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While enjoying the convenience of nuclear energy development, the environmental
contamination by radionuclide leakage is of significant concern. Because of its cost-
effectiveness and environmental friendliness, biochar has attracted a lot of attention in the
field of radioactive water treatment. Herein, a novel teak peel modified biochar (labeled as
PMBN3) was prepared and applied to remove strontium from artificial seawater. The
characterisation of the prepared PMBN3 showed it contains numerous oxygen-containing
functional groups (i.e. carboxyl and hydroxyl groups), laminar morphology, mesoporous
structure, large specific surface area. PMBN3 exhibited great advantages in Sr(II)
adsorption, such as rapid adsorption kinetics (<1 h for equilibrium) and superior
reusability. The adsorption of strontium by biochar is consistent with pseudo-second
order and internal diffusion kinetic models. Among the four types of adsorption isotherms,
the Freundlich isotherm showed the best fit with R2 > 0.98. The calculated thermodynamic
parameters indicate that strontium adsorption on biochar occurs exothermically and
spontaneously. Furthermore, for efficient removal of Sr(II), CO2 nanobubbles were
blown into artificial seawater to precipitate the interfering metal ions, and followed by
the adsorption of PMBN3 towards residual metal ions with the removal rate of Sr(II) over
99.7%. Finally, mechanistic studies have shown that the strontium adsorption process by
PMBN3 is a multiple adsorption mechanism consisting of ion exchange between H+ (from
-OH and -COOH) and Sr(II), and weak intermolecular forces between Sr(II) and the PMBN3
adsorbent. This study creatively combines chemisorption and nanobubble precipitation for
strontium removal, which provides great reference value and guidance for environmental
remediation.
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1 INTRODUCTION

In april 2021, the Japanese government decided to purify nuclear
wastewater and discharge it into the sea has sparked widespread
throughout the world. The Fukushima Daiichi Nuclear Disaster is
widely known for releasing a variety of radionuclides including
Cs-137/134, Sr-90, and H-3 into the atmosphere and oceans
(Kirishima et al., 2014; Hori et al., 2018; Kato et al., 2019), which
dramatically contaminated the ecosystem and posed a significant
threat to human life. One of the most important radionuclides,
Sr-90, has excellent water solubility and is easily deposited in
bones after ingestion causing bone cancer, anemia, leukemia, and
other diseases (Shin et al., 2021a). It is also regarded as one of the
most serious radioactive contaminants on nuclear power plant
sites and the damage of organisms in surrounding forests and
oceans (Kirishima et al., 2014). Therefore, the removal of Sr-90 is
of great significance for decrease of human health effects and
ecological environmental remediation.

Following the Fukushima Daiichi Nuclear Disaster, several
combination methods including adsorption (Awual et al., 2014),
extraction (Tajima et al., 2019), membrane separation (Ding et al.,
2019), and precipitation (Kosaka et al., 2012) were used to remove
radioactive cesium and get good grades. After the Fukushima
Daiichi Nuclear Disaster in Japan in 2011, various combination
processes were used to treat radioactive cesium ions. However, Sr-
90 interacts with alkali and alkaline earth metals and anions in
diverse water bodies to change from free cations to complexes or
colloids (Kirishima et al., 2014), making these combination
processes incapable of completely removing radioactive
strontium ions from the aqueous phase.

Manymethods for removing Sr from aqueous phases have been
developed in recent years, including biological methods (Chen and
Wang., 2012), chemical precipitation (Su et al., 2020), solvent

extraction, membrane separation (Cai et al., 2020), and
adsorption (Huo et al., 2021). For the adsorption study,
adsorption mechanism and capacity were described and novel
adsorbents were prepared, however, Sr removal percentage
discussion was low. Among them, the precipitation as
Strontianite (SrCO3) has attracted great attention to remove Sr,
for example 98% Sr removal (Su et al., 2020), On the other hand,
only the precipitation method is not enough to remove Sr
completely. Therefore, the combination to use precipitation and
adsorption was discussed in this study. A variety of adsorbents have
been developed including bentonite (El-Maghrabi et al., 2021),
metal-oxygen/sulfide (Weerasekara et al., 2013), nanocarbon
materials, graphene oxide (Huo et al., 2021), zeolite (Yang et al.,
2021), titanic acid/phosphoric acid/antimonite (Kasap et al., 2012;
Zhang et al., 2016; Jiao et al., 2021), etc. Biochar is prepared from
natural biomass or agricultural waste that has widely concerned
due to its unique advantages such as naturally renewable,
biodegradable, easily adjustable surface structure, and
environmentally friendly (Choudhary et al., 2020; Imran et al.,
2021), making it an ideal adsorbent for removal Sr-90. In this study,
the modified pomelo peel was used because of the large amount of
pomelo production in China and the contents of rich functional
groups, large specific surface area, andmesoporous structure. Total
grapefruit and pomelo production in China in 2020–21 is
estimated at 4.95 million metric tons, a negligible increase from
the previous year and the slight increase is mainly driven by
production of grapefruit hybrids in Guangxi and Yunnan
(Citrus industry news, 2020). Though Naringin and naringenin
in pomelo peers have strong antihyperglycaemic properties, large
amout of pomelo peels were discarded and the utilization of
pomelo peel wastes were necessary.

