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Sit-to-stand (STS) transition is one of the most bio-mechanically challenging task necessary
for performing activities of daily life.Withmuscle strength being themost dominant,many co-
occurring factors influence how individuals perform STS. This study investigates the STS
changes and STS failure caused by strength deficits using the trajectories generated
employing an open-loop single shooting optimization framework and musculoskeletal
models. The strength deficits were introduced by simultaneously scaling the maximum
isometric strength of muscles in steps of 20%. The optimization framework could generate
successful STS transitions for models with up to 60% strength deficits. The joint angle
kinematics, muscle activation patterns, and the ground reaction forces from the 0% strength
deficit model’s STS transition match those observed experimentally for a healthy adult in
literature. Comparison of different strength deficit STS trajectories shows that the vasti
muscle saturation leads to reduced activation of the antagonistic hamstring muscle, and
consequently, the gluteus maximus muscle saturation. Subsequently, the observation of
reduced hamstring activation and the motion tracking results are used to suggest the vasti
muscle weakness to be responsible for STS failure. Finally, the successful STS trajectory of
the externally assisted 80% strength deficit model is presented to demonstrate the
optimization framework’s capability to synthesize assisted STS transition. The trajectory
features utilization of external assistance as and when needed to complement strength
deficits for successful STS transition. Our results will help plan intervention and design novel
STS assistance devices.

Keywords: sit-to-stand, musculoskeletal model, strength deficit, single shooting optimization, open loop controller,
assist-as-needed

1 INTRODUCTION

Sit-to-stand (STS) transition is a precursor to walking, hence critical for performing daily life
activities and an independent lifestyle. Lower extremity strength plays an important role in human
STS, and its deficits are thought to limit the STS functionality. Studies have shown that the lower
extremity strength is a strong predictor of the ability of older adults to perform STS from the lowest
possible chair height (Hughes et al., 1996; Schenkman et al., 1996). This study aims to identify the
STS changes and the STS failure caused by lower extremity strength deficits and the external
assistance trajectories that can complement them for successful STS transition.
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The decline in muscle strength often co-occurs with other
physiological and psychological impediments such as reduced
balance, joint pain, and depression, making it difficult to access its
independent effect on STS using experiments (Lord et al., 2002).
Also, besides subject-specific factors, STS is influenced by many
extrinsic factors like foot placement, knee position, and chair
height, making designing and conducting experiments complex.
Some past studies have used STS trajectories generated using
optimization and human models to avoid the complications of
experiments. Pandy et al. (1995) presented a cost function that
generates STS trajectories with similar muscle activations to those
of experiments. Bobbert et al. (2016) and Yokota et al. (2016)
searched for trajectories that reduced loads on the muscles and
the knee joint. However, the studies mentioned above have made
either minimal or no observations about STS changes caused by
strength deficits. Further, these studies have also not investigated
how strength deficits might lead to unsuccessful STS.

Many older individuals incapable of independent STS
transition can perform the same when assisted externally. This
external assistance can help maintain or recover lower extremity
strength when provided in an assist-as-needed manner. Thus it is
desirable to generate reference assistance trajectories that assist as
and when needed and by the amount that is needed. Mombaur
and Hoang (2017) and Geravand et al. (2017) have used
optimization to discover assistance trajectories that support
part of the user’s weight during STS and squat-to-stand
motions, respectively. However, both the studies use human
models with independently torque actuated joints. The
hamstrings and the rectus femoris are two biarticular muscles
that play an essential role in the STS transition. Their
biarticularity couples the torques produced at the hip and
knee joints. This coupling should not be ignored, especially
when generating reference STS assistance trajectories, as it
may lead to assistance profiles that over actuates one of these
muscles, leading to muscle contracture and eventually lower back
issues. The coupling is also crucial for accurately investigating the
STS changes and the STS failure caused by the strength deficits.
Thus, musculoskeletal models with varying degrees of strength
deficits are used in this study to generate assisted and unassisted
STS trajectories.

In this study, the single shooting optimization framework
used to generate STS trajectories is detailed first, followed by the
tools used to analyze them. Subsequently, the joint angle, the
muscle activation, and the ground and seat reaction force
patterns from the 0% strength deficit model’s STS trajectory
are contrasted against those observed experimentally for a
healthy adult in literature for validation. Then, the different
strength deficit trajectories are compared to observe the STS
changes caused by strength deficits, followed by an investigation
of the STS failure using motion-tracking results. Finally, the
successful STS trajectory of an externally assisted
musculoskeletal model, incapable of performing unaided STS
transition, is presented to demonstrate the optimization
framework’s ability to generate externally assisted STS
trajectory. The findings of this study will help plan
intervention and design novel STS assistance devices that
operate in an assist-as-needed manner.

