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The cells and tissue in the human body are orderly and directionally arranged, and
constructing an ideal biomimetic extracellularmatrix is still amajor problem to be solved
in tissue engineering. In the field of the bioresorbable vascular grafts, the long-term
functional prognosis requires that cells first migrate and grow along the physiological
arrangement direction of the vessel itself. Moreover, the graft is required to promote the
formation of neointima and the development of the vessel walls while ensuring that the
whole repair process does not form a thrombus. In this study, poly (L-lactide-co-ε-
caprolactone) (PLCL) shell layers and polyethylene oxide (PEO) core layers with different
microstructures and loadedwith sodium tanshinone IIA sulfonate (STS)werepreparedby
coaxial electrospinning. The mechanical properties proved that the fiber membranes
had good mechanical support, higher than that of the human aorta, as well as great
suture retention strengths. The hydrophilicity of the oriented-fiber membranes was
greatly improved comparedwith that of the random-fibermembranes. Furthermore, we
investigated the biocompatibility and hemocompatibility of different functional fiber
membranes, and the results showed that the oriented-fiber membranes containing
sodium tanshinone IIA sulfonate had an excellent antiplatelet adhesion effect compared
to other fiber membranes. Cytological analysis confirmed that the functional fiber
membranes were non-cytotoxic and had significant cell proliferation capacities. The
oriented-fiber membranes induced cell growth along the orientation direction.
Degradation tests showed that the pH variation range had little change, the material
mass was gradually reduced, and the fiber morphology was slowly destroyed. Thus,
results indicated the degradation rate of the oriented-fiber graft likely is suitable for the
process of new tissue regeneration, while the random-fiber graft with a low degradation
ratemay cause thematerial to reside in the tissue for too long, whichwould impede new
tissue reconstitution. In summary, the oriented-functional-fiber membranes possessing
core–shell structures with sodium tanshinone IIA sulfonate/polyethylene oxide loading
could beused as tissue engineeringmaterials for applications such as vascular graftswith
good prospects, and their clinical application potential will be further explored in future
research.
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Introduction

Most cells and extracellular matrices in human tissue possess
highly ordered structures (Ellinger, 2013; Wang et al., 2018). Cells in
typical tissue, including nerves, muscles, tendons, and blood vessel
tissue, all exhibit oriented structural arrangements. For nerves, nerve
cells are arranged in an orderly manner along the direction of the
microsulcus (Tian et al., 2004; Sperling et al., 2017; Xia et al., 2022),
and skeletal muscle consists of bundled muscle fibers (Zhuang et al.,
2013; Ozasa et al., 2018). As regards blood vessels, endothelial cells are
arranged in an orderly manner parallel to the direction of blood flow
(Chen et al., 2018; Rosa et al., 2022), while smooth muscle cells are
arranged along the perivascular direction (Shudo et al., 2019). Grasl
et al. (Grasl et al., 2021) tried to use thermoplastic polyurethane (PUR)
and polylactic acid (PLLA) to prepare axial, circumferential, and
randomly arranged fiber prostheses by electrospinning and found
that different fiber structures had different mechanical properties, and
even vascular prostheses with good mechanical properties comparable
to those of natural blood vessels could be obtained by adjusting the
fiber structure. A vascular graft requires good antiplatelet properties,
and the materials must possess a good antifouling ability (Yang Lei
et al., 2021; He et al., 2022). Therefore, materials are required to have
proper hydrophilicity.

Fibrous scaffolds prepared by electrospinning are capable of
mimicking the complex structure of a natural extracellular matrix
(Hasan et al., 2014; Ingavle and Kent, 2014; Kishan and Hernandez,
2017; Zong et al., 2018; Eilenberg et al., 2020), and they have large
specific surface areas and a high-porosity microstructures that
facilitate cell and nutrient infiltration (Yin et al., 2020a; Guo et al.,
2022). The method of coaxial electrospinning can prepare functional
fiber membranes (Ezhilarasu et al., 2019; Johnson et al., 2021; Zhang
et al., 2021). Materials can be loaded inside the fiber to enhance the
mechanical properties or regulate material degradation. Zhu et al.
(Kuang et al., 2020) prepared a small-caliber vascular graft with poly
(L-lactide-co-ε-caprolactone) (PLCL) as the core layer and heparin/
silk gel as the shell layer. Animal experiment results showed that the
graft was biodegradable and safe, it maintained a support capacity for
more than 8 months, and the PLCL provided good mechanical
support in the process of vascular reconstruction, promoting tissue
regeneration in vivo. In addition, functional molecules such as growth
factors or active substances could be loaded inside the fibers, allowing
the active substances in the material to have a better regulatory effect
through continuous and slow release. Han et al. (Han et al., 2021)
prepared a functional graft loading with puerarin to promote
endothelial cell proliferation and differentiation, in which the
puerarin with an antiplatelet aggregation effect was used as core
layer of the fibers, and Gel/PLLA was used as fiber shell layer. The
results showed that puerarin could achieve long-term efficient release,
the material had good mechanical properties and degradability, and
the biocompatibility results indicated that the core–shell fiber
prepared in this way had no cytotoxicity to endothelial cells and
did not cause hemolysis.

