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Cellular refractive index is a vital phenotypic parameter for understanding the cell
functional activities. So far, there remains technical challenges to obtain refractive
index of viable cells at the terahertz frequency in which contains rich information
closely related to their physiological status. Here we introduce a label-free optical
platform for interrogating cellular phenotypes to measure the refractive index of
living cells in near-physiological environments by using terahertz spectroscopy with
the combination of cellular encapsulation in a confined solution droplet. The key
technical feature with cells encapsulated in aqueous droplets allows for keeping
cellular viability while eliminating the strong adsorption of solvent water to terahertz
signal. The obtained high signal-to-noise ratio enables to differentiate different cell
types (e.g., E. coli, stem cell and cancer cell) and their states under stress conditions.
The integrating of terahertz spectroscopy to droplet microfluidic further realizes
automated and high-through sample preparation and detection, providing a
practical toolkit for potential application in cellular health evaluation and
phenotypic drug discovery.
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Introduction

Cell refractive index, an important phenotypic parameter that correlates with the biological
properties such as internal mass (Gul et al., 2021), has been widely used as marker in the field of
cell biology and biomedicine to determine the cell types and investigate cellular activities (Zhuo
et al., 2011; Liu et al., 2016). With the rapid development of advanced optical techniques, the
measurement of refractive index has been extended to a wider frequency range (Zhuo et al.,
2011; Liu et al., 2016). Compared with the visible region, the refractive index in the terahertz
(THz) region is non-linear (Baxter and Guglietta, 2011; Tcypkin et al., 2019; Novelli et al., 2020)
and reveals the reorientation dynamics of water that hydrates the biomolecules (Tros et al.,
2017; Peng et al., 2021), which contains rich information closely related to the cellular activity
and physiological status (Yang et al., 2016a; Ball, 2017; Liu et al., 2019; Zhang et al., 2021; Lou
et al., 2022). Also intriguing is that THz wave does not cause ionizing damage making its more
safe in biological measurements (Olga et al., 2021; Liao et al., 2022). Therefore, a pressing need is
to develop a rapid and widely applicable way to measure the THz refractive index of living cell
with improved the signal-to-noise ratio.

In principle, the refractive index at THz frequencies of substance can be measured by
THz time-domain spectroscopy (THz-TDS) (Baxter and Guglietta, 2011). Several
pioneering works have demonstrated the possibility to achieve cellular refractive index
by using THz spectroscopy. For example, Yang et al. (2016b) reported that refractive index
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varied between different species of bacterial colonies. Wang et al.
(2019) found that various cells in nervous system had different
refractive indices, which would increase after cancerization. Cao
et al. (2021) proposed that refractive index could be used to
distinguish different cancer cells. However, due to the aqueous
medium required for living cells measurement easily produces
strong background signal interference (Peng et al., 2020), there
remains a big technical challenge for obtaining the refractive index
of cells in a viable state.

Herein, we introduce a technical platform for determining the
refractive index of cells in an aqueous condition by using the
combination of THz-TDS and droplet sampling (Figure 1A).
Specifically, the cell samples were encapsulated one by one in
aqueous droplets constructed by the self-assemble phospholipids
(Yang et al., 2019; Tang et al., 2021; Tang et al., 2022). The cellular
encapsulation provides not only a liquid environment for keeping
cellular viability (Sart et al., 2022) but also allows for eliminating the
strong adsorption of solvent water to THz signal (Weisenstein et al.,
2021). Due to the droplets, consisting of the cells and a little confined
water around, are surrounded by reagents with high transmittance in
THz region, the signal attenuation of the sample mainly attributes to
the adsorption of intracellular water. Thus, from the THz signal, we
can easily calculate the absorption coefficient (α) and the refractive

index of cell samples. Using the optical platform, we have successfully
obtained the refractive index of three kinds of cell types, including
E. coli, stem cell and cancer cell, and their states under stress
conditions. We also demonstrated the integrating of this method
into a droplet microfluidics chip to acquire an automated and
high-through preparation and detection toolkit for the application
practicability.

