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Background: Tumorous bone defect reconstructions of the proximal humerus with
joint sparing is a challenge. Numerous reconstruction methods have been proposed
but the proximal residual humerus is commonly sacrificed because of its extremely
short length. To preserve the proximal humerus and improve clinical outcomes, we
designed a three-dimensional (3D) printed uncemented prosthesis with a porous
structure to treat tumorous bone defects of the proximal humerus.

Methods:Our analysis included seven patients treated betweenMarch 2018 and July
2019. A 3D model was established, and related data were obtained, including the
diameter of the humeral head, the resection length, and the residual length. A
prosthesis was designed and fabricated based on these data. Functional and
oncologic outcomes were recorded, and complications and osseointegration
were evaluated.

Results: The mean age of the patients was 20.3 years, and the median follow-up
period was 26 months. The lengths of the residual proximal humerus were 17.9 mm
on average. All the patients had preserved humeral heads andmost of the rotator cuff
was intact. The average postoperative range of motion (ROM) of the affected
shoulder was 83.8°; flexion was 82.5°, extension was 43.8°, and adduction was
16.3°. The average Musculoskeletal Tumor Society score (MSTS) was 94.3%. Good
osseointegration was observed on the interface between the bone and prosthesis.

Conclusion: A 3D printed porous prosthesis with cone-like structures successfully
achieved joint-sparing reconstruction of proximal humeral tumorous defects with
satisfying functional outcomes. The preservation of the rotator cuff and humeral
head plays an essential role in the function of the shoulder joint.
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1 Introduction

The metaphysis of the proximal humerus is the most commonly
affected site for primary malignant bone tumors (Bielack et al., 2002;
Arndt et al., 2012). Although segmental resection with a safe margin
has been widely accepted as the standard treatment for malignant bone
tumors (Potter et al., 2009), joint preservation is still demanding due to
the extremely short axial length of the residual proximal humerus (Liu
et al., 2014).

There are currently some approaches available for the repair of
tumorous defects involving the metaphysis, such as autograft, allograft,
and prostheses (Ruggieri et al., 2011; Wieser et al., 2013; King et al., 2016;
Maclean et al., 2017; Rafalla and Abdullah, 2017; Nota et al., 2018;
Chauhan et al., 2019). Autologous fibula graft has been widely applied
in clinical settings because of its excellent biocompatibility and
osteoinductivity (Li et al., 2012; Pilge et al., 2018). However, the
interface may not integrate well due to the severe mismatch between
the fibula head and the remaining proximal humerus, and subsequent
bone absorption and fracture frequently occur (Ceruso et al., 2001).
Therefore, an allograft with various options for appropriate size and shape
could provide an ideal interface contact, but unexpected immunological
rejection and disease transmission are still major concerns (Gupta et al.,
2017). As a result, prostheses seem to be one of the most acceptable
choices for the reconstruction of segmental bone defects in the proximal
humerus (Damron et al., 2008).

Hemiarthroplasty, total arthroplasty, and intercalary prosthesis
replacements are all reasonable options for the reconstruction of
proximal humeral tumorous defects. As for defects involving the
metaphysis, hemiarthroplasty or total arthroplasty would inevitably
sacrifice the humeral head, which could have been preserved.
Compared with hemiarthroplasty or total arthroplasty, an intercalary
prosthesis could not only preserve the humeral head anatomically to
retain shoulder function but also provide early stability and rapid function
recovery (Yoshida et al., 2010; Panagopoulos et al., 2017).However, current
intercalary prostheses are cemented and fixed by an intramedullary stem,
which requires at least 3 cm of bone to maintain acceptable stability
(McGrath et al., 2011). Moreover, plates and screws are still required for
extra fixation due to the lack of osteoinductive activity and bone ingrowth
ability (Zekry et al., 2019; Zheng et al., 2019). Additionally, for a shorter
proximal humerus (length < 3 cm), reconstruction with joint sparing
cannot be achieved by intercalary prosthesis.

Recently, it has been accepted that the porous structure could
significantly improve the integration ability of a prosthesis (Batta et al.,
2014). In our previous clinical evaluation of three-dimensionally (3D)-
printed porous intercalary prostheses, excellent interfacial integration was
observed, even with a residual bone length shorter than .7 cm (Lu et al.,
2018; Zhao et al., 2020). In this study, we aimed to design and apply a new
3D printed uncemented prosthesis with special features and evaluate its
feasibility for the treatment of proximal humeral defects. The detailed
design and features of the prosthesis, surgical techniques, and early-term
clinical outcomes are presented and analyzed.