Within the single shooting optimization framework, we have
parameterized the open-loop excitation trajectories of the
actuators similarly to Pandy et al. (1995), and Yokota et al.
(2016). The excitation trajectories are used to integrate the
system’s equation of motion of the equation forward in time
to generate the resultant motion. The cost function evaluated on
the resultant motion is then used to tune the actuator’s excitation
trajectories. Another possible optimization framework’s structure
is in whom the optimization is performed over the joint angle
space. The tuning of joint angle trajectories is based on the
solutions of inverse dynamics for skeletal models and the
solutions of inverse dynamics and static optimization for
musculoskeletal models. Such frameworks are used for STS
synthesis in Sadeghi et al. (2013); Norman-Gerum and
McPhee (2018); Yang and Ozsoy (2020), to discover STS
trajectories with minimum actuator efforts in Yoshioka et al.
(2007, 2012), and to predict the unilateral grab-rail assisted STS
trajectories of a virtually unhealthy adult in Yang and Ozsoy
(2021); Ozsoy and Yang (2021). Direct collocation is another
potential optimization framework. This framework performs
optimization over both the joint angle and the actuator
excitation space (Bobbert et al., 2016). We selected open-loop
single shooting trajectory optimization for its straightforward
implementation and effortless extension to incorporate closed-
loop controllers in future works.

It is difficult to identify and detail all of the parameters that
shape the STS trajectories generated using optimization. For
example, Bobbert et al. (2016), and Yokota et al. (2016) does
not contain information about the initial guesses to the
optimization algorithm, while Pandy et al. (1995) does not
include information about the mechanical limits used to
restrict the motion to the physiologically plausible range.
Therefore we have made all the source code and results from
this study public at https://github.com/ShibataLab/
PredictiveSTS.

2 METHODS

An overview of the single shooting optimization framework used
to generate STS trajectories in this study is shown in Figure 1. The
framework tunes the values of decision variables using the
aCMA-ES algorithm (Arnold and Hansen, 2010). aCMA-ES is
a stochastic gradient-free optimization algorithm that adapts a
Gaussian distribution towards low energy regions. It was selected
for its enhanced robustness to locally optimal solutions compared
to the gradient-based algorithms. At each generation, aCMA-ES
samples a batch of candidate solutions from the Gaussian being
adapted. Subsequently, the cost function values are evaluated for
all the candidates on the respective forward simulations. aCMA-
ES then adapts the Gaussian based on the cost function values and
samples the next batch of candidate solutions and so on until one
of the stopping criteria is met.

In subsection 2.1, the musculoskeletal models used with the
optimization framework to generate STS trajectories are detailed.
Subsection 2.2 includes the details of the decision variables and
the termination criteria used with the optimization framework,
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while subsection 2.3 describes the cost function. Subsection 2.4
includes a summary of the motion-tracking setup used to
investigate the STS failure. The final subsection 2.5, details the
steps used to process the experimental data against whom the 0%
strength deficit model’s STS trajectory is validated.We refer to the
STS trajectories as the model’s trajectories for conciseness, even
though the models were only a single component of the
optimization framework.

2.1 Musculoskeletal Model
Musculoskeletal models with different strength deficits for this
study were obtained by simultaneously scaling the maximum
isometric strengths of the muscles present within the base model.
The base model, also shown in Figure 2, is a simplified version of
the LaiArnold2017 model (Lai et al., 2017). The LaiArnold2017
model represents an average-sized adult male of mass 75 Kg and
height 170 cm. The base model is 2D with eight hill-type muscles
and three degrees of freedom, while the source model is 3D with
80 hill type muscles and 37 degrees of freedom. The
simplifications were needed to make the optimization problem
computationally tractable. The following paragraphs detail some
of these simplifications along with other modelling details.

From the LaiArnold2017 model, the left leg and the associated
muscles were removed. The masses of arms, forearms, hands and the
head were lumped to the torso’s center of mass (COM). The mass and
inertia of the torso after lumpingwere halved to account for themissing
left leg and the associated muscles. The right foot was fixed to the
ground using a weld joint. Then the degrees of freedom corresponding
to the sagittal plane motion of the ankle, knee, hip and lumbar joints
were added. The 0° angle of the hip, knee, ankle and lumbar joints
corresponds model standing upright. From 0°, the positive joint angles
correspond to ankle dorsiflexion, knee flexion, hip flexion, and lumbar
extension; and the negative joint angles correspond to the opposite. The
lumbar joint was locked to −10°, for reasons explained in subsection
2.5 and thus, the model effectively has three degrees of freedom. The

lower extremity muscles with similar functions were combined to
single muscle-tendon units as realized in Ong et al. (2019). Figure 2
shows insertion points and the paths of the resultant muscles included
in the model, i.e., gluteus maximus (GMAX), biarticular hamstrings
(HAMS), iliopsoas (ILPSO), biarticular rectus femoris (RF), vasti
(VAS), biarticular gastrocnemius (GAS), soleus (SOL), and tibialis
anterior (TA). Table 1 lists the maximum isometric strengths for the
muscles included in the base model along with the acronyms. At the
beginning of simulations, themuscle states were set by equilibrating the
muscle-tendon units with the default activation of 0.05.

