Applications of Chitosan and its Derivatives in Skin and Soft Tissue Diseases
- 1Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
- 2Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- 3Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
A Corrigendum on
Applications of chitosan and its derivatives in skin and soft tissue diseases
by Xia Y, Wang D, Liu D, Su J, Jin Y, Wang D, Han B, Jiang Z and Liu B (2022). Front. Bioeng. Biotechnol. 10:894667. doi: 10.3389/fbioe.2022.894667
In the published article, there was an error in Table 1 as published. The references in Table 1 were incorrectly presented. The corrected Table 1 and its caption appear below.
The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
Alqahtani, F., Aleanizy, F., El Tahir, E., Alhabib, H., Alsaif, R., and Shazly, G. (2020). Antibacterial activity of chitosan nanoparticles against pathogenic N. Gonorrhoea. Int. J. Nanomedicine 15, 7877–7887. doi:10.2147/IJN.S272736
Anwar, Y. (2018). Antibacterial and lead ions adsorption characteristics of chitosan-manganese dioxide bionanocomposite. Int. J. Biol. Macromol. 111, 1140–1145. doi:10.1016/j.ijbiomac.2018.01.096
Cai, J., Dang, Q., Liu, C., Wang, T., Fan, B., and Yan, J. (2015). Preparation, characterization and antibacterial activity of O-acetyl-chitosan-N-2-hydroxypropyl trimethyl ammonium chloride. Int. J. Biol. Macromol. 80, 8–15. doi:10.1016/j.ijbiomac.2015.05.061
Cao, W., Yue, L., and Wang, Z. (2019). High antibacterial activity of chitosan - molybdenum disulfide nanocomposite. Carbohydr. Polym. 215, 226–234. doi:10.1016/j.carbpol.2019.03.085
Dasagrandhi, C., Park, S., Jung, W. K., and Kim, Y. M. (2018). Antibacterial and biofilm modulating potential of ferulic acid-grafted chitosan against human pathogenic bacteria. Int. J. Mol. Sci. 19 (8), 2157. doi:10.3390/ijms19082157
Ding, F., Nie, Z., Deng, H., Xiao, L., Du, Y., and Shi, X. (2013). Antibacterial hydrogel coating by electrophoretic co-deposition of chitosan/alkynyl chitosan. Carbohydr. Polym. 98 (2), 1547–1552. doi:10.1016/j.carbpol.2013.07.042
Ghazaie, M., Ghiaci, M., Soleimanian-Zad, S., and Behzadi-Teshnizi, S. (2019). Preparing natural biocomposites of N-quaternary chitosan with antibacterial activity to reduce consumption of antibacterial drugs. J. Hazard. Mat. 371, 224–232. doi:10.1016/j.jhazmat.2019.03.003
Guo, A., Wang, F., Lin, W., Xu, X., Tang, T., and Shen, Y. (2014). Evaluation of antibacterial activity of N-phosphonium chitosan as a novel polymeric antibacterial agent. Int. J. Biol. Macromol. 67, 163–171. doi:10.1016/j.ijbiomac.2014.03.024
He, G., Chen, X., Yin, Y., Cai, W., Ke, W., and Kong, Y. (2016). Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels. J. Biomaterials Sci. Polym. Ed. 27 (4), 370–384. doi:10.1080/09205063.2015.1132616
Hebeish, A. A., Ramadan, M. A., Montaser, A. S., and Farag, A. M. (2014). Preparation, characterization and antibacterial activity of chitosan-g-poly acrylonitrile/silver nanocomposite. Int. J. Biol. Macromol. 68, 178–184. doi:10.1016/j.ijbiomac.2014.04.028
Hu, Z., Zhang, L., Zhong, L., Zhou, Y., Xue, J., and Li, Y. (2019). Preparation of an antibacterial chitosan-coated biochar-nanosilver composite for drinking water purification. Carbohydr. Polym. 219, 290–297. doi:10.1016/j.carbpol.2019.05.017
Jou, C. H. (2011). Antibacterial activity and cytocompatibility of chitosan-N-hydroxy-2, 3-propyl-N methyl-N, N-diallylammonium methyl sulfate. Colloids Surfaces B Biointerfaces 88 (1), 448–454. doi:10.1016/j.colsurfb.2011.07.028
Jung, J., Cavender, G., and Zhao, Y. (2014). The contribution of acidulant to the antibacterial activity of acid soluble alpha- and beta-chitosan solutions and their films. Appl. Microbiol. Biotechnol. 98 (1), 425–435. doi:10.1007/s00253-013-5334-7
Kim, S. S., and Lee, J. (2014). Antibacterial activity of polyacrylonitrile-chitosan electrospun nanofibers. Carbohydr. Polym. 102, 231–237. doi:10.1016/j.carbpol.2013.11.028