2 Materials and methods

2.1 Patients

Between March 2018 and July 2019, seven patients (two females
and five males) with humeral malignant tumors received 3D printed

uncemented prosthesis reconstructions in our institution. The average
age was 19.25 years (range, 16–24 years). All the patients received
preoperative radiographic assessments, including x-rays, 3D
computed tomography (CT) scans (Philips Brilliance 64 Slice,
thickness: .4 mm), magnetic resonance imaging (MRI) scans, and
bone scans (SPECT) or positron emission tomography/
computerized tomography (PET/CT) scans (Figure 1). A
preoperative biopsy was performed for all patients. An Enneking
surgical staging system was used to evaluate the surgical stage
(Enneking, 1986). Tumor locations were classified with reference to
the epiphyseal plate proposed by Kumta et al. (Kumta et al., 1999).
Neoadjuvant chemotherapy was performed for patients with high-
grade sarcoma according to the NCCN guidelines for bone cancer. The
detailed characteristics of the patients are summarized in Table 1.

This study was performed in accordance with the Declaration of
Helsinki as revised in 2008 and was approved by the Ethics Committee
of the West China Hospital. All patients signed an informed consent
form before surgery and provided consent to publish and report
individual clinical data.

2.2 Anatomical data measurement

The 3D CT data of patients were imported to Mimics
V20.0 software (Materialise Corp., Leuven, Belgium) to build
virtual 3D models of the tumor and bone. The tumor edge was
determined using the combination of x-ray, MRI, and SPECT.
Anatomical data, including the diameter of the humeral head, the
proximal and distal osteotomy location, the resection length, the
length of the residual humerus, and the diameters of the
intramedullary cavity, were obtained. The curative margin was
subsequently obtained to determine the tumor resection and
residual bone parts, and an operation simulation was performed
using Geomagic Wrap software (Geomagic inc., Morrisville, NC)
(Figure 2A).

2.3 Prosthesis design and fabrication

All prostheses were designed by our clinical team according to the
anatomical data, and were fabricated by Chunli Co., Ltd., Tongzhou,
Beijing, China. The prostheses consisted of a head, shaft, and stem. A
hemisphere-like structure was selected for the design of the head
shape, and the size of the head was customized in all patients as per the
host humeral head. In addition, specific features, including suture
holes and cone-like structures, were added to enhance the initial
stability of the bone-implant interface. In detail, a solid core porous
shell complicated structure concept was applied to design the
prosthesis head. The thickness of the porous shell layer was
3–4 mm. Furthermore, 600-µm pores with 70% porosity were
suggested for the setting of the porous shell (Karageorgiou and
Kaplan, 2005; Palmquist et al., 2013; Hara et al., 2016; Shah et al.,
2016;Wang et al., 2019). The shaft length depended on the bone defect
length of the patient (Figures 2B, C).

The prosthesis was made of titanium alloy (Ti6Al4V powder,
Chunlizhengda Corp., Beijing, China) and was fabricated using the
electron beam melting technique (ARCAM Q10 plus, Mo€lndal,
Sweden) with the powder bed fusion technique. The metal powder
was placed in a vacuum and fused by heat from an electron beam. The
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components were then fabricated as per the previously designedmodel
by the continuous addition of pre-alloyed powder layers. The plastic
patient-specific instruments and trial models were fabricated via
stereo lithography apparatus techniques (UnionTech Lite 450HD,
Shanghai, China) (Figure 3).

2.4 Surgical techniques

All patients were placed in a supine position. Through an
anterior longitudinal humeral incision, the radial nerve was
exposed and well protected. The preservation of the rotator cuff
insertions was performed before the segmental resection. The
osteotomy was performed with patient-specific instruments, in
reference to the greater tubercle of the humerus. The remaining
proximal humerus was trimmed, while reaming was performed to
press-fit the prosthesis. The bone marrow from the reamed canal
and trabecular bone trimmings were collected for subsequent
autograft (Figure 4A).

The prosthesis was implanted after autografting. Extra fixation
depended on the intraoperative initial stability of the prosthesis.

When the prosthesis was appropriately in place, axial compression
was carried out to press the cone-like structure into the proximal
cancellous bone. The remaining proximal humeral cortex was
sutured to the prosthesis head with the rivet lines, and the
sutured cortex needed to be sufficiently stable to prevent
avulsion (Figure 4B).