Results and discussion

Refractive index measurement of living cells
encapsulated in aqueous droplets

Figure 1B shows the obtained THz signal of samples in three
forms, E. coli in buffer solution (cells in solution), droplet
containing buffer alone (water droplet) and droplet containing
E. coli (cells in droplet). Due to the strong absorption of solvent
water, the transmission THz electric field strength of cells in bulk
solution is very weak, almost consistent with the transmission
spectrum of buffer itself (Supplementary Figure S3A). In
contrast, for samples in droplet forms the signal-to-noise ratio
was improved more than an order of magnitude, and the significant

FIGURE 1
(A) Schematic of refractive index measurement platform based on the combination of terahertz spectroscopy and cellular droplet sampling. The cell-
containing droplets (water phase) were dispersed in the reagent transparent to THz signals (oil phase), and the phospholipids at the oil-water interface served
as surfactants; (B) The transmission spectra of E. coli in aqueous solution (cells in solution), droplet containing TBS solution alone (water droplet) and E. coli-
containing droplet (cells in droplet). All E. coli samples had the same bacterial concentration of 9.0 × 1010 cfu/mL; (C) The refractive index (left axis) and
absorption coefficient (α, right axis) spectra of these three samples, where the schematic diagramof the forms of samples are shown in insert. The shaded area
indicating the error bars with triplicated measurements.
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spectral difference was observed between samples with and without
cells. The refractive index and absorption coefficient spectra of
these three samples were shown in Figure 1C. We found that the
optical properties of the cells in solution were nearly same as the
buffer alone (Supplementary Figure S3B), suggesting the THz
signal are mainly derived from the bulk aqueous solution.
However, when the buffer droplets was confined in lipid
monolayer, a cell-like environment (Shang and Zhao, 2021), the
refractive index significantly decreased comparing to that bulk
solution. Interestingly, when the cells were encapsulated in the
droplet solutions, the refractive index was further lower down.
Since the THz signal of cell-containing droplets might mainly
attribute to the intracellular water (Folpini et al., 2017) and
little confined water outside the cells, the obtained refractive
index is reasonable to describe the physical parameter of living
cells themselves.

Terahertz refractive index for cell functional
activity assay

Using the established methodology, we ask if the measured
refractive index can be used to discriminate the cellular states
under different physiological conditions. For this purpose, we
firstly compared the bacterial (E. coli) cells subjected to metal ions
stress. Since trace copper ions are required for keeping the bacterial
viability (Giachino and Waldron, 2020), E. coli cells under different
states were obtained with Cu2+ treatment at sublethal concentrations
(Figure 2A). From the growth curves (Figure 2B), we can find the
bacteria treated under higher Cu2+ concentration exhibit longer
delayed growth time (lower viability), indicating cellular viable
states in an ion concentration dependent manner. Interestingly,
bacterial cells with different viable states have distinct physical
parameters, including the refractive index and absorption

FIGURE 2
(A) Schematic showing Cu2+ ions treatment induces distinct activity states of bacterial cells. (B) The growth curve of E. coli under 0, .1, .2 and .4 mM of
Cu2+ treatment, respectively. (C) Refractive index and absorption coefficient spectra (inset) of E. coli cells. All bacterial samples were treated with Cu2+ and
accounted to the same cell numbers for THz measurement.

FIGURE 3
(A) Refractive index spectra of undifferentiated or osteogenic differentiated MSCs in droplets. The microscopy photograph of the corresponding cells
after alizarin red S staining are shown in insert; (B) Mean refractive index at .5, .9, 1.3 and 1.7 THz. All groups were set to the same cell concentration of 1.0 ×
105 cells/well.
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coefficient spectra shown in Figure 2C. Especially, the cellular
refractive index increases with the higher concentration of ions
treatment. In other words, the cells with lower viability, either
induced by different ion concentrations or treatment times
(Supplementary Figure S4), have a bigger refractive index. For
example, at the .9 THz frequency, the cellular refractive indexes are
1.89, 2.05 and 2.22 under Cu2+ treatments with 0.1 mM, 0.2 mM,
0.4 mM, respectively.