However, the application of biochar for the removal of high
concentrations of strontium in the aqueous phase suffers from
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poor selectivity and low removal efficiency. On the other hand,
in recent years, nanobubbles, as an emerging Frontier
technology, have been widely favored by researchers for
their unique advantages of long-term stability, high zeta
potential, high surface-area-to-volume ratio, and generation
of free radicals upon collapse (Zhou et al., 2021). To address the
aforementioned limitations, this paper creatively adopts a
combination of modified activated carbon adsorption and
nanobubbles precipitation to achieve efficient removal of
strontium from seawater because the precipitation reaction
with nanobubble gas is rapid. The modified biochar materials
were prepared by alkali impregnation and strong acid
oxidation. Advanced analytical techniques including SEM-
EDS, BET, EA, TG-DSC, XRD, FTIR, and XPS were
employed to obtain important parameters of the adsorbent
and reveal the interaction mechanism between the adsorbent
and strontium. The static adsorption and desorption behaviors
were evaluated by batch experiments. In this study, CO2

nanobubble co-precipitation was used to remove the
majority of Sr(II) from artificial seawater, and the remaining
Sr(II) in the solution was adsorbed by as-prepared biochar
adsorbent.

2 EXPERIMENTAL

2.1 Materials and Reagents
The pomelo peel used in the experiment was purchased in
Nanning City, Guangxi Province.

The simulated seawater concentrations for this study:
10,402 ppm Na(I), 1,275 ppmMg(II), 390 ppm K(I), 405 ppm
Ca(II) and 50 ppm Sr(II) (Shahzad et al., 2021).

All the chemicals (NaOH, HNO3, H2SO4, NaCl, KCl, MgCl2,
CaCl2, SrCl2·6H2O) were purchased from Aladdin Biochemical
Technology Co., Ltd (Shanghai) and were of analytical grade.

2.2 Preparation of Pomelo Peel Biochar
The pomelo peel was cut into strips and cleaned several times
with ultrapure water to remove dust and impurities on the
surface, and then dried in an oven at 80°C for 24 h. The dried
pomelo peel was first crushed and then sieved through a 0.25 mm
sieve. The broken pomelo peel was pyrolyzed in a muffle furnace
at 500°C for 2 h with a heating rate of 10°C/min under continuous
nitrogen purging. Finally, the biochar obtained by air cooling to
room temperature was labeled as PMB.

2.3 Oxidation Modification Treatment
Different mass ratios of biochar/sodium hydroxide were mixed,
and then 50 ml of ultrapure water was added and stirred
continuously for 3 h to mix thoroughly with sodium
hydroxide, then filtered and dried in an oven at 80°C until the
water was completely removed. The dried impregnated biochar
was pyrolyzed for 2 h at 500°C with a heating rate of 10°C/min in a
muffle furnace with N2 airflow. The resulting sample was washed
with 8 M nitric acid for 3 h to neutralize the remaining sodium
hydroxide and oxidize the impregnated biochar, and the biochar

was washed until the pH was stable with ultrapure water (about
pH 4.5–5). Then it was dried for 6 h at 80°C in an oven, and stored
in a dry box in a sealed bag for later use. The obtained samples
were labeled as PMBNn (n = 1, 2, 3, 4, 5), representing that the
ratios of biochar/NaOH were 1:1, 1: 2, 1: 3, 1: 4, and 1: 5,
respectively.

2.4 The Nanobubble and Normal Bubble
Production Method
In this study, CO2 (99.5% CO2) was injected into the 50 nm UFB
generator (KITZ Engineering service Co, Ltd.) to produce
nanobubbles at a flow rate of 5 L/min. Normal bubbles were
not generated using the UFB generator, but by passing a plastic
tube directly into the artificial seawater.

2.5 Characterization
The surface morphology of the adsorbent was obtained by SEM
(HITACHI, SU8200, Japan) combined with EDX (Phenom ProX,
Holland). The structural parameters, including surface area and
pore size distribution, of the adsorbent were measured by BET
(TriStar, II 3020, United States). Adsorbent element composition
was acquired by an automatic EA (Elemantary, Vario EL cube,
Germany). TG-DSC (NETZSCH, STA 449F3, Germany) was
used to investigate the thermal stability of original and
modified biochar under oxygen atmosphere. FTIR (Thermo,
Nicolet IS 10, United States) was used to determine the
surface chemical functional groups of the original biochar and
modified biochar before and after adsorption. XPS (Thermo,
K-Alpha+, United States, C1s: 284.6 eV) was adopted to
analyze the chemical state of the elements.

