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Acute pancreatitis (AP) is a severe life-threatening inflammatory disease showing
primary characteristics of excessive inflammatory response and oxidative stress.
Based on the pathophysiology of AP, several anti-inflammatory and anti-oxidative
stress agents have been studied. However, the low accumulated concentrations and
scattered biodistributions limit the application of these agents. With the development
of nanotechnology, functional nanomaterials can improve the bioavailability of drugs
and extend their half-life by reducing immunogenicity to achieve targeted drug
delivery. The biomaterial-based carriers can mediate the passive or active delivery of
drugs to the target site for improved therapeutic effects, such as anti-oxidation and
anti-inflammation for AP treatment. Other biomaterials-based nanomedicine may
exhibit different functions with/without targeting effects. In this review, we have
summarized the targeting and functional effects of biomaterials-based nanoagents
specifically for AP treatment.
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1 Introduction

Acute pancreatitis (AP) is an unpredictable and potentially fatal inflammatory
gastrointestinal disease. The global incidence of AP ranges from 13 to 45 cases per
100,000 people and is increasing annually (Petrov and Yadav, 2019). Studies have shown
that alcoholism, smoking, biliary tract abnormalities, and autoimmune diseases usually cause
AP, which can be accompanied by epigastric pain, nausea, vomiting, bloating, systemic
involvement, and organ failure (Lankisch et al., 2015). According to the clinical severity,
AP can be divided into mild, moderate, and severe categories (Ratia Gimenez et al., 2014).
Mostly, mild AP can be cured automatically after progressing to a certain extent (Lankisch et al.,
2015). Approximately 20% of patients with pancreatitis developmoderate to severe AP, which is
difficult to cure, and show symptoms of pancreatic necrosis and/or organ failure accompanied
by long-term recurrent episodes in most patients with irreversible pathological changes (Lee
and Papachristou, 2019; Mederos et al., 2021). AP can cause exocrine dysfunction of the
pancreas and damage acinar cells. Some severe AP cases can progress to systemic inflammatory
responses, multiple organ damage, or function failure, with a mortality rate of as high as 20%
(Mederos et al., 2021).

Oxygen free radicals (OFRs) and derivatives play an important role in AP progression and
pancreatic tissue damage; hydrogen peroxide, superoxide anion, hydroxyl group, and singlet
oxygen are themain factors causing cell damage (Padureanu et al., 2022). OFRs can promote the
adhesion, activation, and migration of leukocytes, damage the integrity of endothelial cells, and
increase the permeability of capillaries, thus leading to the loss of circulating blood volume,
microcirculation disorders, and aggravated pancreatic injury (Padureanu et al., 2022). During
the AP-mediated inflammatory response process, inflammatory factors and oxidative stress
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play a synergistic role via triggering a common signaling pathway,
mainly activated by MAPK and NF-κB, leading to an amplification of
inflammation cascade (Zhang et al., 2022a). Based on the
pathophysiology of AP, various anti-oxidative and anti-
inflammatory drugs have been explored (Zhang et al., 2022b).
However, because of the limited solubility, short half-life, and poor
stability, these traditional drugs cannot pass through the blood-
pancreas barrier to reach sufficient concentration at the
inflammation site (Zhou et al., 2019). Hence, a safe and effective
treatment method is yet to be developed to achieve improved anti-
oxidation and anti-inflammation effects for AP treatment in the clinic.

In recent years, nanotechnology has been widely applied in the
biomedicine field, with rapid progress in the prevention, diagnosis,
and treatment of diseases (Gagliardi et al., 2021; Wang et al., 2021).
Nanoparticles of different shapes, pore sizes, and structures can be
utilized in the development of nanoscale drug delivery systems using
polymeric and inorganic materials as carriers (Atiyah et al., 2022).
Nanomedicines can improve drug efficacy, safety, physicochemical
properties, and pharmacokinetics or pharmacodynamics (Atiyah
et al., 2022). Additionally, functional nanomaterials can enhance
the bioavailability of oral drugs in vivo and extend their half-life by
reducing immunogenicity to achieve targeted drug delivery (Hou et al.,
2021; Mallakpour et al., 2022). For AP treatment, biomaterials can act
as nanocarriers or nanomedicines for passive or active delivery of
drugs to the target site, which is conducive to drug accumulation at the
inflammatory pancreatic area, for improved therapeutic effects,

including anti-oxidation and anti-inflammation (Zhang et al.,
2022b). Other biomaterials-based nanomedicine may possess
different functions with/without targeting effects for AP treatment.
In this review, we have summarized and discussed the targeting and
functional effects of biomaterials-based nanoagents for AP treatment.