We further test whether the functional stages of eukaryotic cells
would be also reflected through these terahertz parameter
measurements. To this end, two states of mesenchymal stem cells
(MSCs) during osteogenic differentiation were choose for the
investigation. The osteogenic differentiation of MSCs led to

successively form mineralization of bone matrix (Khezri et al.,
2021), showing an intense alizarin red staining (Figure 3A inset;
Supplementary Figure S5), in which hydration plays a vital
structuring role across the bone hierarchy (Surowiec et al., 2022).
As shown in Figure 3, the refractive index of osteogenic differentiated
MSCs is smaller than that of undifferentiated ones at the measured
terahertz frequency (from .4–1.8 THz). Thus, these results not only
indicated that the refractive index changes during the differentiation
process of stem cell, but also proved the developed technique is
suitable for kinds of cell types.

Taking together, these two experiments clearly demonstrated the
feasibility and repeatability of our method to represent the cellular
states, either for bacterial cells or eukaryotic cells, by quantitative

FIGURE 4
The integrating of droplet microfluidics for automated and high-through performance. (A) Schematic of the microfluidic device that can generate
droplet sample and perform THz-TDS detection. An aqueous phase containing cells was passed through a flow-focusing junction where it met an oil phase
containing lipids, leading to the generation of droplets. Red arrows show the position of a cell before and after encapsulation. Droplets were collected in a
quartz chamber which severed as the terahertz measurement cuvette. (B) The optical image of the microfluidic chip. (C,D) The schematic and optical
image of the droplet generation process. (E) Refractive index spectra of the droplets containing HepG2 cells after treatment by resveratrol for 0, 12 and 24 h.
All groups were set to the same cell concentration of 1.4 × 105 cells/well. For each group of cells, the droplets were prepared and measured twice, and the
shaded area indicates the error bars. (F) Principal component analysis (PCA) plots of the measured refractive index. (G) Cell viability of resveratrol treated
HepG2 cells.
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measurement of their terahertz refractive indexes, providing a novel
label-free technique for evaluating the cellular physiological or
pathological activities.

Integrating of microfluidics chip for droplet
production and optical detection

Next, we try to integrate droplet formation and terahertz detection into
a microfluidics chip for practical applications. In our experiment, a two-
module microfluidics device were constructed to generate cell-containing
droplets and optical measurements, synchronously (Figures 4A, B). In the
cell encapsulation module, an aqueous phase containing living cells was
passed through a flow-focusing junction where it met an oil phase
containing lipids, leading to the generation of cell-contained droplets
(Figures 4C, D). The flow rate and junction geometry were carefully
chosen to control the droplet radius for full encapsulation of individual
cells inside (Ding et al., 2020). After passing through a flow channel in a
sufficient time to get stabilization, the droplets were collected in the
detection module, which was fabricated by quartz windows with well-
transmission of THz wave. Once enough cells sample were measured, their
optical parameters could be achieved.

In a proof-of-concept study, themicrofluids chipwas applied to analyze
the relationship between terahertz refractive index and drug response of
living cells. As expected, following with a low-concentration resveratrol
treatment, themeasured cellular refractive indexwas increasing accordingly
to treatment time (Figure 4E), while the cell viability decreased as indicated
in MTT assay (Figure 4G). Principal component analysis (PCA) clearly
indicated that the cellular refractive index is high related to the effect of drug
treatment (Figure 4F). Although more kinds of drugs and cell lines are still
required to setup a universal rule on the relationship of drug effect with
cellular refractive index, the integration of terahertz spectroscopy and
microfluidic chip paves a brand-new way for drug screening based on
cellular refractive phenotypes.

Conclusion

In summary, we have developed a novel strategy and method to
measure the refractive index of living cells in near-physiological
environment by using terahertz spectroscopy with the combination
of cellular encapsulation in a confined solution droplet. The
advantage of cell confinement lies on its ability to improving
signal-to-noise ratio meanwhile keeping cellular viability. Using
this technical platform, we have successfully obtained the
refractive index of E. coli., mesenchymal stem cell, and liver
cancer cell. Importantly, the high sensitivity and good
repeatability of this approach enables to discriminate the cellular
states and stress responses, such as the stem cells under
differentiation conditions, the cancer cells with drug treatment,
et al. Furthermore, the technique is easily integrated into a
microfluidics chip in which the droplet sampling and optical
measurement are simultaneously achieved, demonstrating the key
step towards automation and high-through application. This novel
technology development not only offers a valuable toolkit to
understanding the fundamental role of the intracellular water in
cell biology but also provides a label-free optical approach for
bioanalytical applications in cellular health evaluation and
phenotypic drug discovery.