The chair-body contact interactions were modelled using a
point on point kinematic constraint between the femur head and
the chair. During simulation, the kinematic constraint was
disabled if the vertical reaction forces required to maintain it
turned non-compressive or satisfied the slipping condition. The
seat kinematic constraint, once disabled, could not be re-engaged
and thus prevented the optimization from getting stuck into local
optima with multiple chair rises. The model had nonlinear
torsional springs representing ligaments at the hip, knee, and
ankle joints, limiting the motions to physiologically plausible
ranges. They generated torques when the hip joint flex beyond
120°or extends below 30°, or the knee joint flex beyond 140° or
extend beyond 0°, or the ankle dorsiflex beyond 30° or plantarflex
beyond 40°. These ranges are from the LaiArnold2017 model. The
remaining torsional spring parameters are from Ong et al. (2019).

External assistance was introduced at the torso’s COM in the
musculoskeletal model that failed to perform unassisted STS
transition. The rationale behind introducing it at the torso is
explained in subsection 3.3. For implementation simplicity, the
external assistance was modelled using two independent point
forces acting in the vertical and horizontal directions. Their
respective magnitudes were limited to the 0–200N range.
Before computing actuation, the excitation signals to point
forces were passed through first-order activation dynamics. It
made the external assistance trajectories smooth and thus

FIGURE 1 | Overview of single shooting optimization framework. The red dots in the open-loop controller represents the node points obtained from the
discretization of excitation trajectories.
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reduced the optimization framework’s sensitivity to the values of
individual assistance force decision variables. The first-order
activation dynamics had a time constant of 0.1 s. The OpenSim
API (Delp et al., 2007) was used to formulate the musculoskeletal
model’s equation of motion and their forward integration.

2.2 Optimization Setup
The optimization framework tuned the STS duration (tf) and the
node point values obtained by discretizing the excitation
trajectories of the actuators present within the musculoskeletal
model. The discretization was performed using piecewise linear

functions with a fixed time step of 0.1 s between consecutive
nodes. The upper limit for simulation duration (tmax) was selected
to be 1.6 s, similar to Yokota et al. (2016). All the musculoskeletal
models had eight hill-type muscles, and the externally assisted
musculoskeletal model had two additional point actuators. At t0,
the actuators had their default activation. Thus, the optimization
problem had 129 decision variables when generating unassisted
STS trajectories and 161 decision variables when generating
assisted STS trajectories.

As mentioned before, aCMA-ES is a stochastic gradient-free
optimization algorithm that adapts a Gaussian distribution
towards low energy regions. The node point values
corresponding to the model sitting in a chair were used as the
initial guess for the mean of the Gaussian. The algorithm was
restarted if the number of generations exceeded 4,000 or if the
improvement in the cost values was lower than 1.0 for the best
candidate solutions over the immediate 250 generations. At each
restart, the generation counter and the covariance matrix were
reset to default, and the mean was set to the been-seen candidate
solution till then. Four restarts were performed to account for the
stochasticity of the optimization algorithm and the non-linearity
optimization space before selecting the optimal candidate
solution. We used the libcmaes library (CMA-ES, 2013) for the
aCMA-ES algorithm.

2.3 Cost Function
The cost function we selected to engender STS transition is a
linear combination of ten different terms and can be expressed as
follows:

ϕtotal � ∑10
i�1

wiϕi (1)

where wi is the relative weight of ith cost term, i.e., ϕi. The
mathematical expressions for the ten cost terms are given in Eqs
2–12. Please refer to Table 2 for the list of symbols used in these
equations. All the elements associated with different costs were
computed in SI units.

ϕ1 �
d Cf, Cgoal( )
d C0, Cgoal( ) (2)

FIGURE 2 | A planar musculoskeletal model for sit-to-stand. The
model’s musculotendon actuators (red lines) represents the major uniarticular
and biarticular muscle groups that drive the sit-to-stand motion in the sagittal
plane, i.e., iliopsoas (ILPSO), gluteus maximus (GMAX), biarticular rectus
femoris (RF), biarticular hamstrings (HAMS), vasti (VAS), gastrocnemius (GAS),
soleus (SOL), and tibialis anterior (TA). The model has three degrees of
freedom distributed at the hip, knee and ankle joints.

TABLE 1 | Muscles included in the model, their acronyms and their respective
maximum isometric strengths for the 0% strength deficit model.

Muscle Acronym Maximum isometric strength
(N)

Iliopsoas ILPSO 2697.3
Gluteus maximus GMAX 3337.6
Biarticular rectus femoris RF 2191.7
Biarticular hamstrings HAMS 4105.5
Vasti VAS 9594.0
Biarticular gastrocnemius GAS 4690.6
Soleus SOL 7925.0
Tibialis anterior TA 2116.8
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ϕ2 � 1 − α[ ]∫tf
t0

et/τ

τ etf/τ − 1[ ]Fchair,y t( )dt (3)

ϕ3 �

											∑
i
∫tf

t0
ai t( )2dt∑i

√√
(4)

ϕ4 �

											∑
i
∫tf

t0
_ai t( )2dt∑i

√√
(5)

ϕ5 � ∫tf
t0

‖FAssist t( )‖dt (6)