2.6 Batch Adsorption Experiments
A 1.0 g (Sr(II))/L stock solution was prepared. The adsorption
behaviors of as-prepared adsorbents towards Sr(II) were studied.
The effects of pH (1–9), m/v (0.25–3.5 g/L), contact time
(0–180 min), and initial Sr(II) concentration (40–100 ppm)
were investigated. The biochar was added to a glass bottle
with the Sr-containing solution and then shaken at a fixed
speed (140 rpm). The suspension was separated with a
0.45 μm syringe filter, and the metal ion concentrations in the
aqueous phase were measured by ICP-AES (ICPS-7510,
Shimadzu, Japan) and AAS (SHIMADZU, AA-7000, Japan).
Several key parameters, including adsorption capacity (Q) and
adsorption efficiency (E), were calculated. The details were
described in the supplementary information (SI).

The pHPZC of the adsorbent is obtained by the pH drift
method (Mironyuk et al., 2019). Add 20 ml of 0.1 M NaCl
solution as an inert electrolyte into a 50 ml glass bottle with
a lid, and adjust the initial pH from 1 to 9 with HCl and NaOH.
After accurately measuring the initial pH value, 0.04 g of
modified biochar was added to each Erlenmeyer flask, and
the solution was stirred for 3 h to reach equilibrium. After
3 h, the equilibrium pH of the solution was measured and
plotted against the initial pH, and the zero point charge was
calculated and determined.
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3 RESULTS AND DISCUSSION

3.1 Optimization of the Preparation Process
Sodium hydroxide modification can increase surface area and
oxygen-containing functional groups (i.e., -OH, -COOH) (Wang
and Wang, 2019). Considering the poor physical and chemical
properties of unmodified biochar, five different concentrations of
NaOH solutions were selected to modify the surface morphology
and internal structure of biochar. SEM images of biochar before
and after modification (Supplementary Figure S1A–F). The
surface of PMB has irregular cavities, voids, and pores, which
may be due to water loss and the release of volatiles from the
biomass matrix (Uçar et al., 2014) (Supplementary Figure S1A).
The modified biochar (Supplementary Figure S1B–E) possesses
a well developed porous structure due to the interaction between
NaOH and carbon (Zhang et al., 2019). However, with the
concentration of NaOH further increasing, the porous
structure of biochar can be damaged (Choudhary et al., 2020)
(Supplementary Figure S1F). The adsorption performance of as-
prepared adsorbents towards Sr(II) was studied.

As shown in Figure 1A, the as-prepared adsorbents exhibit
favorable adsorption behavior toward Sr(II) with the NaOH
concentration increase. PMBN3 was selected for further
adsorption experiments. The modified biochar has obvious
pore channels and stratified structure. The results of the EDS
of adsorbed PMBN3 showed that Sr was successfully adsorbed on
the biochar surface (Figure 1B).

The elemental composition and main structural parameters of
the biochar are summarized in Table 1. As the proportion of
sodium hydroxide increases, the carbon content decreases, and
the oxygen and hydrogen content increase. Compared with the
unmodified biochar, the H/C ratio of the modified biochar
remains unchanged, but the O/C and [(O+ N)/C] ratio
increase. The molar H/C ratio of charcoal is commonly used
to describe the degree of carbonization of biochar (Zhang et al.,
2019). The H/C ratio of all biochars is less than 0.5, with lower
H/C ratio indicating strong carbonation and high aromaticity (Li
et al., 2021). The molar O/C ratio of the charcoal partly reflects its
surface hydrophilicity, with the unmodified biochar having an
O/C ratio of 0.19, indicating a low surface affinity for water,
whereas the modified biochar has a substantially higher affinity
for water, indicating a high content of polar functional groups
(Chun et al., 2004). The polarity index [(O+ N)/C] rises with an
increasing NaOH ratio, which indicates that the polar functional
groups on the surface of the modified biochar have increased
(Samsuri et al., 2013).

3.2 Characterization of PMBN3 Adsorbent
The XRD pattern of PMBN3 is illustrated in Figure 2A. Two
diffraction peaks at 2θ = 23o and 43o were observed, which
corresponded to the (002) and (100) peaks of the disordered
graphite (Xu et al., 2014), indicating that PMBN3 possesses a
microcrystalline and turbohydrostatic graphite structure
(Prasannamedha et al., 2021). No other obvious peaks were

FIGURE 1 | (A) Effect of impregnant ratio on Sr(II) adsorption (Co: 50 ppm, m/v: 2 g/L, T: 298 K, t: 3 h, r: 120 rpm), (B) SEM-EDS picture of PMBN3.

TABLE 1 | The results of elemental analysis and main structural parameters of unmodified biochar and modified biochar.