In recent years, PLCL has been widely studied for the regeneration
of soft tissue, such as blood vessels, tendons, skin, esophageal tissue,
and heart tissue, due to its good biocompatibility, controlled
degradation, and excellent flexibility (Jang et al., 2018; Wang et al.,
2022). Blood vessels require a degree of strength to withstand high
blood pressure. Research revealed that PLCL is likely suitable for use in
certain vascular preparations (Kim et al., 2019), and PLCL has been

approved by the United States Food and Drug Administration (FDA)
for clinical applications due to its excellent mechanical properties and
compliance with natural blood vessels. PLCL has been extensively
studied in biomedical materials. For example, Jin et al. (Jin et al., 2019)
used PLCL, silk fibroin (SF), and heparin (Hep) to prepare a double-
layer vascular graft with a dense inner layer and a loose outer layer by
electrospinning, which not only showed excellent performances in
terms of its hydrophilicity, mechanical properties, and
biocompatibility but also maintained lumen patency for 3 months
after rabbit carotid artery transplantation.

Sodium tanshinone IIA-sulfonate (STS) (Cheng et al., 2018) is a
water-soluble active ingredient obtained by sulfonation of tanshinone
IIA extracted from the traditional Chinese medicine substance Salvia.
It has been shown not only to have antithrombosis, antiplatelet
adhesion, and anticoagulant functions but also to effectively
improve the inflammatory response in the body, accelerate
endothelial formation, and promote the formation of new tissue
(Mao et al., 2006; Zhou et al., 2018; Chen et al., 2021; Zhou et al.,
2021; Li et al., 2022). In previous studies, STS was usually used as an
injection to treat diseases such as atherosclerosis. Zhang et al. (Zhang
et al., 2022) randomly grouped mice and then injected them with STS
and other control drugs. The postoperative results showed that the
cardiac function of the mice in the STS group was significantly
improved, and the coronary artery occlusion situation was
improved, which also proved that STS had excellent anti-
atherosclerosis and antiplatelet aggregation effects.

Polyethylene oxide (PEO) has good hydrophilicity and
biocompatibility that can enhance the hydrophilicity of PLCL fiber
membrane (Basu et al., 2017). For coaxial electrospinning, aqueous
solution alone as the core layer was difficult to sustain smooth
spinning during coaxial electrospinning, PEO could be applied as a
stabilizer improving the viscosity of the solution, and the core layer
solution would obtain suitable surface tension and achieve stable
continuous spinning (Chen et al., 2015). According to the literature,
PEO would be dissolved in water to improve the porosity of the fiber
membrane and then enhanced the migration and proliferation ability of
cells within the fiber membrane (Wang et al., 2014).

Thousands of surgeries are performed every day worldwide to
cope with physical illness or injury. Tissue engineering involves a
combination of autologous cells and tissue engineering materials to
guide new tissue regeneration and repair or rebuild damaged tissue
(O’Brien, 2011). In the process of tissue reconstruction, materials must
meet the requirements of the physical and chemical properties, such as
mechanical, hydrophilicity, degradation, and biocompatibility
properties. PLCL has an excellent mechanical strength. PLCL of
different molecular weights can achieve controllable degradation of
tissue materials, and its biocompatibility can make cells attach to
materials, which is conducive to the regeneration of new tissue.
Considering that the orderly arrangement of cells is conducive to
the connection between tissue engineering materials and natural
tissue, this idea can be realized by designing tissue engineering
materials with oriented structures. However, platelets are prone to
accumulate in large quantities in PLCL membranes, so STS, with an
antiplatelet ability, was added. The structure will affect the
performance. Oriented and random structures impact the
mechanical properties of the material, what could impact the
material suture strength, hydrophobicity, degradation, and
biocompatibility. This was explored in this study based on the
above considerations.
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In this study, the STS was selected as a core layer, which was wrapped
with PEO, and the biocompatibility of the functional fiber membranes
was expected to be improved by the addition of STS. By adjusting the
orientations of the fibers and varying several parameters, such as the speed
of the roller shaft at the receiving end, random- and oriented-fiber
membranes were prepared with a core–shell structure, and then the
properties of the fibermembranes were tentatively explored, including the
mechanical properties, degradation, and hydrophilicity. In addition, the
biocompatibility and hemocompatibility of the fiber membranes
containing STS were analyzed.