2 Role of biomaterials-based
nanoagents in AP treatment

Although several important roles of biomaterials as drug carriers
and nanomedicine for disease diagnosis and treatment have already
been discussed (Festas et al., 2020; Gagliardi et al., 2021), this review
mainly outlines the targeting and functional effects of biomaterials-
based nanoagents constructed specifically for AP treatment (Figure 1;
Table 1).

2.1 Targeting effects

Targeting effect is crucial for the treatment of various diseases and
can be divided into three aspects, i.e., passive, active, and physical
targeting (Russ and Wagner, 2007; Ivey et al., 2016; Kanamala et al.,
2016). Accumulation of nanoagents at the target sites for enhanced
therapeutic efficacy while reducing systematic side effects can be
achieved through targeting effect (Steichen et al., 2013). According

FIGURE 1
Targeting and functional effects of biomaterials-based nanoagents constructed specifically for AP treatment.
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TABLE 1 The targeting and functional effects of biomaterials constructed for nanoagents for AP treatment.

Targeting
category

Materials Formulation Loaded agents Purpose of
constructed
biomaterials

Delivery
route

Model Main results Ref

Passive (ELVIS effect,
enzyme response)

Silk fibrin Nanoparticles Bilirubin Carrier Intravenous
injection

L-Arginine induced rat
model

Bilirubin-loaded silk fibrin nanoparticles
prevented NF-kappa B pathway and
activated the Nrf2/HO-1 pathway to
inhibit oxidative stress and
inflammatory responses

Yao et al.
(2020)

Passive (ELVIS effect) The nanoliposomes were prepared by
thin layer evaporation technique, and
L-α-phosphatidylcholine and
cholesterol were mainly used

Liposomes Caffeic acid
phenethyl ester
(CAPE)

Carrier Oral delivery L-ornithine induced
rat model

The CAPE-loaded nanoliposomes
decreased the pancreatic secretions,
oxidative stress, local inflammation,
tissue apoptosis, and impaired energy
status for the treatment of pancreatitis

Shahin et al.
(2022)

Passive (ELVIS effect) PLGA Nanoparticles Curcumin Carrier Intravenous
injection

Cerulein induced rat
model

Cur-loaded nanoparticles significantly
decreased serum amylase and lipase
levels, oxidative and nitrosative stress,
and the expression of inflammatory
cytokines

Anchi et al.
(2018)

Passive (ELVIS effect) Rebaudioside A (RA) Micelles Empagliflozin
(EMP)

Carrier Oral delivery L-Arginine induced rat
model

The RA-EMP micelles performed the
therapeutic effects towards AP by
suppressing oxidative stress and
proinflammatory cytokines

Li et al. (2022)

Passive (ELVIS effect,
Bionic targeting)

PEG-PLGA coated with neutrophil
membranes

Nanoparticles Celastrol Carrier, to drive to the
inflammation site via
chemokine recruitment

Intravenous
injection

Sodium taurocholate
induced rat model

The composite reduced serum amylase
levels, pro-inflammatory cytokines, and
inhibited systematic side effects

Zhou et al.
(2019)

Passive (ELVIS effect,
pH response)

Silica Nanoparticles Chitosan
oligosaccharides
(COSs)

Carrier Intraperitoneally
injection

Cerulein induced rat
model

The COSs-loaded silica nanoparticles
can activate Nrf2 and suppress NF-κB
and the NLRP3 inflammasome for
ameliorating AP.

Mei et al.
(2020)

Passive (oxidant
response)

Yttrium oxide (Y2O3) Nanoparticles _ Performing direct
antioxidant activity

Intraperitoneally
injection

Cerulein induced rat
model

The nanocomposite decreased oxidative
stress and attenuated the mitochondrial
stress and inflammatory markers

Khurana et al.
(2019)

Passive (ELVIS effect,
Bionic targeting,
enzyme response)

Neutrophil membrane-coated silk
fibroin (SF)-nanoparticles

Nanoparticles Ferulic acid (FA) Carrier Intravenous
injection

Not mentioned The nanoparticles can targeted deliver
FA to inflammatory pancreas lesion and
perform anti-inflammation and anti-
oxidation effects

