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Introduction

Phosphate-solubilizing bacteria are the bacteria that secrete organic acids and
phosphatases to convert the insoluble phosphorus fixed in soil into soluble phosphorus
(such as monovalent H2PO4

− and divalent HPO4
2−) (Rodriguez et al., 2006). Among the

species, the main bacteria with phosphorus solubilizing ability were Pseudomonas, Bacillus,
Rhizobium, Burkholderia, Achromobacter, Agrobacterium, Microccocus, Erwinia, Aereobacter
and Flavobacterium (Ma et al., 2022). Representative phosphate-solubilizing bacteria are
Pseudomonas, Rhizobium and Bacillus, which have the best phosphate-solubilizing capability
(Maheshwari et al., 2013).

The mechanism of these bacteria can be explained based on the form of phosphorus,
namely, mineral phosphorus and organic phosphorus. From the perspective of mineral
phosphorus dissolution, the most accepted theory is that phosphate-solubilizing bacteria
synthesize organic acids that acidify the cells of microorganisms and the surrounding
environment, releasing phosphorus from mineral phosphorus through proton (H+)
exchange of Fe3+, Ca2+, Al3+, etc., (Goldstein, 1994; Kim et al., 2005). Research has found
gluconic acid to be the most effective organic acid for dissolving mineral phosphorus. It is
generated from the action of phosphate-solubilizing bacteria such as Pseudomonas sp., Erwinia
herbicola, Pseudomonas cepacian and Burkholderia cepacia. Another representative organic
acid is 2-ketogluconic acid, which is produced from the action of phosphate-solubilizing
bacteria such as Rhizobium leguminosarum, Rhizobiummeliloti and Bacillus firmus. In addition,
there are also reports on other organic acids including glycolic acid, oxalic acid, malonic acid
and succinic acid.

From the perspective of organic phosphorus dissolution, it is in its nature the mineralization
of organic phosphorus. Saprophytes mineralize organophosphates when decomposing organic
matter in soil, which releases orthophosphate and thus dissolves phosphorus (Illmer and
Schinner, 1992). The mineralization of organic phosphorus is completed by the action of
phosphatase, the main process of which is the hydrolysis of phosphate or phosphoric anhydride
bonds. The function of phosphorus solubilizing bacteria is related to the type of phosphorus
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source itself. It has been confirmed that tricalcium phosphate and
hydroxyapatite are more easily degraded than phosphates in inorganic
phosphorus, while phospholipids and sugar phosphates are relatively
easily decomposed and polyphosphates are more slowly decomposed
(Adnane et al., 2021). In addition, the mineralization of organic
phosphorus by bacteria is significantly influenced by environmental
factors; for organic phosphorus, medium alkalinity is more favorable
for its mineralization, unlike for inorganic phosphorus.

Although mechanisms for phospholytic bacteria technology has
been discovered in a certain degree, several challenges are still
remained in its practical employment. First, it usually causes a
considerable delay for the phosphorous conversion at the early
stages of phosphorus solubilization, when phosphorus-solubilizing
bacteria have not yet formed large colonies or become dominant, such
as in the initial stage of fertilization. Second, the accumulation of
aromatic hydrocarbons and heterocyclic compounds (e.g., pesticide or
herbicide) in the soil, which could not be utilized as the microbial
carbon source, greatly inhibited the functioning of phospholytic
bacteria. Moreover, the low temperature or the turbulence of
environmental pH conditions also decreases the activity of bacteria,
thus slowing down the phosphorus conversion rate. All these issues
have great impacts on the practical applications of the phospholytic
bacteria technology. Herein, seeking a facile but efficient technology to
make a synergistic interaction with bio-tech for boosting of
phosphorus solubilization efficiency is challenging but of great
significance.

Electrochemical enhancement of
biological phosphorus solubilization

Electrochemical technology is a kind of multi-functional physical-
chemical process, containing electro-adsorption, electro-migration,
anodic oxidation and cathodic reduction reactions (known as
REDOX process), which plays an important role in the water and
soil remediation. The high content of organic matter and a variety of
electrolytes (such as the mineral salt and inorganic fertilizer) in soil
and its wetness enabled electrochemical process to be realized in
diverse ways. Electrochemical degradation of organic matter can be
achieved directly by electron transfer between the electrode and the
organic matter, or by the following reactions: at the anode with water
molecules as the medium: H2O→ ·OH +H+ + e−, generating hydroxyl
radical to oxidize the organic matter while lower the pH, and at the
cathode: 2H+ + e− = H2, consuming H+ to raise the pH (Wang et al.,
2022). In general, electrochemistry can not only achieve the
transformation of organic matter (such as conversing into low
molecular acid or directly degrading the organophosphorus), but
also alter ambient pH through the adjusting the above reactions on
the anode and cathode, so as to adjust the soil pH according to the
demand (Teklit et al., 2023). On the other hand, electrochemistry can
stimulate the phosphate-solubilizing bacteria and enhance the activity
of the bacteria, thus enhancing the metabolism of phospholytic
bacteria (Huang et al., 2021; Liu et al., 2022). Combined with the
phosphate-solubilizing mechanism of phosphate-solubilizing bacteria,
both oxidation and reduction will to a certain extent enhance
biological phosphorus solubilization. The illustration of the
electrochemical reduction-oxidation process on the phosphorus
solubilization performance conducted by phospholytic bacteria
technology is referred to Figure 1.