ϕ6 � ∑
n

∫tf
t0

|Tn,limit t( )|dt (7)

ϕ7 � α max
t0 ,tf{ } 0, |Ffeet,x t( )| − μFfeet,y t( )( ) (8)

ϕ8 � α max
t0 ,tf{ } |ZMPx t( ) − Feetx t( )|dt (9)

ϕ9 � α | _θhip tf( )| + | _θknee tf( )| + | _θankle tf( )|[ ] (10)

ϕ10 � α

| max
tSR,tf{ } Ffeet,y t( )( ) −mg|+

| min
tSR,tf{ } Ffeet,y t( )( ) −mg|+
|Ffeet,y tf( ) −mg|

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

α � 1 − min d Cf, Cgoal( ), d C0, Cgoal( )( )
d C0, Cgoal( ) (12)

Cost ϕ1 is the ratio of euclidean distances between the goal and tf
COM positions, and the goal and t0 COM positions. The goal
COM position corresponds to the model standing upright. Cost
ϕ2 penalizes the model staying in contact with the chair. Cost ϕ2
features an increasing exponential and thus penalizes the chair
contact interactions more during the later part of simulation than
prior. Costs ϕ3 and ϕ4 penalize the control effort and its rate of
change, respectively. Cost ϕ5 demotivates excessive use of external
assistance. It was set to zero for the unassisted STS trajectories.
Cost ϕ6 discourages hyper-flexion and hyper-extension of joints.
Costs ϕ7 and ϕ8 respectively penalize the feet contact forces that
would lead to slip or tipping over the heel or toes. Cost ϕ9
penalizes the body motion at tf while cost ϕ10 penalizes the
excessive body accelerations.

The scalar α represents STS progress and is illustrated in
Figure 3. While learning to perform STS, the optimization first
comes across unstable trajectories. Costs ϕ7 to ϕ10 are scaled by α
to prevent them from hindering the exploration of unstable STS
trajectories for stable ones. It can be seen in Figure 4 that during
the initial generations, the value of α is closer to zero as Cf is far
away from Cgoal. Then as the optimization progresses, cost ϕ2
moves the model out chair and cost ϕ1 moves it towards standing
posture. This movesCf towardsCgoal, and the value of α and so the
contribution costs ϕ7 to ϕ10 increases. As the model learns to
stand up, an increasing amount of control effort is required and
thus, the relative contributions of costs ϕ3 and ϕ4 increase with
optimization progress. The values of relative weights associated
with different costs, i.e., wi, were determined by trial and error
and listed in Table 3 along with other cost function related
hyperparameters. Supplementary Figure S1 of the
supplementary material shows the generated STS trajectories
are reasonably robust to the wi values.

2.4 Motion Tracking Setup
The OpenSim CMC tool-based motion tracking was used to
investigate the STS failure in this study. The CMC tool computes
the actuator excitation levels at user-specified time intervals that
will drive the generalized coordinates ( �q) of the musculoskeletal
model towards a desired kinematic trajectory ( �qexp) in the
presence of external forces. At any given time t, the CMC tool
first computes the desired acceleration €�q * using the following
proportional derivative control law:

€�q * t + T( ) � €�qexp t + T( ) + �kv
_�qexp t( ) − _�q t( )[ ]

+ �kp �qexp t( ) − �q t( )[ ] (13)
where, �kv and �kp are the feedback gains on the velocity and
position errors, respectively. Since the forces that muscles apply
cannot change instantaneously, the desired accelerations are
computed some small-time T in the future. Then, CMC tool
uses static optimization to distribute the load across synergistic
actuators using static optimization. CMC tool offers two
formulations for static optimization referred to as slow target
and fast target. We used the fast target formulation. It minimizes
the sum of squared controls augmented by a set of equality
constraints which can be mathematically represented as follows:

TABLE 2 | List of symbols.

Variable Description

t Time
‥(t) Value of a expression ‥ at time t
|‥| The absolute value expression ‥

t0 Simulation start time
tf Simulation final time
tmax Upper limit of tf
tSR Time of seat release
C0 Center of mass position at t0
Cf Center of mass position at tf
Cgoal Center of mass position for standing posture
d (C1, C2) Euclidean distance between center of mass positions at t1 and t2
α % Sit to stand completion
Fchair,y y component of constraint force applied by the chair on the femur head
τ Time constant
ai Activation of actuator i
‖FAssist‖ Magnitude of external assistance
Tn,limit Torque generated by the torsional limit spring at the nth joint
Ffeet,n Component of force applied along n direction by the ground on the feet
ZMPx x coordinate of feet force zero moment point
_θj Velocity of joint j

Feetx x coordinate of the mid point between heel and toes
mg Weight of musculoskeletal model
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J � ∑
i�1

e2i (14)

Cj � €q *
j − €qj∀j (15)

where ei is the control input/excitation of ith actuator at time t
and qj is the jth generalized coordinate. Since for many €q *

j the
muscles might not be able to produce sufficient forces, ideal
torque actuators are added to the musculoskeletal model to
prevent the fast target formulation from failing. Usually, the
forces/torques produced per unit control effort for the ideal
actuators is much lower than muscles. In such setups,
following Eq. 14, ideal torque actuators produce significant
force/torque only when the muscles are saturated, and hence
they are also referred to as reserve actuators. Since the CMC tool
does not support event-based disabling of kinematic constraints,
the seat forces were computed during the forward simulation and
then supplied as external forces.