Hassanzadeh
et al. (2021)

Passive (Bionic
targeting, enzyme
response)

PLGA nanoparticles coated with
macrophage (MΦ) membrane
modified with melittin and MJ-33

Nanoparticles _ Lure and kill
PLA2 enzymes

Intravenous
injection

Cerulein induced rat
model

These nanoparticles can suppress
PLA2 activity and preventing
inflammatory responses, therefore
decreasing tissue damage in pancreas

Zhang et al.
(2021)

Active targeting Peptide-conjugated pegylated DOPC
liposomes

Liposomes Apigenin Carrier, active target
through specific peptide

Intravenous
injection

Cerulein induced rat
model

Increasing the apigenin accumulation in
pancreas for performing acini
preservation and reducing oxidative
stress

Hung et al.
(2021)

(Continued on following page)
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TABLE 1 (Continued) The targeting and functional effects of biomaterials constructed for nanoagents for AP treatment.

Targeting
category

Materials Formulation Loaded agents Purpose of
constructed
biomaterials

Delivery
route

Model Main results Ref

_ Prussian blue nanozymes were
prepared by polyvinylpyrrolidone
modification method

Nanoparticles _ To drive intrinsic ROS
scavenging and
inflammation inhibiting
properties

Intravenous
injection

Cerulein induced rat
model

Prussian blue nanozymes inhibited toll-
like receptors (TLRs)/NF-κB signaling
pathway, thus decreasing the
inflammation responses and oxidative
stress for AP treatment

Zhang et al.
(2022c)

_ Generation 5 (G5) polyamidoamine
(PAMAM) dendrimers with two
different surface groups, G4.5-COOH
and G5-OH

Dendrimers _ Performing anti-
inflammatory effects

Intravenous
injection

Cerulein induced rat
model

G4.5-COOH and G5-OH inhibited
decreased the expression of pro-
inflammatory cytokines by suppressing
nuclear translocation of NF-κB in
macrophages

Tang et al.
(2015)

_ Tetrahedral framework nucleic acids Nanoparticles _ Suppressing inflammation
and preventing
pathological cell death

Intravenous
injection

Taurocholate induced
rat model

Inhibiting inflammatory cytokines in
tissues and blood

Wang et al.
(2022)

_ Carbon monoxide bound hemoglobin
vesicles (CO-HbV)

Vesicles _ Acting as a donor for CO
and oxygen carrier after
releasing CO.

Intravenous
injection

Choline-deficient
ethionine-
supplemented diet
induced rat model

CO-HbV decreased pro-inflammatory
cytokines expression, neutrophil
infiltration, oxidative injuries in
pancreatic tissue, and systematic side
effects

Nagao et al.
(2016)

_ Lipid-based liquid crystalline
nanoparticles with the lipid mixture of
phosphatidylcholine (PC), glycerol
dioleate (GDO) and polysorbate
80 (P80)

Nanoparticles Somatostatin Carrier _ _ Extending plasma half-lives of
somatostatin

Cervin et al.
(2009)
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to the existing literature, biomaterials-based targeting effects for AP
treatment are mainly passive and active (Zhang et al., 2022b).

2.1.1 Passive targeting
During passive targeting, biomaterials-based nanocarriers

generally act via physical and chemical interactions (hydrophobic
and electrostatic interactions) as well as physical factors (such as
carrier size and mass) to achieve targeted drug delivery (Attia et al.,
2019). For pancreatitis, passive targeting can be achieved through
increased permeability of tissue space and other microenvironment
biochemical properties, including pH, reactive oxygen species (ROS),
and digestive enzymes (Chiorean and Coveler, 2015).