Materials and methods

Materials

Poly (L–lactide-co-ε-caprolactone) (PLCL (50:50), with 50 mol%
L-lactide, MW: 330,000 Da) was provided by Jinan Daigang (Jinan,
China). 1,1,1,3,3,3-Hexafluoro-2-isopropanol (HFIP) was obtained
from Shanghai Macklin Biochemical Technology (Shanghai, China). 3-
(4,5-dimethylthiazole-2-yl)-2,5-dibenzotriazole ammonium bromide
(MTT) was acquired from Beijing Biotopped Technology (Beijing,
China). A Cell Counting Kit-8 (CCK-8) was purchased from Aladdin
Reagents (Shanghai, China). Sodium tanshinone IIA sulfonate (STS) was
provided by Dalian Meilun Biotechnology (Dalian, China). Poly-ethylene
oxide (PEO, MW: 100,000 Da) was purchased from Shanghai Macklin
Biochemical Technology (Shanghai, China). All reagents used for cell
culture were purchased from Gibco Life Technologies (Shanghai, China)
unless stated otherwise. All cells were purchased from iCell
(SAIBAIKANG, Shanghai, China).

Coaxial electrospinning for preparing
functional fiber membranes and tube grafts

PLCL was dissolved in HFIP at a concentration of 10% (W/V)
under room temperature and stirred for 24 h (84-1, Shanghai
Meiyingpu Instrumentation Manufacturing Co., Ltd. Shanghai,
China) to obtain core–shell structured fibers, with PLCL as the
shell and PEO as the core. In this study, to obtain more core–shell
structured fibers and to determine the physical properties of these
fibers, PEO [6%, (w/v)], as a temporary substitute for various water-
soluble functional substances, was used as the core material, while
specific active ingredients (STS) will be added during the biological
testing. For coaxial electrospinning, the PLCL solution was loaded into
a 20-mL syringe with a 15-gauge needle at an injection speed of
1.3 mL h−1, and the PEO solution was loaded into a 10-mL syringe
with a 19-gauge needle at an injection speed of .8 mL h−1. The needle
tip was subjected to positive voltage at 11.5 kV and negative voltage at
2.5 kV (TK129, Shanghai Taco Company, Shanghai, China). By
adjusting the fiber collector roller speed, random and oriented fiber
membranes and tube grafts were fabricated.

Morphology characterization of functional
fiber membranes

Fiber morphology was observed using scanning electron
microscopy (SEM, Apreo S, Thermo Fisher Scientific Technologies,

Massachusetts, US), and the fiber diameter distribution was analyzed
with Image-J software. The internal structure of the coaxial
electrospinning fibers was observed through transmission electron
microscopy (TEM, Talos F200X, Thermo Fisher Scientific
Technologies, Massachusetts, US).

Mechanical properties

For mechanical property testing, the tensile strength of the fiber
membranes was tested, and the suture retention strength of the tube
grafts also was measured by means of a universal tensile extensibility
instrument (UTM2503, Shenzhen Sansi Zongheng Technology Co.,
Ltd., Shenzhen, China). The fiber membranes were cut into
dumbbell-shaped samples with an effective width of 4 mm by
punching, and the thickness of each sample was measured. Before
testing, the two ends of the sample were clamped, a sensor with a load
capacity of 50 N was used, and the tensile extensibility
instrument—with a fixture spacing of 3.5 cm—was stretched
longitudinally until it ruptured at a speed of 5 mm min−1. The
prepared tube grafts were cut into 1-cm sections, and then the
thickness of graft well was measured. Before testing, one end of
the sample was clamped to one arm of the equipment and the other
end, with 5–0 polyester suture (Shanghai Pudong Jinhuan Medical
Products Co., Ltd., Shanghai, China) placed 2 mm from the edge, was
clamped to the other arm of the equipment at a speed of
120 mm min−1 until rupture (UTM2503, Shenzhen Sansi
Zongheng Technology Co., Ltd. Shenzhen, China).