Sample Elemental composition analysis (wt%) Atomic ratio BET surface
area (m2/g)

Average pore
diameter (nm)

Pore volume
(cm³/g)C [%] H [%] N [%] O [%] H/C O/C (O +

N)/C

PMB 75.31 2.98 1.69 14.15 0.04 0.19 0.21 2.35 7.68 0
PMBN1 72.27 3.10 3.34 21.54 0.04 0.30 0.34 379.31 2.29 0.22
PMBN2 70.42 3.27 2.63 27.19 0.05 0.39 0.42 762.16 2.17 0.41
PMBN3 62.05 3.40 2.65 32.35 0.06 0.52 0.56 1819.22 2.17 1.02
PMBN4 64.49 3.63 2.38 32.92 0.06 0.51 0.55 1911.44 2.21 1.06
PMBN5 66.14 3.72 2.68 41.30 0.06 0.62 0.66 1823.02 2.25 0.99
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observed except for these two peaks. The increase in background
signal between 2θ = 10°–20° may be due to the abundant micropores
and mesopores on the surface of biochar. These porous structures
will cause the X-ray beam to scatter, resulting in a significant increase
in the background XRD signal (Younis et al., 2020).

Figure 2B shows the TG-DSC results of PMBN3. At
temperatures ranging from 50 to 200°C, PMBN3 loses a
small amount of mass due to the evaporation of residual
water and the decomposition of surface volatile organic
compounds (Wu et al., 2017). With the temperature further
increasing to 900°C, the TG curves show that the mass loss of

PMBN3 adsorbent is about 15%, which is mainly attributed to
the thermal decomposition of the organic components (Yang
et al., 2007). As the temperature continues to increase the mass
is essentially constant, which is attributed to the aromatic
carbon contained in the structure enhancing the stability of
the carbon structure (Li et al., 2021). According to DSC results,
the endothermic peak at 88°C contributed to the evaporation of
residual water and the loss of volatile organic compounds. A
broad exothermic peak was observed at about 400°C, which
results from the decomposition of hemicellulose, cellulose, and
lignin (Boumanchar et al., 2017).

FIGURE 2 | (A) The XRD patterns and (B) TG-DSC curves of PMB and PMBN3 biochar, (C)N2 adsorption-desorption isotherm, and (D) pore diameter distribution
of PMB and PMBN3 biochar.

FIGURE 3 | (A) Effect of pH on Sr(II) adsorption (Co: 50 ppm, m/v: 2 g/L, T: 298 K, t: 3 h, r: 120 rpm). (B) effect of adsorbent dosage on Sr(II) adsorption (Co:
50 ppm, pH: 8, T: 298 K, t: 3 h, r: 120 rpm).
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The N2 adsorption-desorption isotherms of PMB and PMBN3
are shown in Figure 2C, the curves of PMB and PMBN3 have a
narrow hysteresis loop that fits well with type-IV isotherm curves,
indicating PMBN3 is a kind of mesoporous material (Zhang et al.,
2021). According to Table 1, compared with PMB, PMBN3
attained a high BET surface area (1819.22 m2/g), large pore
volume, and small average pore diameter, which were
beneficial for capturing Sr(II). The pore diameter distribution
of PMB and PMBN3 were acquired (Figure 2D), combining with
the results of Table 1, the average pore diameter is 2.2 nm,
indicating the mesoporous structure of PMBN3 adsorbent.

3.3 Batch Adsorption Experiments
3.3.1 pH and Zero-point Charge Study
The effect of pH on strontium adsorption by PMBN3 adsorbent is
displayed in Figure 3A. The adsorption of Sr(II) by the PMBN3
rises rapidly with the increase of pH and finally tends to the
adsorption equilibrium. Because deprotonation of functional
groups (hydroxyl and carboxyl) and ion-exchange capacity are
suppressed at pH 1-2, PMBN3 exhibits poor adsorption towards
Sr(II). During the adsorption process, H+/H3O

+ competes with
Sr(II) and is preferentially adsorbed (Hassan et al., 2020). The
adsorption of PMBN3 towards Sr (II) increased significantly due
to the enhanced deprotonation of functional groups when the pH
increased from 2 to 6. As the pH further increased from 6 to 9, the
positive charge density on the adsorbent surface decreased, the
electrostatic repulsive force weakened, and the concentration of
free hydroxyl groups in solution increased, resulting in a slight
increase in adsorption under alkaline conditions (Dan et al.,

2020). The experimental results above were verified by the
relationship between pH and pHzpc. When pH < pHpzc, the
surface of the adsorbent is positively charged, which is not
conducive to the adsorption of Sr(II). When pH > pHpzc, due
to the ionization of acidic functional groups, the negatively
charged biochar becomes an electron donor and the positively
charged Sr(II) is easily adsorbed on the surface of the biochar
through ion exchange. When pH > 9, Sr(II) is easily hydrolyzed to
form hydroxide complex precipitates (Sr(OH)2) (Younis et al.,
2020). In this study, the surface charge of PMBN3 is also
investigated by measuring the zeta potential at different pH

FIGURE 4 | (A) Adsorption kinetics, (B) intra-particle diffusion, (C) effect of initial concentration on Sr(II) adsorption (m/v: 2 g/L, pH: 8, T: 298 K, t: 3 h, r: 120 rpm),
(D) adsorption isotherm.