Phosphate solubilization of phosphate-
solubilizing bacteria enhanced by anodic
oxidation

Anodic oxidation is closely related to the properties of the electrode.
Different oxygen evolution potential (OEP) of the anode will lead to
different processes and endpoints of organic degradation. When OEP is
less than 1.8V, the organic matter is degraded by the high-valence oxides
generated from interaction between hydroxyl radical and anode rather
than by hydroxyl radical, for which the degradation endpoint will be low
molecule organic acids (such as formic acid and acetic acid) and other
intermediates. Noble metal electrodes like ruthenium or ruthenium-
iridium exhibit this property (Eleftheria et al., 2019). Therefore,
introducing such electrodes to the phosphate-solubilizing bacteria
system will enhance the content of organic acids and H+ in the system
and thus improving inorganic phosphorus dissolution. In particular, a
significant effect of anodic oxidation is that when soil contains some
refractory organic matter, such as residual organic pollutants from
pesticide spraying or fertilization, anodic oxidation can degrade such
organic matter into low molecular acids, which can not only reduce soil
toxicity and its harm to the flora (such as phosphorous solubilizing
bacteria), but also improve the concentration of organic acid in the system
(Brillas, 2021). On the other hand, extensive previous studies have
confirmed that anodic oxidation could directly degrade organic
phosphorus and convert it into soluble phosphate, thus enhancing the
dissolution of organic phosphorus (Wang et al., 2022).

Phosphate solubilization of phosphate-
solubilizing bacteria enhanced by
cathodic reduction

The mechanism of phosphate solubilization of phosphate-
solubilizing bacteria enhanced by cathodic reduction is relatively
simple—it is mainly the cathodic reduction that consumes H+ and
transfer the pH of the system to neutral or alkaline (Cheng et al., 2021).
As mentioned above, phosphate-solubilizing bacteria dissolve organic
phosphorus through the hydrolysis of phosphate or phosphoric
anhydride bonds by phosphatase, for which medium alkalinity is
more favorable—fits right in with the cathode. Another important
effect is that in an atmosphere with enough air, the cathode will
react as follows: O2+2H

+ + 2e− = H2O2. The generated strong
oxidizing substance, hydrogen peroxide (Brillas, 2022), promotes the
conversion of organophosphorus to phosphoric acid roots, thus
enhancing the dissolution of organophosphorus. In addition, it has
been reported that cathode can not only reduce organic matter itself, but
also enhance the reducing ability of bacteria. The electron giving ability
of cathode can strengthen the electron transfer between cathode,
microbiota and organic matter, and improve the reducing ability of
the system (Yang et al., 2020). When there are nitro compounds in the
system, cathodic reduction can achieve the enhanced removal of the
substance and ensure the biological activity of phosphorus solubilizing
bacteria (Hu et al., 2022).

Future perspective

First of all, the high content of organic matter and a variety of
electrolytes in soil and its wetness facilitate the introduction of
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electrochemical technology. Such characteristics of electrochemical
technology as the oxidized organic matter staying in an organic acid
state, producing H+ and H+ being consumed in reduction agree well
with the phosphorus solubilization mechanism of phosphorus-
solubilizing bacteria (Nancharaiah et al., 2016). Therefore, the
introduction of electrochemical technology will more
significantly improve the efficiency of phosphorus solubilization
than a system with phosphorus-solubilizing bacteria alone. As
stated above, anodic oxidation can enhance the dissolution of
both inorganic phosphorus and organophosphorus, while
cathodic reduction mainly enhances the dissolution of
organophosphorus. In particular, the strengthening mechanism
of anodic oxidation on phosphorus dissolution may play a
positive role in promoting phosphorus circulation and even plant
growth (Yang et al., 2021). Because the largest reserves of
phosphorus in nature exist in the form of inorganic phosphorus,
which is chelated into insoluble complexes such as Fe3+, Ca2+ and
Al3+ in the soil. The content of soluble phosphorus in nature is very
low, which greatly hinders the absorption and acquisition of plants
(Wei et al., 2018). At the same time, electrochemical technology can
not only create an environment suitable for the metabolism of
phosphorus solubilizing bacteria, but also remove toxic organic
matter in the surrounding environment which is not conducive to
the growth of phosphorus solubilizing bacteria. On the other hand,
the functioning of phosphorus solubilizing bacteria could be
promoted under assistance of the REDOX process of the
electrodes (Ren et al., 2022). Electrochemical enhanced
phosphorus solubilization can be used in the early stages of
phosphorus solubilization to ensure phosphorus conversion
when phosphorus-solubilizing bacteria have not yet formed large
colonies or become dominant; or after fertilization to enhance
phosphorus solubilization when organic/inorganic phosphorus is
not converted in time. The cathodic reduction could also maintain
the medium alkalinity of the soil and provide electron to activate the
metabolisms of the bacteria. As for the scale application, the
challenges may be located at the distribution of the anode and

cathode pair in the practical soil, the anti-corrosion of the electrode
materials by the salt and bacteria and the cost control of the
integrated electro-bacteria system. Overally, it is very promising
to have the introduction of electrochemical technology into the
phosphorus-solubilizing bacteria system, which is of great benefits
for the transformation of phosphorus elements and plant growth
(Rodríguez and Fraga, 1999; Acevedo et al., 2014; Wang and He,
2022).
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FIGURE 1
Schematic illustration of the electrochemical reduction-oxidation process on the phosphorus solubilization performance conducted by phospholytic
bacteria technology.
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