Contact angle

Fiber membranes were set into glass slides, and to test the
hydrophilicity, a video optical contact angle measuring instrument
(DSA30, Kruss, Germany) was applied. A total of 2 μL of water was
dropped on a flat place of the fiber membrane to avoid air bubble
formation when placing samples on glass slides, and then the video,
image, and contact angle data were recorded using the instrument.
After the test, the data were compiled and plotted to analyze the
hydrophilicity of the membranes, which affects cell attachment and
platelet adhesion.

Material degradation behavior

The prepared samples were first sterilized and then placed in a 5-
mL EP tube. A total of 3 mL PBS and 60 μL antibiotic-antimycotic
solution were then added to the EP tube, after which they were placed
into a constant temperature shaker (ZH-S) at 37°C to simulate the in
vivo environment. Every week, all of the supernatant was removed and
replaced with an equal volume of fresh medium, and the pH value of
the supernatant was measured using a pH meter (FE28, Shanghai
Mettler Toledo Instrument Co., Ltd., Shanghai, China). Every month,
the samples were removed and freeze-dried (SCIENTZ-18N, Ningbo
Xinzhi Biotechnology Co., Ltd., Ningbo, China), and then the samples
were weighed with an electronic balance (BSA124S, Sartorius Scientific
Instruments (Beijing) Co., Ltd.). The fiber membrane microstructure
was also then observed using SEM (Apreo S, Thermo Fisher Scientific
Technologies, Massachusetts, US).
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Blood compatibility

In the blood compatibility experiment, two methods were applied: a
lactate dehydrogenase (LDH) activity assay and SEM morphology
observation (S-4800, Japanese High-tech Co., Ltd.). Platelets obtained
after centrifugation were used for LDH detection, and rabbit whole blood
was used for SEM observation. First, the prepared sample was placed into
a 24-well plate. For LDH testing, rabbit blood (purchased by Nanjing
Semberga Biotechnology Co., Ltd., Nanjing, China) was centrifuged
(TGL-15B, Shanghai Anting Scientific Instrument Factory, Shanghai,
China) at 2,500 rpm for 10 min to obtain platelet rich plasma (prp).
After that, 500 μL prp was added to each sample, which were then shaken
at 37°C for 3 h, and then the samples were washed with PBS, after which
1 mL of 2% Triton was added to each. After shaking for 20 min, we
extracted the solution and then centrifuged it for 10 min, taking the
supernatant for further testing with an LDH release kit according to the
manufacturer’s instructions. We recorded the absorbance of the reaction
solution at 450 nm on a fully automatic microplate reader (DNM-9606,
Beijing Pulun Xin Technology Co., Ltd. Beijing, China) for the relative
quantification of platelets.

For SEM observation, 1 mL of rabbit blood was added to each sample
and shaken at 37°C for 2 h. After that, the samples were washed gently
with sterile water, and then 1 mL of 2.5% glutaraldehyde solution was
added to each well and allowed to sit for 1 h, following dehydration with a
gradient alcohol solution (30%, 50%, 70%, 80%, 90%, 95%, and 100%).
Finally, the processed sample was placed in a fume hood and blow-dried,
and was then immediately sprayed with gold and was observed using a
scanning electron microscope.

Cell compatibility

The vacuum-dried functional fiber membranes were punched to
the same size discs and placed into a 24-well plate, and then cell
experiments were performed for 1, 3, and 5 days. Samples were first
sterilized under alcohol vapor for 4 h, followed by rinsing with PBS
twice, andmouse fibroblasts (3T3) were then seeded at a concentration
of 1×104 cells•well−1. At the corresponding setting time point, the
medium was extracted, and 40 μL MTT and 360 μL DMEM medium
were then added, incubating with the samples for 4 h. After that, the
supernatant was aspirated by adding 200 μL DMSO to dissolve the
sediment for 20 min in the shaker. At last, 100 μL supernatant was
placed into a 96-well plate for further analysis with a microplate reader
at 492 nm. Absorbance was found to have a good linear relationship
with the number of viable cells.