TABLE 2 | Kinetic parameters of PMBN3 adsorption towards Sr(II).

Kinetic models Parameters —

Pseudo-first-order qe (mg·g−1) 21.29
k1 (min−1) 1.44

R2 0.76
Pseudo-second-order K2 (g·mg·min−1) 0.34

qe (mg·g−1) 21.41
R2 0.98

Intraparticle diffusion model KIPD,1 1.87
C1 14.78
R1

2 0.94
KIPD,2 0.23
C2 19.83
R2

2 1
KIPD,2 0.03
C2 21.02
R2

2 0.97
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(Supplementary Figure S2). The results are in general agreement
with those obtained by the charge drift method. Therefore, pH 9
was chosen as the upper limit in this study to prevent Sr(II)
precipitation. Besides, the actual seawater pH is generally between
8.0 and 8.5, so the further experimental pH is 8.

3.3.2 Effect of PMBN3 Dosage
The effect of PMBN3 dosage on Sr(II) adsorption was evaluated
(Figure 3B). When the different PMBN3 dosages from 0.3 to 3.5 g
were added into a 1 L Sr-containing solution, the adsorption
efficiency of Sr(II) increased first and then reached equilibrium,
conversely, the adsorption capacity gradually decreases. The
increase in the adsorbent dosage provides more adsorption sites.
From Figure 3B, the adsorbent dosage continues to increase, the
adsorption site is not saturated but the adsorption capacity
increases slowly, which may be due to the reduction of total
active surface area and electrostatic interaction caused by the
aggregation of adsorbent particles (Suliman et al., 2020).

3.3.3 Kinetic Study
Figure 4A depicts the effect of contact time on Sr(II) removal
with other parameters kept constant. From the figure, the
adsorption capacity of PMBN3 towards Sr(II) increases
sharply and then reaches equilibrium within 60 min with the
adsorption capacity of about 21 mg/g. To better understand the
adsorption style of PMBN3 towards Sr(II), three typical
adsorption kinetic models (i.e., pseudo-first-order, pseudo-
second-order, and intra-particle diffusion model; more
details were described in SI) were adopted to analyze
experimental data. According to Figure 4A and Table 2, the
fitting results of the Pseudo-second-order model possess a
higher correlation coefficient (R2) and better consistency
between Qe and Qe,exp, which indicates that the adsorption
process of PMBN3 towards Sr(II) was chemisorption. This
indicates that the chemisorption rate is the limiting step
(more details were described in Section 3.4 adsorption
mechanism). Since the adsorption process is controlled not
only by external mass transfer but also by pore diffusion, the
internal diffusion model was further investigated.

The fitting results of the intra-particle diffusion model are
shown in Figure 4B. The adsorption process mainly contained
three diffusion stages, which suggests multiple adsorption

mechanisms. The diffusion rate constant of the first stage is
relatively large, which indicates that the adsorption is faster. Sr(II)
is rapidly transferred from the solution to the adsorbent’s outer
surface. In the second stage, Sr(II) diffuses into the pores, and in
the third stage, Sr(II) slowly adsorbs on the inner surface of
PMBN3 until the adsorption equilibrium is reached. None of the
three straight lines cross through the origin, indicating that intra-
particle diffusion may not be the only adsorption limiting
mechanism (Cazetta et al., 2011).

3.3.4 Isotherm Study
The relationship between the equilibrium adsorption capacity of
PMBN3 towards Sr(II) and the initial Sr-containing solution
concentration was investigated. According to Figure 4C, the Qe,exp

increases as the concentration of Sr-containing solution increases. To
further evaluate the adsorption performance of PMBN3 towards
Sr(II), several typical adsorption isotherm models (i.e., Langmuir,
Freundlich, Temkin, andDubinin-Radushkevichmodels, more details
are described in SI) were used to analyze the experimental data
(Figure 4D; Table 3). Adsorption isotherms are also used to
describe the surface properties and affinity of the adsorbent (Dan
et al., 2020). According to Table 3, the R2 of the Freundlich model is
much closer to 1 compared with that of other models, indicating that
the adsorption process of PMBN3 towards Sr(II) matched well with
the Freundlich model. Those findings imply the adsorption process is
a non-homogeneousmultilayer process (Huo et al., 2021). Besides, the
highR2 of theTemkinmodel suggests that the binding energy between
adsorbent and metal ions was uniformly distributed (Al-Ghouti and
Da’ana., 2020) (Supplementary Figure S3). Furthermore, the
adsorption performance of PMBN3 towards Sr(II) was verified by
the D-R model. The R2 > 0.96 means an excellent linear relationship
between ε2 and lnQe (Supplementary Figure S4). The mean free
energy is 9.70 kJ/mol (E> 8 kJ/mol), indicating the adsorption process
is dominated by chemisorption (Zhang et al., 2021).