The residual muscles were anatomically relocated to the prosthesis
surface with rivet lines but without knotting. The muscles posterior
and medial to the humerus were sutured first, followed by the muscles
anterior and lateral to the humerus. The knots to suture the rotator
cuff were finished together to balance perishoulder muscle tension.
The deltoid, pectoralis major, and pectoralis minor, which are
important for shoulder ROM, were finally reconstructed, and soft
tissue coverage was achieved. Intraoperative time and blood loss were
recorded (Figure 4C).

2.5 Postoperative treatment and follow up

The affected limbs of patients were immobilized at 80° of
abduction and 60° of flexion for 4 weeks. Passive movements were

FIGURE 1
(A) X-ray, (B–D) 3D CT, (E) MRI, and (F) SPE/CT of case 1 with proximal humerus osteosarcoma are shown.

TABLE 1 Patient characteristics.

Case Age Gender Follow up (months) Stage Classification Pathological type

1 17 Male 33 IIB II Osteosarcoma

2 20 Male 25 IB III Chondrosarcoma

3 24 Female 29 IIB III Osteosarcoma

4 16 Male 18 IIB II Osteosarcoma

5 16 Male 21 IIB II Osteosarcoma

6 19 Female 30 IB II Chondrosarcoma

7 30 Male 25 IIB III Chondrosarcoma
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allowed after week 4, and patients were gradually transited to active
movement at week 6. The exact time of lifting and exercise depended
on the degree of osseointegration. Postoperative chemotherapy was
started 2 weeks after surgery.

All patients underwent evaluations, including monthly physical
examinations and radiography, during the first 3 months
postoperatively and every 3 months thereafter. The absence of
periprosthetic radiolucency or the observation of bone
bridging, spot welding, and neocortex formation between the
trabecular structures and the implant surface on x-rays or
Tomosynthesis-Shimadzu Metal Artefact Reduction
Technology (T-SMART) was considered good osseointegration.
Chest CT scans were used to evaluate lung metastasis every
3 months. Functional outcomes were assessed using the
Musculoskeletal Tumor Society score (MSTS), ROM of the
glenohumeral joint was recorded, and complication rates were
assessed.

2.6 Statistical analysis

Statistical analyses were performed using IBM SPSS Statistics
software, version 22 (IBM SPSS, Armonk, NY, United States).
Continuous data are represented as mean ± standard deviation.
Student’s t-test was used to compare continuous variables. p <
.05 was considered statistically significant.

3 Results

Detailed measurement data are summarized in Table 2. The mean
diameter of the humeral head was 42.4 ± 2.0 mm. The mean resection
length was 130.5 ± 47.5 mm, and the mean lengths of the residual
proximal humerus and residual distal humerus were 17.9 ± 1.3 and
155.5 ± 50.2 mm, respectively.

Detailed prostheses data are summarized in Table 3. The mean
diameter of the prosthesis head was 34.7 ± 1.3 mm. According to

FIGURE 2
(A) Themodel of the humerus with tumor was established using 3D
CT and MRI. (B,C) Prosthesis models (B,C) were designed based on the
anatomy data.

FIGURE 3
Fabricated prosthesis pictures. (A) Prosthesis head. (B) Prosthesis
shaft. (C) prosthesis stem. (D) Assembled prosthesis.
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different resection lengths, the mean length of the prosthesis was
178.6 ± 50.1 mm. Based on the residual length and the diameter of the
intramedullary cavity, the mean length and diameter of the prosthesis
stem were 48.6 ± 3.8 mm and 10.7 ± .8 mm, respectively.

Surgeries took 3.3 ± .7 h and the mean volume of intraoperative
hemorrhage was 225.7 ± 59.1 ml. The entire supraspinatus and most
of the infraspinatus were preserved in every case. The teres minor was
rarely preserved, and part of the subscapularis was preserved.

The mean follow-up period was 26 months (range, 18–33 months).
The average MSTS score was 94.3%, which increased with statistical

difference (p < .05). Average abduction was 83.8°, flexion was 82.5°,
extension was 43.8°, and adduction was 16.3° in this series (Figure 5). No
aseptic loosening, breakage, dislocation, and infection of prostheses
were found until the last follow up. No local recurrence and
distant metastasis were observed in all cases. One patient had radial
nerve palsy, which recovered completely 5 weeks after surgery. The
absence of radiolucency between the prosthesis and the bone was
observed with T-SMART 6 months postoperatively (Figure 6).
Intraoperative data and oncologic and functional outcomes are
summarized in Table 4.

FIGURE 4
Intraoperative pictures. (A) The remaining proximal humerus was trimmed after segmental resection. (B) The prosthesis stem was press-fit after
assembly. (C) The prosthesis was implanted, and muscles were reconstructed using Marlex mesh.