The cell seeding procedures for human umbilical artery smooth
muscle cells (HUASMCs) and macrophages (RAW264.7) were same
as those for the 3T3 cells mentioned above, with the only difference
being the number of RAW264.7 were seeded (8×103 cells•well−1). At
the specific time point, 40 μL of CCK-8 was added to every well, and
then allowed to incubate for 4 h. Finally, the supernatant (100 μL) was
placed into 96-well plate for further analysis with a microplate reader
at 450 nm.

After cells were cultured on different fiber membranes for 5 days,
the cell morphologies were observed using a laser scanning confocal
microscope. The cell membranes were washed with PBS. A total of
200 μL of 2.5% glutaraldehyde fixation was then added, and after 1 h
the cells were washed 3 times with PBS, after which the cell
membranes were treated with .1% Triton X-100 (PBS) for 3 min

and then washed again with PBS. Then cell-membranes were
blocked with 1% BSA at 37°C for 80 min, followed by washing
with PBS. Finally, 200 μL of the pre-prepared Rhodamine B and
DAPI solution were added to each well. After 30 min of
incubation, the cell-membrane was washed in preparation for
forward laser scanning confocal microscopy observation (LSM
880 with fast AiryScan, Carl Zeiss AG, Dresden, Germany).

Statistical analysis

All quantitative results were obtained at least three samples. Statistical
ANOVA analysis was performed in Origin Pro 2018 software. Results
were expressed as the mean ± standard deviation (SD), with significant
differences at *p < .05, **p < .01, ***p < .001.

Results and discussion

Microstructure

Scanning electron microscopy (SEM) images of the random- and
oriented-fiber membranes are shown in Figure 1A. The images clearly
show the differences between the random and oriented fibers;
Figure 1B shows that the diameters of random fibers were about
1.79 ± 1.03 μm, the thickness was relatively uniform, and the
distribution was random in all directions. The diameters of the
oriented fibers were about 2.14 ± 1.40 μm, which were slightly
larger than those of the random fibers, and most of the fibers were
arranged in the same direction. Overall, all the fibers were connected
without any beads or gross defects. The different arrangements of the
fibers likely provided different physical, mechanical, and
biocompatibility properties (Dehghan and Khajeh Mehrizi, 2022;
Ozdemir et al., 2022; Yuan et al., 2022). The subsequent
experiments were conducted with random- and oriented-fiber
membranes, and it was expected that the oriented-fiber membranes
would be more helpful to the growth and proliferation of cells and
promote the regeneration of new tissue.

Figure 1C shows the transmission electron microscopy (TEM)
morphology of the coaxial electrospun fiber. It is clear that the
core–shell structure was successfully obtained, demonstrating that
the PEO was successfully wrapped into the PLCL by coaxial
electrospinning. Thus, the functional composition could be loaded
inside or outside the fibers, which could improve drug delivery systems
with sustained release, enhance the hydrophilicity and
biocompatibility, likely reduce the rejection reaction between the
fiber graft and human tissue, and improve the cell attachment. In
addition, the oriented-fiber membranes containing STS are expected
to be able not only to provide sustained release of STS over time and
prevent platelet adhesion but also to induce cells to arrange orderly.

Mechanical properties

The excellent characteristics of PLCL provide it with great
potential to be applied for vascular grafts, and the mechanical
properties are among the most important properties for grafts. The
tensile strengths of fiber membranes and the suture retention of tube
grafts were tested. Figure 2A shows that the maximum stress of the
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random-fiber membranes was nearly 4 MPa, while that for the
oriented-fiber membranes parallel to the fiber direction could reach
more than 11 MPa, which was much higher than that of the random-

fiber membranes. The corresponding strain for oriented-fiber
membranes was 190%, which was lower than that of the random-
fiber membranes (470%). This phenomenon may be explained as the

FIGURE 1
Themorphology and diameter distribution of fibers with a core–shell structure. (A) Scanning electronmicroscopy images of random- and oriented-fiber
membranes. (B)Diameter distribution of random and oriented fibers shown in relative lines. (C) Transmission electronmicroscopymorphology of fibers with a
core–shell structure.