3.3.5 Adsorption Thermodynamic Study
Figure 5A shows the effect of temperature on Sr(II) adsorption.
According to Figure 5A, the adsorption capacity decreases with
increasing temperature, indicating that adsorption of PMBN3
towards Sr(II) is an exothermic process (Hafizi et al., 2011), but
temperature has little effect on adsorption in terms of removal
rate. The thermodynamic parameters are calculated and
presented in Table 4 (calculation formula and further details
are described in SI). The negative value of ΔH indicates that the
adsorption of Sr(II) by PMBN3 is an exothermic process, which is
consistent with the figure. ΔG < 0, indicating that the adsorption
is feasible and spontaneous. The lower the temperature, the more
negative the ΔG value, indicating that the lower the temperature,
the more favorable the adsorption (Zazycki et al., 2018). A
negative value of ΔS indicates that the randomness between
the solid-liquid interface is reduced (Tang et al., 2019).

3.4 Adsorption Mechanism
The FTIR spectra of PMB, PMBN3, and Sr-loaded PMBN3 are
shown in Figure 5B. The O-H stretching vibration of the
adsorbed water causes the broad peak at 3,430 cm−1. (Chen
et al., 2019). The asymmetric stretching of the aliphatic -CH

TABLE 3 | Isotherm parameters of PMBN3 adsorption towards Sr(II).

Isotherm models Parameters —

Langmuir isotherm KL (L·mg−1) 0.41
qm (mg·g-1) 26.63

R2 0.89
Freundlich isotherm N 8.31

KF (mg1-n·Ln/g) 15.96
R2 0.98

D-R isotherm β (mol2·J−2) 5.31 × 10–9

E (kJ·mol−1) 9.703
R2 0.96

Temkin isotherm Kt (L/mg) 5.34
B 2.76
R2 0.97
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and -CH2 in the carbonyl group is responsible for the peaks at
2,921 and 2,853 cm−1, indicating that biochar contains cellulose
and hemicellulose (Choudhary et al., 2020). The peaks around
1,600 cm-1 correspond to C=C, C=O, and C=N stretching
vibrations, which represent the carboxyl (-COOH), carbonyl
group (-C=O) and imine bond (-C=N) (Sahin et al., 2017;
Shang et al., 2020). The band near the wavenumber of
1,400 cm−1 is related to the -COO group (Dong et al., 2017).

After adsorption, the peaks at 1,627 and 1,403 cm-1 were shifted
to 1,616 and 1,392 cm−1, respectively, suggesting that the metal ion
had been chelated to the carboxyl group (Hu et al., 2020). The peak

FIGURE 5 | (A) Effect of temperature on Sr(II) adsorption (Co: 50 ppm, m/v: 2 g/L, pH: 8, t: 3 h, r: 120 rpm), (B) FTIR spectra of PMB, PMBN3 and Sr-loaded
PMBN3, (C) XPS survey scans of PMBN3 and Sr-loaded PMBN3, (D) XPS spectra of C 1s, (E) XPS spectra of N 1s, (F) XPS spectra of Sr 3 days.

TABLE 4 | Thermodynamics parameters of Sr(II) adsorption on PMBN3.

Temperature (K) Thermodynamic parameters

ΔG (kJ·mol−1) ΔH (kJ·mol−1) ΔS (J·mol−1·K−1)
(J/mol K)(kJ/mol) (kJ/mol)

298.00 −20.27 −5.14 50.73
308.00 −20.68
318.00 −21.25
328.00 −21.80

FIGURE 6 | Adsorption mechanism of Sr(II) onto PMBN3.
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at 1,077 cm−1 may be associated with the C-O of the carboxylic acid
group, the C-OH bonding of the alcohols, and the C-C bending
vibrations (Samsuri, et al., 2013; Abdelhafez and Li., 2016), which
shifted from 1,086 cm−1 to 1,077 cm−1 after adsorption. Compared
with the unmodified biochar, the modified biochar has a high
oxygen content and a significant number of oxygen-containing
functional groups, which remains consistent with the results of the
elemental analysis. The oxygen in the carboxyl or carbonyl group
and the hydroxyl group operated as strong Lewis bases due to the
existence of non-bonded electron pairs, forming coordination
bonds with the Sr (II) ions as Lewis acids during the adsorption
process (Rao et al., 2009). After NaOH impregnation, small
amounts of sodium ions form COO-Na+ with -COOH which is
deprotonated under alkaline conditions, and the new ions formed
can facilitate ion exchange adsorption of Sr (II) ions from aqueous
solutions (Younis et al., 2020).