2.5 Experimental Data Processing
We have used the experimental data recordings of Lao et al. (2019)
and Lao et al. (2020) to validate the 0% strength deficit model’s STS
trajectory generated. The experimental data contains optical marker
trajectories, surface EMG signals and the ground and seat-pan
reaction forces for 12 healthy adult subjects performing assisted
and unassisted STS. Since the experimental data does not contain
functional trials needed to scale musculoskeletal models, we have
used the recordings of the subject with height and weight closest to
our model. The selected subject weighs 71Kg and is 169 cm tall. The
source musculoskeletal model represents an adult male of mass
75Kg and height 170 cm.

The unassisted STS recordings have six trials under each of four
conditions, i.e., arms folded across chest, arms hanging freely next to
the body, natural STS, and slow pace imitating assisted STS.We used
the 18 trials belonging to the first three categories. The optical
markers were fixed to the musculoskeletal model on the average

marker positions of the T-pose trial. This musculoskeletal model
with registered optical markers was used for inverse kinematics. We
defined the beginning and the end of STS as the times when hip
flexion and hip extensions velocities smoothedwith a rollingwindow
of 0.1 s were respectively higher or lower than 20°/s. The resulting
joint trajectories from the 18 trials are shown in Supplementary
Figure S2. The mean initial posture observed in experiments is
compared to the initial posture used to generate STS trajectories in
Figure 5. As can be observed, the simulation model was moved
slightly forward towards the feet, and the lumbar joint was locked to
−10°. The adjustments were made to compensate for the non-
actuated lumbar joint. Also, the simulation’s initial posture is
easier to stand up from due to the torso lying closer to the feet.

The sEMG signals were processed by first passing through a
fourth-order Butterworth bandpass filter with 10 and 350 Hz cutoff
frequencies. Then they were rectified and subsequently passed
through a fourth-order Butterworth lowpass filter of 3 Hz cutoff
frequency. Finally, the signals were normalized using the peak values
from the maximum voluntary control trials. The ground and seat
reaction force trajectories were not processed. Supplementary
Figures S3, S4 respectively illustrate the sEMG and ground and
seat reaction force trajectories from the 18 trails used in this study.

3 RESULTS

The optimization could generate successful STS trajectories for the 0,
20, 40 and 60% strength deficit models. However, for the 80% strength
deficit model, the optimization could generate successful STS
trajectories only when the model was assisted externally. The STS
trajectories are divided into the three phases suggested in Millington
et al. (1992) to facilitate discussions. Phase 1 starts with the trunk
flexion and ends when the model loses contact with the chair. Phase 2
starts with the knee extension and endswhen the hip joint ismaximally
flexed. Phase 3 begins with the reversal of trunk flexion to extension
and ends with the model standing upright. The vertical black dotted
lines in Figures 6–12 marks the transition between the three phases.

The results are organized into three subsections. In subsection
3.1 the kinematics and dynamics of the 0% strength deficit model’s
STS trajectory are discussed and contrasted against the experimental
observations. Subsection 3.2 details the adaptations and STS failure
caused by muscle strength deficits. Subsection 3.3 discusses the
features of the externally assisted 80% strength deficit model’s STS
trajectory. Please refer to Figures 6–11;Table 4 during the following
subsections for details. The resultant joint torques, in Figure 11;
Table 4, were obtained using inverse dynamical analysis of the STS
trajectories. During inverse dynamical analysis, the muscles forces
were excluded, while the seat constraint and assistance forces were
supplied as external forces. The resultant joint torques and the
contributions of different muscles to them were computed using
OpenSim (Delp et al., 2007).

3.1 Unassisted STS Trajectory of 0%
Strength Deficit Model
The joint angle, the muscle excitation, the COM position and
velocity, the feet force zero moment point (ZMP), and the contact

FIGURE 3 | Scalar α, used within the cost expressions, represents the
percentage of STS completion and ranges between 0 and 1. The dashed
circles show the states that are equidistant from the Cgoal.
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force trajectories associated with the 0% strength deficit model’s
STS trajectory are respectively illustrated in Figures 6–10. The
STS motion is initiated by activating the ILPSO and RF muscles

(Figure 7). Their activation generates torque around the hip joint
and flexes the torso forward (Figure 11). It is followed by the
deactivation of ILPSO and RF muscles and gradually increasing
activations of the GMAX and HAMS muscles. Due to the trunk’s
forward flexion, the COM’s horizontal velocity increases and
peaks (Figure 8) before the activations of the GMAX and HAMS
muscles increase to control the torso’s forward flexion. Also, the
activation of VASmuscle increases to prepare for seat-off. Phase 1
ends when the VAS muscle has generated sufficient torques
around the knee joint to lift the musculoskeletal model off the
chair. The seat off takes place with the body’s COM lying behind
feet force ZMP (Figure 9). During phase 2, the GMAX and
HAMS muscle activations increase until the hip flexion velocity
reduces to zero. At this point, the trunk is maximally flexed, and
phase 2 comes to an end. The knee joint extends only slightly
during phase 2. The peak VAS, GMAX and HAMS muscle
activations occur during phase 2. During phase 3, the
activation of GMAX, HAMS, and VAS muscles slowly taper

FIGURE 4 | (A) Evolution of different costs and (B) their relative contributions to the total cost for the best candidates observed during optimization using the 0%
strength deficit model. The costs were smoothed using a rolling average of 10 generations for this plot.