Inflammatory responses can increase the permeability of blood
vessels, subsequently triggering the extravasation through leaky
vasculature and inflammatory cell-mediated sequestration (ELVIS)
(Gong et al., 2019), which allows passive targeting of suitable size
range nanoparticles for accumulation at the inflammation sites (Ren
et al., 2019). Yao et al. (2020) developed silk-fibrin (SF)-based
nanoparticles encapsulating bilirubin, the main anti-oxidant
component of heme catabolism, for AP treatment. The animal
experiment showed that the synthesized nanoparticles could selectively
target the inflammatory sites in the pancreas to release bilirubin. The
bilirubin-loaded SF nanoparticles prevented the NF-κB pathway and
activated the Nrf2/HO-1 pathway to inhibit oxidative stress and
inflammatory responses. In another study, L-α-phosphatidylcholine
and cholesterol were mainly used to prepare nanoliposomes by thin
layer evaporation technique (Shahin et al., 2022), loaded with caffeic acid
phenethyl ester (CAPE) for oral administration in a rat model. The
CAPE-loaded nanoliposomes decreased pancreatic secretions, oxidative
stress, local inflammation, tissue apoptosis, and impaired energy status as
therapeutic effects for AP treatment. The in vivo biodistribution study of
the nanoliposomes was not performed; thus, the targeting effects could
not be supported directly. However, the enhanced treatment efficacy was
attributed to the altering tissue biodistribution of smaller-size liposomes
and cellular uptake mechanisms (Shahin et al., 2022). Notably, liposomes
particle size is their most influential characteristic affecting the circulation
time and biodistribution after intravenous injection, which plays a vital
role in passing through the leaky vasculature and accumulation at
inflammatory sites in vivo (Ren et al., 2019). Anchi et al. (2018)
synthesized curcumin-loaded poly (lactic-co-glycolic acid) (PLGA)
nanoparticles and evaluated the treatment efficacy in a cerulein
induced AP model. The nanoparticles delivered curcumin to the
inflammatory pancreatic site mediated by the ELVIS effect, resulting
in a significant reduction of serum amylase and lipase levels, oxidative and
nitrosative stress, and the expression of inflammatory cytokines. In
addition, other previous studies have also reported the passive
targeting of biomaterials-based nanocarriers via the ELVIS effect for
AP therapy. Li et al. (2022) reported empagliflozin (EMP) loaded
rebaudioside A (RA) micelles with a particle size of 5.234 ± 0.311 nm.
The small particle size of the synthesized RA-EMP micelles (less than
20 nm) could benefit their cellular uptake and tissue accumulation for
therapeutic effects against AP in a rat model by suppressing oxidative
stress and proinflammatory cytokines.

Biomaterials-based nanoparticles with small size triggering the ELVIS
effect at inflammatory sites have been applied in drug delivery and
treatment of various inflammatory diseases. However, traditional
nanoparticles are easily recognized by the reticuloendothelial system in
vivo and are difficult to accumulate passively at the inflammation area via
the ELVIS effect. For example, although the small particle size of RA-EMP

micelles aided the passive targeting of EMP at the pancreatic
inflammation site, the biodistribution study showed the highest EMP
concentrations in kidney and liver tissues with reduced EMP
accumulation in the pancreas, which could restrict the therapeutic
efficacy (Li et al., 2022). Natural cell-membrane-modified
nanoparticles have immense advantages in disease diagnosis and
treatment due to the unique proteins, peptides, and enzymes present
on the surface of cell membranes (Hwang et al., 2015) and are highly
biocompatible to achieve extended circulation ability and/or target effects.
Additionally, nanoparticles modified by partial or complete cell
membranes can acquire the cell-derived bioactive property and
homing effect for targeted drug delivery. Till now, membranes of
various cell types, including red blood cells (Hu et al., 2011), platelets
(Hu et al., 2015), white blood cells (Parodi et al., 2013), cancer cells (Chen
et al., 2016), stem cells (Bose et al., 2018), etc., have been applied tomodify
nanoparticles for disease diagnosis and treatment. Utilizing the natural
homing effect of cell membranes, nanoparticles can target the
corresponding lesions to increase the therapeutic efficacy; the targeted
homing effect is termed Bionic targeting (Liu et al., 2023). AP is an acute
inflammatory disease characterized by the infiltration of a large number of
inflammatory cells, including neutrophils and macrophages (Mayerle
et al., 2012). Neutrophils are the most abundant type of granulocytes,
accounting for 40 to 70 percent of all human white blood cells and the
host’s first line of defense against invading pathogens and infections. The
inherently phagocytic neutrophils can be activated by cytokines which
then arrive at the inflammation sites (Selders et al., 2017; Castanheira and
Kubes, 2019). Zhou et al. (2019) studied the treatment efficacy and
mechanism of celastrol-loaded poly (ethylene glycol) methyl ether-block-
PLGA (PEG-PLGA) nanoparticles coated with neutrophil membrane
towards AP. The neutrophil membrane-modified nanoparticles aimed to
endorse the Bionic targeting effect at the inflammation site through
cytokines recruitment. In addition, the size of the applied nanoparticles
(156.8 ± 2.3 nm) attributed to the passive ELVIS targeting effect.
Furthermore, the modified celastrol-loaded nanoparticles reduced
serum amylase levels and pro-inflammatory cytokines and inhibited
systematic side effects in a sodium taurocholate-induced AP rat model.