FIGURE 2
Mechanical properties of random- and oriented-fiber membranes. (A) Stress–strain of random- and oriented-fiber membranes parallel and
perpendicular to fiber direction, respectively, at a tensile speed of 5 mm min−1 (N = 4). (B) Suture retention of random- and oriented-fiber tube grafts at a
tensile speed of 120 mm min−1 (N = 3).
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orientation fibers being stretched during the spinning process such
that the orientation stress was enhanced in the parallel direction. The
stress for the oriented-fiber membranes perpendicular to the fiber
direction was as low as .8 MPa. This was because the fibers with high
order had a lower tangle degree between the fibers than that of the
knotted random fibers. According to the literature, the stress range of
the human aorta is .2–1.6 MPa (Famaey et al., 2014; Backman et al.,
2017; Maleki and Kalantarnia, 2022). The stresses of the fiber
membranes were much higher than the stress requirements of the
human aorta, indicating that they met the mechanical strength
requirements for implantation in the body. Therefore, the excellent
mechanical properties of the fiber membranes could be applied for
blood vessel grafts and good mechanical support promote the smooth
flow of blood in vascular grafts, without causing an aneurysm.

The suture retention strength is very important for vascular grafts,
and it should be sufficient for use in a surgical procedure. The result for
suture retention testing is shown in Figure 2B. It was found that the
suture retention strength of the oriented-fiber tube grafts was higher
than that of random-fiber tube grafts. Overall, both tube grafts had
good suture retention strengths of 5 N or higher. Based on study (Yin
et al., 2020b), the suture force of animal autologous vascular tissue is
1.7 N. Therefore, both materials were completely comparable to
animal autologous vascular tissue in terms of mechanical strength,
which could ensure that rupture and bleeding would not occur when
implanted in the body, and they could be safely used in the body.

Contact angle

According to previous research (Ehtesabi, 2021; Manivasagam and
Ketul, 2021; Al-Azzam and Alazzam, 2022), the graft surface
hydrophilicity is closely related to the adhesion and cohesion of
platelets, and the hydrophilicity can also affect the migration and

proliferation of cells. In this study, whether the fiber structure with
random and oriented fibers affected the hydrophobicity,
hemocompatibility, and cell attachment ability were explored in
follow-up testing. The hydrophilicity of the random- and oriented-
fiber membranes were measured by contact angle testing, and results
are shown in Figure 3. The contact angles of the random-fiber
membranes were larger than those of the oriented-fiber membrane.
The main reason was that the distribution of random fibers was
chaotic and staggered, and water molecules could not easily penetrate
the material. In contrast, the oriented-fiber membranes obtained
smaller contact angles due to the high degree of fiber order. When
the water molecules contacted the fibers, they quickly penetrate
through the fiber gaps. According to the data, the membrane
contact angles were smaller after 15 s than after 5 s, and water
molecules could slowly penetrate the fibers over time. Therefore, a
hydrophobic fiber membrane could be shifted to relatively
hydrophilicity through microstructural changes, which is likely
induce cell migration, growth, and proliferation.

In vitro degradability

The degradation behaviors of themembranes are closely related to the
membranes’ physical and chemical properties, and appropriate
degradation is important, especially for implanted grafts, which could
match the tissue regeneration rate (Wang et al., 2020; Alamán-Díez et al.,
2022). In this experiment, the pH and mass changes of the membranes at
various time points were examined, and the microscopic morphological
changes in the membranes were observed every month. Figure 4A shows
the pH changes in the random- and oriented-fiber membranes. The
pH fluctuated slightly between 6.5 and 7.5, and thus, it remained basically
stable. The pH of the oriented-fiber membranes fluctuated between 6 and
7.5, and the fluctuation range interval was larger than that of the random-

FIGURE 3
Contact angle of random- and oriented-fiber membranes at different time points (N = 5).
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fiber membranes. However, neither membrane type had strong acidity in
the degradation process, which indicated that inflammatory responses
during the fiber membrane grafts implanted in the body would be
reduced. In this study, the PEO loaded inside the fibers released into
aqueous solutions as the fibers degraded, and they always remained
neutral or weakly basic in the aqueous solutions. This caused the pH to
undergo only slight changes (Hu, 2000). Figure 4B shows the mass
changes of the random- and oriented-fiber membranes during in vitro
simulated degradation. Themass decreased rapidly in the firstmonth, and
it slowly declined after the first month. Overall, themass degradation rates
of the random-fiber membranes were slower than those of the oriented-
fiber membranes. After 6 months, the oriented-fiber membranes had
mass losses of more than 40%, while the random-fiber membranes had
mass losses of about 25%. Even in the ninth month, the random-fiber
membranes retained 72% of their masses.