TABLE 3 | Cost function hyperparameters.

Variable Value

τ tmax/8
w1 800
w2 1.2
w3 175
w4 70
w5 5
w6 10
w7 0.1
w8 1,000
w9 6
w10 0.3
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off because smaller forces are required to continue standing up
due to an increasing fraction of body weight being borne by
bone alignment. These patterns lead to the extension of both the
hip and knee joints until the standing posture is achieved. At the
end of phase 3, increased activation is observed in ILPSO, RF,
and TA muscles to stop the hip, knee and ankle joints from
extending past the upright posture. Also, during the latter half of
phase 3, the body’s COM reaches the feet support polygon. The
SOL muscles see almost negligible activation; however, it
produces significant passive fiber forces during the first two
phases and a significant part of the third phase. Significant TA
muscle activations are present during all three phases. These
activations produce the force needed to balance the
counteracting SOL and GAS muscle forces.

The joint angle trajectories of 0% strength deficits are
contrasted against those observed experimentally for a healthy
adult in Figure 6B. The general shape of the hip and knee joint
angle trajectories matches those of experiments. The
discrepancies in the joint angle trajectories primarily result
from the different initial postures (Figure 5). The mean initial
posture from experiments requires the lumbar joint extension
from −30° to nearly 0°. Our model did not include lumbar joint
actuation for the reasons of modelling simplification. The initial
posture was modified to compensate for the non-actuated lumbar
joint by moving the model slightly forward and locking the
lumbar joint with 10° of flexion.

The muscle activation patterns of the 0% strength deficit
model’s STS trajectory are compared to those of experiments
in Figure 7. The general shape of activation patterns for the STS
critical muscles, i.e., GMAX, HAMS and VAS, matches the
experiments. The higher activation of VAS muscle than
experiments during the first half of phase 1 is potentially due
to cost term ϕ2. Muscle RF features higher activation during STS
initiation as the model did not feature trunk muscles. The higher
activation of TAmuscle than experiments is potentially due to the
passive fiber forces induced in the SOL muscle by the initial
posture. Experimental data features a small peak in the TA, GAS
and SOLmuscle activations during phase 2. This peak is absent in
the generated STS. The experimental data did not include EMG
signal for ILPSO muscle. The peak activations of all the muscles
except RF and TA are within the two standard deviations of the
peaks observed experimentally.

The seat and feet contact force trajectories of the 0% strength
deficit model’s STS transition are compared to the experimental
observations in Figure 10. The lower seat-pan forces than
experiments are most potentially because of the point on point
constraint-based formulation. The flattening in the peak feet
forces for simulation is because of the cost term ϕ10 and the
absence of control noise. Also, the seat-off in simulation occurs
earlier than in the experiments because the simulation’s initial
posture requires less horizontal momentum to stand up, and the
kinematic constraint-based seat force formulation makes its
development easier.

3.2 STS Adaptations and Failure
With strength deficits, the STS duration and the peak VAS,
GMAX, RF, ILPSO and TA muscle activations increase
(Table 4; Figure 11). The peak HAMS muscle activation
increases with muscle weakness up to 40% and then
decreases for the 60%. The peak VAS muscle activation is
higher than that of GMAX muscle up to 40% strength
deficits and is equal for the 60% strength deficit. The
decrease in the peak HAMS muscle activation from 40 to
60% strength deficit is to alleviate the saturated VAS muscle
antagonistic at the knee joint. It is evident from the contribution
of HAMS muscle to peak resultant knee torques dropping from
−112.17% for the 40% strength deficit to −30.99% for the 60%
strength deficit. The reduced HAMS muscle activation saturates
the GMAX muscle as they work together to control the hip
flexion. It is demonstrated by the contributions of HAMS
muscle to the peak resultant hip torques dropping from

FIGURE 5 | The initial posture used to generate STS trajectories and the
mean initial posture observed during experiments. The model was moved
slightly forward for simulation to compensate for its non-actuated lumbar joint.
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70.26% for the 40% strength deficit to 54.7% for the 60%
strength deficit. Also, a reduction in the peaks of COM
velocity, ground reaction forces, and GMAX, HAMS and
VAS muscle forces is observed from the 40–60% strength
deficits. Bobbert et al. (2016) also observes that with strength
deficits, the STS duration increases, while the peak COM vertical
velocity, peak GMAX, and VAS muscle forces decrease.
However, Bobbert et al. (2016) does not observe any
significant reduction in HAMS muscle activation. It is
potentially because Bobbert et al. (2016) used the
immediately prior solutions as the initial guess for the

subsequent optimization. Besides STS duration and peak
muscle activation, we do not observe consistent trends from
the 0–40% strength deficits. It is most potentially because the
optimizations converged to different locally optimal solutions
for each model.