The pH-responsive materials are usually capable of physical or
chemical changes within a specific pH range (Lu et al., 2014). The pH-
sensitive nanomaterials can achieve responsive release of drugs at the
inflammatory site and correspondingly increase the drug
accumulation (Kellum et al., 2004). Enhanced cellular metabolic
activity leads to anaerobic glycolysis and lactic acid formation at
the inflammation site (Zhang et al., 2020), resulting in an acidic
microenvironment within the damaged pancreatic tissue. Applying
pH-sensitive biomaterials to achieve passive targeting at the pancreatic
tissues may further enhance the anti-oxidative and anti-inflammatory
therapeutic effects. Silica nanoparticles, possessing porous structures
and good biocompatibility, are usually used as carriers that can release
drugs mediated by pH control to obtain their high concentrations
within targeted tissues (Li et al., 2017; Zhang et al., 2018). Mei et al.
(2020) developed silica-based nanoparticles encapsulating chitosan
oligosaccharides (COSs) for their (COSs) targeted delivery to the
pancreas, exerting anti-oxidation and anti-inflammation effects by
activating Nrf2 and suppressing NF-κB and NLRP3 inflammasome for
ameliorating AP. Moreover, the small size of the nanoparticles
(305 nm) could also contribute to the ELVIS targeting effect.

The normal physiological ROS levels play an essential role in cell
differentiation, proliferation, and migration (Hajam et al., 2022). In
AP conditions, ROS are excessively produced in activated neutrophil
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and macrophage organelles such as mitochondria and endoplasmic
reticulum. Overproduction of ROS can promote the production of
inflammatory cytokines such as tumor necrosis factor alpha (TNFα),
interleukin (IL) 1β, and IL 6, accelerating the progression of AP
(Carrasco et al., 2014). The nanocomposites sensitive to oxidative
response can be utilized in targeted therapy for AP. For example,
intraperitoneal administration of yttrium oxide (Y2O3) nanoparticles
decreased oxidative stress and attenuated the mitochondrial stress and
inflammatory markers in an AP rat model (Khurana et al., 2019). The
Y2O3 nanoparticles, like catalase and superoxide dismutase mimetic,
possess promising anti-oxidation properties (Heckert et al., 2008).

During the trigger and development of AP, a variety of enzymes
can be secreted by pancreatic tissues, such as proteolytic enzymes (Hu
et al., 2020) and phospholipase A2 (PLA2) (Friess et al., 2001).
Biomaterials-based nanoagents with enzyme response properties
can achieve passive targeting effects at inflammatory sites to
improve therapeutic mechanisms for AP. As discussed above, the
SF protein in bilirubin-loaded SF nanoparticles, which induced the
ELVIS passive targeting effects towards inflammatory pancreatic
tissues (Yao et al., 2020), can be degraded by proteolytic enzymes,
making SF a candidate material for enzyme-responsive nanoagents
design (Zhao et al., 2015). As a result, the bilirubin-loaded SF
nanoparticles also exhibited enzyme-responsive targeting effects for
enhanced inhibition of oxidative stress and inflammatory responses
(Yao et al., 2020). In another study, neutrophil membrane-coated SF-
nanoparticles encapsulated with ferulic acid (FA) were developed for
in vivo targeted delivery of FA to inflammatory pancreas lesions
showing anti-inflammation and anti-oxidation effects (Hassanzadeh
et al., 2021). The major components of the nanoparticles, SF and the
entrapped neutrophil membrane, endowed the nanoagent with
enzyme-responsive and Bionic targeting effects, respectively.
Additionally, FA is a phenolic compound that has been applied in
the treatment of various diseases, especially those accompanied by
severe oxidative stress and inflammation responses (Zdunska et al.,
2018). Zhang et al. (2021) synthesized macrophage (MΦ) membrane-
coated PLGA nanoparticles modified with melittin and MJ-33 for AP
treatment. Melittin is a short peptide with a high affinity for PLA2,
while MJ-33 serves as a PLA2 inhibitor. The MΦ membrane and
melittin in the nanocomposite may benefit the Bionic and enzyme-
responsive targeting effects, respectively. In a rat AP model, these
nanoparticles suppressed PLA2 activity, thus, preventing
inflammatory responses and decreasing pancreatic tissue damage.