Figure 4C shows that the fiber structures of the random-fiber
membranes remained intact in the first 6 months. In the ninth month,
a partial area of fiber fracture occurred, and the fiber membranes
ruptured or cracked. As shown in Figure 4B, the masses were
maintained at about 72% when the random-fiber membranes were
broken. While the degradation rates of the oriented-fiber membranes
were relatively fast, the fiber form was intact in the third month. Fiber
rupture occurred in the sixth month, and the fiber morphology was
not clear. As shown in Figure 4B, the masses remaining were less than
60% when the oriented-fiber membranes were broken.

The phenomenon can be explained by the results of the contact angle
tests. The contact angles of the oriented-fiber membranes were smaller
than those of random-fiber membranes, indicating the oriented-fiber
membranes had better hydrophilicity. Thus, water molecules could more
easily penetrate through the fiber gaps for the oriented-fiber membranes,
and stronger interactions between the fibers and water molecules would
accelerate the degradation rate. However, it can be seen from Figure 4A
that the pH values of the oriented-fiber membranes were slightly lower
than those of the random-fiber membranes in degradation process,
indicating that weakly acidic environment also promoted the
degradation of the membranes. For the random-fiber membranes, the
fibers were intertwined, and the diameters of fibers were relatively evenly
distributed. As a result, water had more difficulty penetrating to the
insides of membranes, and therefore, the degradation for the random-
fiber membranes was slow. If both random- and oriented-fiber
membranes could maintain sufficient mechanical support in the early
stage when implanted in vivo, there would be sufficient time to ensure new
tissue regeneration. According to the literature (De Valence et al., 2012;
Zhou et al., 2014; Wang et al., 2017; Sevostyanova et al., 2018; Yin et al.,
2020b; Wen et al., 2020; Yang et al., 2021), when a graft was implanted in
vivo, the endothelial cells gradually formed an intima, and smoothmuscle
cells and fibroblasts were also arranged along the axial direction of the
graft, thus forming new blood vessel tissue. After 3 months, the vascular
development was almost complete. Thus, the degradation rate of the
oriented-fiber graft was likely suitable for the process of new tissue

FIGURE 4
Simulation of fiber membrane degradation behavior in vitro. (A) pH changes during simulated degradation of random- and oriented-fiber membranes
in vitro (N = 3). (B)Mass changes during simulated degradation of random- and oriented-fiber membranes in vitro (N = 3). (C)Morphological changes during
simulated degradation of random- and oriented-fiber membranes in vitro.
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regeneration, while the random-fiber graft with a low degradation rate
may cause the material to reside in the tissue too long, which would
impede new tissue reconstitution.

Hemocompatibility

The blood compatibility of the functional fiber graft is important,
and the bloodmust flow smoothly when the grafts are implanted in the
body. In this experiment, platelet adhesion on different membranes
was analyzed by the LDH activity assay and SEM. The results in
Figure 5A show that when platelet adhesion was measured by the LDH
kit, the absorption values for the random-fiber membranes were
slightly smaller than those of the oriented-fiber membranes. The
data showed that the oriented-fiber membranes containing STS had
a good antiplatelet adhesion effect, with lower absorbance than the
others, and the effect was significantly different from those of the
oriented-fiber membranes. The excellent antiplatelet effect likely was
caused by STS, which possessed a good antithrombotic effect (Zhou
et al., 2019; Li et al., 2020). Through the results of SEM observations in
Figure 5B, the random- and oriented-fiber membranes without STS
had more platelets, while there were fewer platelets on the oriented-
fiber membranes containing STS. Overall, the platelets on the random

fibers were relatively dispersed, and more plasma composite was
coated on the random-fiber membranes. Platelets on the oriented-
fiber membranes without STS could easily accumulate in the gaps of
fibers, especially those that were highly ordered, which was mutually
corroborated with the LDH result. Therefore, the oriented-fiber
membranes containing STS showed good prospects for application
for cardiovascular tissue repair with an antiplatelet adhesion effect.

Cytocompatibility

Cytotoxicity tests can confirm whether materials can be safely
in contact with tissue, and materials with low cytotoxicity can
reduce the risks during implantation in the body. In this study, we
analyzed the toxicities of the membranes through the MTT assay,
and cell morphology was observed by laser scanning confocal
microscopy. Figure 6A clearly demonstrates that 3T3 could
continue to grow and proliferate on all kind of membranes, and
the absorbance values for the orientated-fiber membranes exceeded
those of the control slightly. Therefore, all these membranes had
good cellular biocompatibility. From Figure 6B, it can be seen that
3T3 could be arranged in one direction on oriented-fiber
membranes with or without STS.