The optimization framework failed to generate STS transitions
using the 80% strength deficit model.We suspected the GMAX or the
VAS muscle to be responsible for this failure as they were getting
saturated for the 60% strength deficit model’s STS trajectory
(Figure 11). We tracked the 60% strength deficit model’s
successful STS trajectory using the 80% strength deficit and two

FIGURE 6 | (A) Different postures observed during the 0% strength deficit model’s STS transition and (B) the comparison of associated joint angle trajectories
against experimental observations. The first vertical dotted line marks the point when the model lost contact with the chair, and the second vertical dotted line marks the
posture with maximum hip flexion.
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different reserve actuator setups. In the first setup, the optimal torque,
i.e., torques generated per unit control effort, for the hip and knee
torque actuators were 100Nm and 1Nm respectively, while for the
second setup, they were 1Nm and 100Nm. The first setup favored the
utilization of the hip reserve actuator, while the second setup favored
the utilization of the knee reserve actuator. The first setup’s motion-
tracking features a peak torque of −19.81Nm by the knee reserve
actuator and increased activation of both VAS and RF muscles. The
second setup-based motion-tracking features a peak torque of
−12.05Nm by the hip reserve actuator and increased HAMS and
GMAX activations. The lower magnitude of reserve actuator in the

second setup suggests that the STS failure occurred because of VAS
muscle weakness. Also, the observation that peak VAS muscle
activation is greater than or equal to that of GMAX muscle
supports this hypothesis.

3.3 Externally Assisted STS Transition
During the motion tracking of the previous subsection, it was
observed that assisting the musculoskeletal model primarily at
the hip joint lead to increased RF muscle activation, while
assisting it primarily at the knee joint lead to increased
HAMS muscle activation. As STS transition is performed

FIGURE 7 | Muscle activation trajectories associated with the 0% strength deficit model’s STS transition and those recorded experimentally.

FIGURE 8 | (A) Evolution of COM position and (B) velocity for the 0% strength deficit model’s STS transition.
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several times a day, assisting only at the hip or the knee joint has
a high potential to cause the RF or the HAMS muscle
contracture. Both the muscles cross the hip joint, and their
contracture can cause back pain issues if not diagnosed. Thus
the external assistance was introduced at the torso COM in the
80% strength deficit model. Also, assisting the model at the torso
center of mass is a good approximation for assisting a human at
the underarms area. The underarms area is easily graspable, and
assistance using it helps simplify the design of probable STS
assistance devices.

Physical assistance can help maintain or recover lower
extremity strength when provided in an assist-as-needed
manner. Thus while generating the assisted STS trajectories,
the over-utilization of external assistance was penalized (Eq.
6). Figure 12 shows the body postures, the assistance forces,
and muscle activation for the externally assisted 80% strength
deficit model’s STS trajectory. The trajectory features utilization
of external assistance when the VAS and GMAX muscle starts
getting saturated, i.e., the model uses external assistance only
when needed. The peak magnitudes of external assistance’s
vertical and horizontal components are 36.50 and 44.51% of
the body’s weight. The STS trajectory features reduced peaks of

COM velocities, resultant hip and knee joint torques and the
VAS, GMAX, and HAMS muscle forces. The seat-off takes place
with the torso more upright than unassisted models.

4 DISCUSSION

This paper presented and analyzed the sit-to-stand (STS)
trajectories generated using an open-loop single shooting
optimization and musculoskeletal models with different
strength deficits. The strength deficits were introduced by
simultaneously scaling the maximum isometric strength of all
the muscles in steps of 20%. The optimization could successfully
generate STS trajectories for models with up to 60%strength
deficits. The muscle activation patterns for the 0% strength deficit
model agree reasonably with the experimental observations for a
healthy adult. A reduction in the peak HAMSmuscle activation is
observed when the VAS muscle, antagonistic across the knee
joint, gets saturated due to the strength deficits. The reduced
HAMS muscle activation saturated the GMAX muscle. After
clinical validation, the reduced ratio of peak HAMS to GMAX
muscle activation can be used to plan intervention. Then, the
motion-tracking results were used to suggest the VAS muscle
weakness to be responsible for optimization’s failure to generate
STS trajectories using the 80% strength deficit model. The motion
tracking results were also used to motivate the introduction of
external assistance at the torso’s centre of mass (COM). The
optimization could generate successful STS trajectories for the
externally assisted 80% strength deficit model. The optimal
trajectory featured the utilization of external assistance in an
assist-as-needed manner. We have made the source code for
optimization public to speed up the design of future assist-as-
needed STS care devices. Finally, the findings of this study should
be observed with caution as they have many inherent
assumptions. The most significant among them are discussed
in the following next paragraphs, followed by our probable future
research directions.