2.1.2 Active targeting
Passive targeting based on the ELVIS effect and other mechanisms

is insufficient due to the non-specific reaction between cells and
nanoagents, leading to a significant reduction in cellular
endocytosis of nanoagents. This affects the bioavailability of drugs
and their therapeutic effects, resulting in drug leakage and resistance in
the organism (Lee et al., 2022). To overcome these limitations,
biomaterials-based agents with active targeting properties should be
considered; specific ligands or non-serum based-biomarkers can be
applied to increase the treatment efficacy of AP. The nanoparticles
modified with specific peptides can recognize and bind with
corresponding receptors expressed in certain cells in the
inflammatory sites, resulting in enhanced drug accumulation (Da
Silva-Candal et al., 2019; Lin et al., 2021). Hung et al. (2021)
selected five pancreatitis-specific peptides using a computational-
guided in vivo phage display approach, demonstrating selectivity to

different pancreatic cells. The peptide-conjugated liposomes were
encapsulated with apigenin for the targeted delivery of the drug to
inflammatory pancreatic tissues for acinar cell preservation and
oxidative stress reduction. Despite the advantages, the active
targeting property of biomaterials-based nanoagents has not been
studied and exploited extensively for AP treatment, highlighting the
need for further research in this area.

2.2 Other functional effects

Besides the passive and active targeting effects, the biomaterials used
for nanoagents construction may possess several other functional
properties for AP treatment. Zhang et al. (2022b) developed
polyvinylpyrrolidone (PVP)-modified molybdenum selenide two-
dimensional nanosheets (MoSe2@PVP NSs), which could act as
artificial enzymes and mimic multi-enzyme activities, including
catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and
glutathione peroxidase (GPx) to scavenge ROS and reactive nitrogen
species (RNS) in an AP rat model. In another study, Prussian blue
nanozyme (PBzyme) prepared by the PVP modification method could
drive intrinsic ROS scavenging and inflammation-inhibiting properties in
AP therapy (Xie et al., 2021). Tang et al. (2015) synthesized Generation 5
(G5) polyamidoamine (PAMAM) dendrimers with two different surface
groups, G4.5-COOH and G5-OH, and studied their therapeutic
mechanisms for AP. Both dendrimers reduced pathological injuries
and inflammation responses in the pancreas. A similar study was
conducted by Wang et al. (2022) in which tetrahedral framework
nucleic acids were developed for suppressing inflammation and
preventing pathological cell death caused by AP. Based on previous
studies that have reported carbonmonoxide (CO)-mediated regulation of
inflammatory responses and oxidative stress effectively (Otterbein et al.,
2000; Zuckerbraun et al., 2007), CO-bound hemoglobin vesicles (CO-
HbV) were synthesized for AP treatment (Nagao et al., 2016). CO-HbV
could serve as a CO donor for driving inflammation inhibition effect and
an oxygen carrier after releasing CO, exerting oxidation prevention effect.
In addition, a few biomaterial-based nanoparticles were utilized only as
carriers for specific drugs without studying their biodistribution to
support any targeting effect (Cervin et al., 2009).

3 Conclusions and perspectives

AP is a life-threatening severe inflammatory disease with no clear
pathogenesis. However, it is mainly characterized by inflammation
infiltration and oxidative stress. Recent reports on AP treatment have
primarily focused on inhibiting inflammatory responses and
preventing oxidation in pancreatic tissues. With the development
of nanotechnology, the biomaterials-based nanoagents may achieve
passive (e.g., ELVIS and Bionic effect, pH, ROS and enzyme-
dependent) or active (specific ligand or non-serum based
biomarkers dependent) targeting and other functional effects (e.g.,
multi-enzyme activities, anti-inflammation and anti-oxidation effect)
for AP treatment. Future research should be inclined towards the
following aspects: (Petrov and Yadav, 2019) Studies on biomaterial-
based nanoagents with active targeting to aid the release and
accumulation of nanoagents in injured pancreatic tissues (Lankisch
et al., 2015); Advantages of nanocarriers should be integrated for
precise AP treatment to reduce side effects (Ratia Gimenez et al.,
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2014); Studies should be carried out in AP animal models with
information on pathology and statistical data to obtain convincing
results.
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