To further investigate the compositional changes and the
adsorption mechanism during the adsorption process of PMBN3,
XPS spectroscopy was used to analyze the property changes of the
main element content (C, N and O) before and after adsorption. The
presence of O and N may be due to the incomplete carbonization of
carbohydrates in the biomass and the doping of N and the washing of
HNO3 during the carbonization process (Li et al., 2016). Figure 5C
shows the XPS patterns of modified biochar PMBN3 before and after
adsorption. The peak of Sr3d can be observed in the pattern of Sr-
loaded PMBN3, which indicates that strontium was successfully

adsorbed. The patterns of C1s, N1s, and Sr3d are shown in
Figures 5D–F. The C1s in biochar are divided into five peaks
corresponding to the hybridized carbon atoms (C=C, C-C),
hydroxyl group (C-OH), carbonyl group (C=O), carboxyl group
(-COOH), and π-π* transition in aromatic hydrocarbons. The
binding energies of those groups shift from 284.23 to 284.29 eV,
284.77 to 284.72 eV, 285.75 to 285.64 eV, 286.99 to 286.95 eV,
288.73–288.83 eV, and 291.06 to 291.00 eV, respectively (Huang
et al., 2017; Hu et al., 2021; Li et al., 2021). The large binding
energy changes indicate a strong affinity between the metal ions
and the oxygen-containing functional groups, suggesting that
the latter are participating in the adsorption reaction (Zhang
et al., 2021).

Based on the results of EA, FTIR, and XPS, the adsorption
mechanism between PMBN3 and Sr was revealed (Figure 6). The
adsorption process involves the following: ⅰ) the interaction of a
deprotonated oxygen-containing functional group on the
PMBN3 adsorbent surface with Sr(II) (Huo et al., 2021); ⅱ)
the weak van der Waals forces between Sr(II) and PMBN3
adsorbent (Shin et al., 2021b).

3.5 Desorption Performance and
Reusability of PMBN3
Both the desorption performance and the reusability of the
PMBN3 adsorbent are studied. The important parameters

FIGURE 7 | (A)Desorption efficiency of Sr(II) by various eluents, (B) kinetis study of the desorption process (Co: 50 ppm,medium: 0.1 MHNO3 solution,m/v: 2 g/L,
T: 298 K, r: 120 rpm), (C) the reusability of PMBN3 (Co: 50 ppm, m/v: 2 g/L, T: 298 K, t: 1 h, r:120 rpm), (D) single-component and competitive adsorption (CM:
50 ppm).
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include the desorption amountQd and the desorption efficiency Ed,
which are calculated by Eq. S12) and (13), respectively. According
to Figure 7A, different eluents are chosen to desorb Sr-loaded
PMBN3 and exhibit great differences. The adsorbed Sr(II) can be
effectively desorbed by 0.1 M HNO3 with the Ed over 99% and the
desorption equilibrium can be obtained within 10min (Figure 7B).
Furthermore, 0.1 M HNO3 is employed to investigate the
reusability of the PMBN3 adsorbent. From Figure 7C, PMBN3
shows excellent reusability, the adsorption capacity is only slightly
reduced after five adsorption-desorption cycles, which implies that
the PMBN3 has great potential in practical application.

3.6 Single-Component and Competitive
Adsorption
The multicomponent environment of actual seawater may cause
competitive adsorption between interfering ions and Sr(II). The
adsorption performance of PMBN3 towards Sr(II) in both single
component aqueous phase and artificial seawater was
investigated. From Figure 7D, PMBN3 exhibits excellent
adsorption performance towards Sr(II) with an adsorption
rate of about 90% and poor or weak adsorption towards
other metal elements in single component aqueous phase (Co

= 50 ppm).
Competitive adsorption is carried out by mixing different metal

solutions at the same concentration (50 ppm) and the same process
as for the single component adsorption (Figure 7D). The results
show that PMBN3 still has the highest removal rate for strontium,
but the removal rate is significantly lower compared to the single
component solution. The figure shows the effects of Na(I), K(I),
Mg(II), and Ca(II) on Sr(II), respectively. The inhibition trend of
these ions on Sr(II) is in order: Ca(II)>Mg (II)> K(I)> Na(I). The
alkaline earth metals Ca(II) and Mg(II) inhibit the adsorption of
Sr(II) because the samemain group elements have similar chemical
properties and ionic radii. The greater effect of Ca(II) on Sr(II)
removal by PMBN3 than Mg(II) may be owing to the fact that the
hydration ion radius of Sr(II) is almost the same as that of Ca(II),
but both are smaller than that of Mg(II) (Zhang and Liu., 2020).