Many experimental studies report that the elderly follow a
stabilization strategy in which they move the body’s COM over
the feet support polygon before getting off the chair. Like the

FIGURE 9 | The zero moment point (feet forces) and the body’s COM
trajectories from the 0% strength deficit model’s STS transition.

FIGURE 10 | (A) Feet and (B) seat contact forces observed during the STS trajectory of the 0% strength deficit model and the experiments.
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mean initial posture of our experiments, the stabilisation strategy
requires significant lumbar motion. For our musculoskeletal
model, the body’s COM lies just 1.15 cm inside the feet
support polygon when the trunk is maximally flexed while
maintaining chair contact. Thus the elimination of the lumbar
joint and the feet-ground relative degree of freedom, even though
also made by Pandy et al. (1995), Bobbert et al. (2016), and
Yokota et al. (2016), might have been oversimplifications for
predicting STS trajectories of the elderly adults.

The strength deficits were introduced by simultaneously
scaling all the muscles’ maximum isometric strength. However,

the strengths of all the muscles do not deteriorate by the same
ratio. Also, scaling the maximum isometric forces is not the only
way to introduce strength deficits. For example, the peak muscle
activations could have been limited to the same effect. Thus the
strength deficit modelling, even though made similarly by
Bobbert et al. (2016) and Yokota et al. (2016), should be
investigated for more accurate predictions.

We assumed a sagittal plane of symmetry. However, it has
been shown that even for healthy adults, one leg is usually more
dominant than the other. Also, significant asymmetries may arise
when one of the upper extremities grabs surfaces for assistance.

FIGURE 11 | Muscle activations, muscle forces, and their respective contributions to the resultant joint torques from the STS trajectories of 0, 20, 40 and 60%
strength deficit models.
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FIGURE 12 | (A) Postures, (B) external assistance and (C) muscle activation trajectories from the STS transition of the externally assisted 80% strength deficit
model. The green arrow in (A) represents the resultant external assistance force.

TABLE 4 | Properties of the 0, 20, 40, 60% and externally assisted 80% strength deficit model’s STS trajectories. Rows five, six, eight and nine show contributions of muscles
to peak resultant joint torques.

# Row Property 0% strength
deficit

20% strength
deficit

40% strength
deficit

60% strength
deficit

80% strength
deficit assisted

1 STS duration (s) 1.14 1.23 1.33 1.47 1.11
2 Peak COM Horizontal Velocity (m/s) 0.40 0.42 0.42 0.39 0.43
3 Peak COM Vertical Velocity (m/s) 0.65 0.71 0.65 0.55 0.42
4 Peak Hip Torque (Nm) −62.17 −76.10 −83.28 −53.58 −35.59
5 GMAX Peak Hip Torque (Nm) −31.60 −35.12 −30.03 −26.17 −20.96
6 HAMS Peak Hip Torque (Nm) −45.91 −47.15 −58.51 −29.31 −15.44
7 Peak Knee Torque (Nm) −72.02 −66.73 −59.22 −65.86 −42.19
8 VAS Peak Knee Torque (Nm) −111.26 −115.92 −125.02 −85.51 −42.36
9 HAMS Peak Knee Torque (Nm) 44.40 50.34 66.43 20.41 2.69
10 Peak VAS Force (N) 4754.10 4857.40 5355.19 3765.91 1907.14
11 Peak GMAX Force (N) 1194.27 1513.42 1437.11 1206.33 615.33
12 Peak HAMS Force (N) 1366.03 1505.99 2058.45 782.31 340.31
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Thus, the optimization framework needs to be extended to use the
3D musculoskeletal model to generate more realistic assisted and
unassisted STS trajectories. Other musculoskeletal model-related
critical assumptions that must be validated are simplifying the
muscle groups to single musculotendon units and the control
level decoupling of muscles.

Perfect coordination between the musculoskeletal model and
the external assistance was assumed. It led to an optimal assisted
STS transition with 1.11sec STS duration and is unrealistic to
replicate. The optimization framework should be extended to
include sensory noise and delay in external assistance
formulation to synthesize realistically replicable STS trajectories.
The maximum simulation duration needs to be extended beyond
1.6sec. The chair height and the initial posture heavily influence the
STS transitions, and the results of this study are a function of them.

The cost function used in this study is not unique in its
capability to engender STS. Further, even for the selected cost
function, the relative weights of the different cost terms should
have been chosen using inverse optimal control. The relative
weights were selected using trial and error because of the
computationally demanding nature of the optimization. The
generated STS trajectories are local optimal solutions of
nonlinear non-convex optimizations. The optimization’s failure
to generate STS using the 80% strength deficit model might have
been due to the unsuccessful search rather than muscle saturation.

We plan to design a kinematic events-based closed-loop STS
controller in the future. We also plan to investigate the torque and
muscle actuated lumbar joint models for STS trajectories with
more accurate joint kinematics and dynamics. Finally, we intend
to extend the optimization framework to include sensory noise

and delay for the more realistic models of assist-as-needed STS
care devices.
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