TABLE 2 Anatomy data.

Case Diameter of
the head

Proximal OP
distancea

Distal OP
distance

Resection
length

Length of
the RPH

Length of
the RDH

Diameter of the RDH
intramedullary cavity

1 42.24 19.82 201.67 181.85 19.82 103.66 10.29

2 45.93 16.59 92.21 75.62 16.59 237.31 11.94

3 43.33 17.85 169.35 151.5 17.85 142.42 11.01

4 40.23 16.22 101.38 85.16 16.22 193.64 10.03

5 40.11 19.01 180.5 161.49 19.01 118.56 11.21

6 42.56 18.55 100.5 81.95 18.55 182.34 11.66

7 42.65 17.21 193.23 176.02 17.21 110.19 9.86

Mean 42.44 17.89 148.41 130.51 17.89 155.45 10.86

aOsteotomy plane distance indicates the distance from the osteotomy plane to the proximal end of the humerus.

OP, osteotomy plane; RPH, residual proximal humerus; RDH, residual distal humerus.

TABLE 3 Prosthesis data (mm).

Case Prosthesis length Length of the stem Diameter of the stem Diameter of the head Diameter of the body

1 240 55 10 35 20

2 120 45 12 36 22

3 200 50 11 36 20

4 130 45 10 33 18

5 210 50 11 33 20

6 130 50 11 35 22

7 220 45 10 35 20

Mean 178.57 48.57 10.71 34.71 20.29
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4 Discussion

Tumorous defect reconstructions with shoulder joint preservation
involving the metaphysis are challenging due to the limited surgical
techniques and prosthesis designs. Our 3D printed porous prosthesis with
cone-like structures successfully achieved joint-sparing reconstruction of
proximal humeral tumorous defects with satisfying functional outcomes.

Prosthetic reconstruction is probably the most widely used method
because of its availability, low complication rates, and acceptable
functional results compared with other approaches (Ceruso et al.,
2001; Gupta et al., 2017). The resection length and residual bone are
important parameters for the application of an intercalary prosthesis.
Benevenia et al. suggested that an intercalary prosthesis is a good
reconstruction method for humeral defects when residual bone length
is ≥ 4 cm (Benevenia et al., 2016). However, the length of intramedullary
fixation severely restricted the application of the prosthesis. Abudu et al.
(1996) showed that an intercalary prosthesis has a high risk of early
loosening when the intramedullary fixation length is < 5 cm. When the
fixation length is < 4 cm, a previous study advocated for extracortical
plates to enhance fixation (Sewell et al., 2011). When the residual bone
length is < 3 cm, or even 2 cm, the remaining humeral head has to be
sacrificed for arthroplasty, which leads to potentially increased instability
and a permanent reduction in limb function (Hardes et al., 2013).

In our study, the newly porous prosthesis successfully reconstructed
the humeral defect and preserved the shoulder joint. Average ROM was
83.75° for abduction, 82.5° for flexion, 43.75° for extension, and 16.25° for
adduction. The functional results showed an average MSTS score of
94.29%, which is better than those of other series (Wittig et al., 2002; Li
et al., 2012; Zheng et al., 2019). In all cases, periprosthetic radiolucency
disappeared 6 months postoperatively, and bone ingrowth could be
observed with T-SMART.

Good osseointegration induced by uncemented fixation is essential
for the long-term survival of the prosthesis with joint preservation. By

contrast, cemented fixation failed to achieve joint-preserving
reconstruction in cases of residual bone length of < 2 cm, and
certainly cannot achieve interfacial integration, which inevitably
results in prosthesis loosening or dislocation. McGrath et al. reported
on 13 patients who underwent cemented intercalary prosthetic
reconstruction (the shortest intramedullary stem = 3 cm) for
malignant bone disease of the humerus (McGrath et al., 2011).
Aseptic loosening occurred in four cases, and two patients presented
with periprosthetic fractures. The overall complication rate related to
the prosthesis was 31%. To promote osseointegration, the structure of
the prosthesis was optimized. Previous studies showed that the porous
structures (pore size of 300–800 µm and porosity of 70%) at the
interface could enhance bone ingrowth (Karageorgiou and Kaplan,
2005; Palmquist et al., 2013; Hara et al., 2016; Shah et al., 2016;
Wang et al., 2019). So, porous structures with a porosity of 70% and
pore size of 600 µmwere applied in the shell layer of the prosthesis head
in our study.