FIGURE 5
Hemocompatibility of fiber membranes. (A) LDH activities of random-fiber membranes, oriented-fiber membranes, and oriented-fiber membranes
containing STS (N = 3, *p < .05). (B) Platelet adhesion on random-fiber membranes, oriented-fiber membranes, and oriented-fiber membranes
containing STS.
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Cell compatibility of RAW264.7 and HUASMCs on materials was
tested via the CCK-8 assay. From Figure 7A, it can be seen that the growth
of RAW264.7 in the control group was more rapid than that of the other
three groups, and the cell growth statuses in the random-fiber
membranes, oriented-fiber membranes, and oriented-fiber membranes
containing STS were similar, without significant differences. Figure 7B
showed that HUASMCs in the control group proliferated significantly
faster than in the other three groups, and the HUASMCs on the three
kinds of membranes had different growth rates. The random-fiber
membranes had the slowest proliferation rate, and HUASMCs on the
oriented-fibermembrane containing STS had the fastest proliferation rate.
On day 7, cells on the oriented-fiber membrane with STS had higher
proliferation than those on the other two membranes. This indicated that
the oriented structure was effective to the proliferation of HUASMCs
(Wang et al., 2013; Chen et al., 2017). Figure 8A shows that the growth of

RAW264.7 was disordered on the random- and oriented-fiber
membranes. Figure 8B shows that HUASMCs were disordered on the
random-fiber membranes, while cells could be arranged in the same
direction on the oriented-fibermembranes and oriented-fibermembranes
containing STS. This confirmed that the oriented-fiber structure could
effectively guide the arrangement of HUASMCs but not RAW264.7.

The distribution of cells on the random-fiber membranes showed an
anisotropic disorderly arrangement. The behavior of 3T3 andHUASMCs
was affected by the fiber microstructure, the parallel fibers induced cell
migration along the fiber orientation. In summary, the membranes
prepared were non-cytotoxic, and cells were in a good growth state on
the membranes. Furthermore, the cells could be arranged in an orderly
manner in the direction of the oriented fibers. Hence, this kind of fiber
membrane, especially the oriented-fiber membranes consisting of STS,
has high potential for in vivo implantation to repair tissue.

FIGURE 6
Cytotoxicity analysis of fiber membranes. (A) Cell compatibility of 3T3 on random-fiber membranes, oriented-fiber membranes, and oriented-fiber
membranes containing STS (N = 3). (B) Laser scanning confocal microscopy of 3T3 on random-fiber membranes, oriented-fiber membranes, and oriented-
fiber membranes containing STS.

FIGURE 7
Cell compatibility of (A) Raw264.7 and (B) HUASMCs on random-fiber membranes, oriented-fiber membranes, and oriented-fiber membranes
containing STS (N = 3). *** above the horizontal line indicates a significant difference between the control group and all the other groups, and p < .001. ***, **,
and * above the parentheses indicate significant differences between the two groups under the parenthesis line, and ***p < .001, **p < .01, and **p < .05.
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Conclusion

We prepared random- and oriented-fiber membranes with fibers that
had core–shell structures. PLCL fibers were the shell layer, and PEO or
STS/PEO were the core layer. The fibers were prepared by coaxial
electrospinning. The fiber membranes we prepared had excellent
mechanical properties and suture retention strengths as well as
suitable degradability. The results indicated that the introduction of
PEO could improve the pH fluctuations of the membranes during
in vitro degradation, which may be conducive to reducing the
inflammatory response and the gradual rupture of the fibers. From

the structural analysis, the oriented-fiber graft could theoretically
promote the formation of new tissue and provide good support. The
hydrophilicity was increased for the oriented-fiber membranes due to the
greater amounts of aqueous solution penetrating inside the fiber
membranes. Moreover, the oriented-fiber membranes with the inner
layer of STS had good biocompatibility and hemocompatibility. In
summary, the oriented-fiber graft was more beneficial to the
formation of new tissue and provided better mechanical support than
the random-fiber graft, demonstrating that the oriented-fiber membrane
with STS loading with a core–shell structure had good potential for
vascular graft application.

FIGURE 8
Morphologies of (A) RAW264.7 and (B) HUASMCs under laser scanning confocal microscopy on random-fiber membranes, oriented-fiber membranes,
and oriented-fiber membranes containing STS.
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