3.7 Sr(II) Precipitation by Blowing CO2

Nanobubble With Neutralization
For efficient removal of radioactive Sr(II) from contaminated
seawater, CO2 nanobubbles are blown in to precipitate Sr(II) for
environmental remediation. Configure a solution with a high
concentration of competing ions to artificial seawater, and the
following reactions will occur when CO2 enters the solution
(Erdemoğlu and Canbazoglu., 1998):

CO2 +H2O5 H2CO3 (1)
H2CO35 H+ +HCO−

3 (2)
K2 � [H+][HCO−

3 ]

[H2CO3] � 4.30 × 10−7 (3)
HCO−

35 H+ + CO2−
3 (4)

K4 � [H+][CO2−
3 ]

[HCO−
3 ]

� 5.61 × 10−11 (5)
CO2−

3 +M2+5 MCO3 (6)
At this time, the pH changed from 8 to 3.72, and the pH of the

seawater solution was then adjusted using 10 M NaOH to keep it
at 9. The particle size and potential of the nanobubbles were
measured and the results showed 3,621 nm and −1.59 mV,
respectively. The larger average particle size is due to the
presence of a small number of large bubbles, but most of
them are nanobubbles (Supplementary Figure S5).

Figure 8A shows the effect of the content of NaOH on the
precipitation of strontium by CO2 nanobubbles. The amount of
precipitated Sr(II) (mainly SrCO3) increases with NaOH content
first, and reaches its highest at 10 ml with a removal rate of over
95%, then decreases slightly withNaOH content further increasing.
From Section 3.3, PMBN3 is unable to completely remove Sr(II)
from seawater. To improve the removal rate of Sr(II) from seawater,
chemisorption and nanobubble precipitationmethods were employed
and combined. According to Figure 7B, the removal rates of CO2

nanobubbles for Mg, Ca, and Sr(II) were 64.6, 82.0, and 95.9%,
respectively. The as-prepared PMBN3 was applied to the
adsorption of residual metal ions from the aqueous phase after

FIGURE 8 | (A) The effect of the concentration of NaOH on the precipitation of strontium by carbon dioxide nanobubbles with no adsorbent, (B) effect of PMBN3
adsorbent dosage on Sr(II) adsorption after precipitation (pH: 9, T: 298 K, t: 3 h, r: 120 rpm).
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precipitation, and the removal rates reached 69.9% (for Mg), 85.9%
(for Ca) and 99.7% (for Sr) with increasing the PMBN3 (the detailed
concentration of ions involved before and after CO2 precipitation and
adsorption in the experiment is described in SI). The precipitation was
analyzed by XRD. The XRDpatterns of the precipitate was dominated
by peaks of MgCO3.3H2O,characteristic peaks appeared at 2θ = 23.0°,
29.5°, 36.0°,47.6°, confirming that the precipitate containedCaCO3.No
strontium carbonate precipitate was detected because the strontium
concentration was too low (Figure 6).

\The results of normal bubbles and nanobubbles were
basically the same (Supplementary Figure S7A,B), but
comparing the effects of ordinary bubbles and nanobubbles
on the precipitation time, nanobubbles reacted in water and
rapidly consumed sodium hydroxide to produce carbonate
precipitation, and the time was drastically reduced
(Supplementary Figure S8).

4 CONCLUSION

In this study, at first 95.9% of Sr(II) ion was removed by
precipitation with CO2 nanobubbles from 50 ppm Sr(II)
included artificial seawater. Next, the adsorption was carried
out. Here, more detailed adsorption characteristics were
investigated. A novel teak peel modified biochar (PMBN3) was
prepared using rapid pyrolysis and oxidative modification to
remove Sr(II) from artificial seawater. The characterization
results of the as-prepared PMBN3 reveal the properties of the
rich functional groups, large specific surface area, and
mesoporous structure. Through batch adsorption and
desorption experiments, rapid adsorption kinetics (<1 h for
equilibrium), superior reusability of PMBN3 were obtained,
and the adsorption of PMBN3 towards Sr(II) matched well
with pseudo-second-order, intra-particle diffusion kinetic
models and Freundlich, Temkin and Dubinin-Radushkevich
isotherm models, which indicated it is multilayer
chemisorption. XPS and FTIR results revealed that the ion
exchange mechanism and ectrostatic attraction surface
complexation in Sr(II) adsorption. Furthermore, considering
the deficiency that biochar cannot completely remove high
concentration of Sr(II) from artificial seawater, blowing CO2

nanobubbles into Sr-containing solution to precipitate the
interfering metal ions, and followed by the adsorption of
PMBN3 towards residual metal ions with the removal rate of
Sr(II) over 99%, which confirmed that the combination of
chemisorption and nanobubble precipitation techniques can
achieve efficient removal of Sr(II). As the used NaOH
amount is large for 50ppm Sr(II) precipitation by using CO2

nanobubble, this system is useful to the limited high
concentrated radioactive strontium water. In summary, the
combination of traditional adsorption and emerging nano-
bubble technology for strontium removal is not only
promising but also provides a new reference for future
environmental remediation.
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