However, osseointegration could be affected by micromotion
through the formation of fibrous tissues and the induction of bone
resorption (Pilliar et al., 1986). To reduce micromotion, we designed
cone-like structures with uniform distribution on the prosthesis head.
The advantages of the cone design are as follows. First, the design
increases the contact surface and friction to reduce micromotion.
Second, axial pressure makes the cones anchor into the spongy bone,
which improves the initial rotational stability. Third, the contact of the

FIGURE 5
The shoulder abduction of case 1 was normal 6 months after
surgery.

FIGURE 6
T-SMART showed preliminary osseointegration 6 months after
surgery.
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cancellous bone and cones increases the shear force of the interface to
avoid possible relative displacement. Furthermore, the tight sutures of
the humeral head to the prosthesis provide axial stability to prevent the
separation of the bone and the prosthesis. Moreover, all patients were
restricted to passive movements of the involved shoulder by limb
immobilization within the first 4 weeks, during which time bone
ingrowth occurred. The optimization of the porous shell and the
control of micromotion laid the foundation for subsequent functional
rehabilitation. Comparatively, cemented intramedullary fixation relies
on the adhesive properties of cement to provide initial stability. Zhao
et al. (2020) suggested that high rotational stress and traction play a
role in the early loosening of cemented fixation and recommended
adding a preventive additional extracortical plate to share the partial
stress of the intramedullary fixation. However, extracortical plate
implantation increases the risk of prosthesis related complications,
such as infection and rupture.

There were no cases of subluxation or dislocation in our study.
Patients could even complete circumduction movements in the
sagittal plane (Supplementary Video S1). Dynamic x-rays showed
smoothmovement of the shoulder joint (Supplementary Video S2). By
comparison, patients have been reported to present with decreased
shoulder abduction after resection of the proximal humerus, even after
undergoing arthroplasty or bone graft (Wittig et al., 2002). In Dubina’s
review, 84 patients from eight studies of shoulder arthroplasty were
analyzed. The mean MSTS score was 70%, and 26% patients
presented with mechanical failure. The favorable result of our
study depends not only on the prosthesis design rationale but also
on important anatomic structure preservation and precise surgical
techniques. First, the preservation of the shoulder joint and rotator
cuff directly resulted in good function of the shoulder joint. Although
direct attachment of the residual rotator cuff to the allograft or
prosthesis was performed, some proximal subluxation inevitably
occurs because of the improper reconstruction of the rotator cuff
(Ayoub et al., 1999; Black et al., 2007). Joint preservation reduced the
difficulty of muscle reconstruction and the damage to the muscle
insertions, which enhanced postoperative recovery. Second, the
preservation of the articular capsule and rotator cuff maintained
the passive tension of the joint. When the shoulder joint is in
motion, passive tension in the rotator cuff provides compressive
stress between the articular surfaces, which forms concavity
compression to stabilize the joint (Halder et al., 2001).
Additionally, the coordination of rotator cuff muscle contraction
keeps the stress in balance in all directions, which is conducive to
the stability of the shoulder joint (Lee et al., 2000; Abboud and
Soslowsky, 2002). In our study, all patients had their entire
humeral head and most of the rotator cuff preserved. Each
insertion of the rotator cuff around the anatomical neck was
marked with suture traction before the osteotomy and was sutured
in situ after prosthesis implantation. The supraspinatus was intact and
most of the infraspinatus was preserved because the insertion position
was superior to the osteotomy plane. However, part of the
subscapularis and most of the teres minor were removed to ensure
a curative margin. Thus, we used Marlex mesh to repair the
insufficient muscles. Therefore, the stability of the glenohumeral
joint was well preserved and joint tension was maintained. On the
basis of the stability of the glenohumeral joint, other muscles that also
influence shoulder abduction, such as the deltoid muscle and
pectoralis major, were carefully sutured through the designed holes
on the prosthesis surface.TA
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Our study has some limitations. First, because of the differences in
the extent of the resections and disease processes, it was difficult to
formulate a comparative control group. Second, there was no
biomechanical analysis included in our study. Future studies should
include a finite element analysis. Third, it is possible that more
complications might arise after a longer follow up, but a safe
surgical margin was obtained and no local recurrence was recorded
at our last follow up. Therefore, further research should be performed
and a longer follow up is needed.

5 Conclusion

A 3D printed prosthesis with cone-like structures can successfully
achieve joint-sparing reconstruction of proximal humeral tumorous
defects. The prosthesis was designed to improve initial stability and
promote osteointegration, which ensured good survival. A surgical
technique that considers shoulder joint integrity and passive tension
balance results in favorable function.
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