and its stability needs to be improved. In the
future, BBMA will be further applied for solving the spherical
MST problems in real life, such as removing noise on the
femoral surface and directional location estimators
(Kirschstein et al., 2013; Kirschstein et al., 2019). Also, it
will be applied to other practical applications, such as
logistics center location, path planning, weather forecast,
and charging station address selection.
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