Materials and methods

Microfluidic device fabrication

The soda-lime glass microfluidic chip was fabricated by
conventional photolithography, wet etching and thermal bonding
(Baker and Roper, 2010). A glass with chrome layer and AZ-1505
(from AZ technology) were used as a photoresist to create a master.
The glass was then etched with a 66:14:20 (v:v:v) mixture of H2O:
HNO3:HF. After that, access holes of 1 mm diameter were machined
using a diamond-tipped drill bit. The chip was cleaned, hydrolyzed
and put together under running water for sealing. The chip was then
thermal bonding at 500°C.

The two-module microfluidic chip, designed in AutoCAD. The oil
phase reagent entered through a wide (200 μm) inlet channel. Cells
entered through an inlet channel with a width of 90 μm, then entered a
cross-shaped flow-focusing junction (90 μm × 90 μm) where the
droplets generated. The droplets then flowed through a meander
with 180 μm width and 100 mm total length to sufficiently stabilize
the lipid interface. The above microstructures constituted the first
module, where the depth of channel was 40 μm. The droplet sample
then entered the detection module, a chamber with a height of 1 mm
and an area of 1 cm2, equipped with a waste outlet. In order to ensure
the transparency of the cavity in the THz range, laser cutting was used
to remove the glass substrates above and below the cavity and quartz
plates were glued as substitute substrates. The thickness of the quartz
plate is .5 mm, and the distance between them is the same as the height
of the cavity (1 mm). To assist the entry/exit of liquid, PDMS pedestals
are provided at the inlet and outlet.

Preparation of droplet samples

Reagents for cell culture, including Tris-buffered saline (TBS),
culture medium, etc., were purchased from Sinopharm Chemical
Reagent (China) unless otherwise specified. DOPC (1,2-dioleoyl-sn-
glycero-3-phosphocholine, purchased from Avanti Polar lipids, Inc.)
and anhydrous hexadecane (purchased from Sigma-Aldrich) were
used as surfactant and oil phase reagent, respectively. Cell suspensions
at the indicated concentrations were used as the aqueous phase. For
drug-treated cells, they were washed after treatment and transferred to
drug-free TBS or culture medium. See Supplementary Material for
more details of cell culture procedures.

Chloroform solution of DOPC evaporated under nitrogen gas
and dried in vacuum to obtain the thin film of lipids, which was then
dissolved in hexadecane to a concentration. The aqueous droplets
were fabricated according to the following procedures: the prepared
cell suspensions were injected in the phospholipid/hexadecane
solutions (45 mg/mL), and the aqueous droplet samples would be
obtained by vortex, where the dispersed phase accounted for a
volume fraction of 9% for bacteria-containing droplets and 10%
for droplets contains other cells. When preparing droplet samples
containing eukaryotic cells, vigorous mechanical manipulation
should be avoided to prevent cell rupture. When microfluidic
chip was used to prepare droplet samples, the oil phase was
DOPC dissolved in hexadecane (4 mg/mL) and the water phase
was the cell suspension with the pump flow rate at 8 and 1 μL/min,
respectively. See Supplementary Material for more details of
microfluidic device operation.
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THz spectroscopy

The samples were measured using a THz time-domain spectroscopy
(THz-TDS) system. See Supplementary Material for the details of the
system. In the experiments, samples were placed in a fused quartz cuvette
with a thickness of .5 mm (or the quartz detection window of the
microfluidic chip with the same thickness), and the sample chamber
was controlled at a temperature of 21.0°C ± .5°C and humidity within
1%. Transmission mode was applied for all measurements. The empty
cuvette was used first as a reference signal. The absorption coefficient, α(]),
and the refractive index, n(]), were then obtained as follows:

α ]( ) � d−1In Ir ]( )/Is ]( )[ ]

n ]( ) � nr ]( ) + c

2π]d
ϕs ]( ) − ϕr ]( )[ ]

Where d is the optical path length of the cuvette, Ir(]) and Is(]) are
the intensity of reference and sample solutions, nr(]) is the refractive
index of the reference, Φs(]) and Φs(]) are the phase of reference and
sample, respectively. The refractive index of the water phase was
further obtained by a binary component model, see Supplementary
Material for the details. PCA was conducted using R language without
any preprocessing of the measured refractive index.
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