Li, B., Shan, C. L., Zhou, Q., Fang, Y., Wang, Y. L., and Xu, F. (2013). Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar. Drugs 11 (5), 1534–1552. doi:10.3390/md11051534
Li, D., Gao, X., Huang, X., Liu, P., Xiong, W., and Wu, S. (2020). Preparation of organic-inorganic chitosan@silver/sepiolite composites with high synergistic antibacterial activity and stability. Carbohydr. Polym. 249, 116858. doi:10.1016/j.carbpol.2020.116858
Li, J., Wu, X., Shi, Q., Li, C., and Chen, X. (2019). Effects of hydroxybutyl chitosan on improving immunocompetence and antibacterial activities. Mater. Sci. Eng. C 105, 110086. doi:10.1016/j.msec.2019.110086
Li, Z., Hu, W., Zhao, Y., Ren, L., and Yuan, X. (2018). Integrated antibacterial and antifouling surfaces via cross-linking chitosan-g-eugenol/zwitterionic copolymer on electrospun membranes. Colloids Surfaces B Biointerfaces 169, 151–159. doi:10.1016/j.colsurfb.2018.04.056
Liu, Y., Wang, S., and Lan, W. (2018). Fabrication of antibacterial chitosan-PVA blended film using electrospray technique for food packaging applications. Int. J. Biol. Macromol. 107, 848–854. doi:10.1016/j.ijbiomac.2017.09.044
Luo, Q., Han, Q., Wang, Y., Zhang, H., Fei, Z., and Wang, Y. (2019). The thiolated chitosan: Synthesis, gelling and antibacterial capability. Int. J. Biol. Macromol. 139, 521–530. doi:10.1016/j.ijbiomac.2019.08.001
Malhotra, K., Shankar, S., Chauhan, N., Rai, R., and Singh, Y. (2020). Design, characterization, and evaluation of antibacterial gels, Boc-D-Phe-γ4-L-Phe-PEA/chitosan and Boc-L-Phe-γ4-L-Phe-PEA/chitosan, for biomaterial-related infections. Mater. Sci. Eng. C 110, 110648. doi:10.1016/j.msec.2020.110648
Mallakpour, S., and Abbasi, M. (2020). Hydroxyapatite mineralization on chitosan-tragacanth gum/silica@silver nanocomposites and their antibacterial activity evaluation. Int. J. Biol. Macromol. 151, 909–923. doi:10.1016/j.ijbiomac.2020.02.167
Min, T., Zhu, Z., Sun, X., Yuan, Z., Zha, J., and Wen, Y. (2020). Highly efficient antifogging and antibacterial food packaging film fabricated by novel quaternary ammonium chitosan composite. Food Chem. x. 308, 125682. doi:10.1016/j.foodchem.2019.125682
Ng, I. S., Ooi, C. W., Liu, B. L., Peng, C. T., Chiu, C. Y., and Chang, Y. K. (2020). Antibacterial efficacy of chitosan- and poly(hexamethylene biguanide)-immobilized nanofiber membrane. Int. J. Biol. Macromol. 154, 844–854. doi:10.1016/j.ijbiomac.2020.03.127
Olanipekun, E. O., Ayodele, O., Olatunde, O. C., and Olusegun, S. J. (2021). Comparative studies of chitosan and carboxymethyl chitosan doped with nickel and copper: Characterization and antibacterial potential. Int. J. Biol. Macromol. 183, 1971–1977. doi:10.1016/j.ijbiomac.2021.05.162
Potara, M., Jakab, E., Damert, A., Popescu, O., Canpean, V., and Astilean, S. (2011). Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology 22 (13), 135101. doi:10.1088/0957-4484/22/13/135101
Raghavendra, G. M., Jung, J., Kim, D., and Seo, J. (2016). Microwave assisted antibacterial chitosan-silver nanocomposite films. Int. J. Biol. Macromol. 84, 281–288. doi:10.1016/j.ijbiomac.2015.12.026
Rao, K. M., Suneetha, M., Park, G. T., Babu, A. G., and Han, S. S. (2020). Hemostatic, biocompatible, and antibacterial non-animal fungal mushroom-based carboxymethyl chitosan-ZnO nanocomposite for wound-healing applications. Int. J. Biol. Macromol. 155, 71–80. doi:10.1016/j.ijbiomac.2020.03.170
Regiel-Futyra, A., Kus-Liskiewicz, M., Sebastian, V., Irusta, S., Arruebo, M., and Stochel, G. (2015). Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS Appl. Mat. Interfaces 7 (2), 1087–1099. doi:10.1021/am508094e
Sahariah, P., Cibor, D., Zielinska, D., Hjalmarsdottir, M. A., Stawski, D., and Masson, M. (2019). The effect of molecular weight on the antibacterial activity of N, N, N-trimethyl chitosan (TMC). Int. J. Mol. Sci. 20 (7), 1743. doi:10.3390/ijms20071743
Senthilkumar, P., Yaswant, G., Kavitha, S., Chandramohan, E., Kowsalya, G., and Vijay, R. (2019). Preparation and characterization of hybrid chitosan-silver nanoparticles (Chi-Ag NPs); A potential antibacterial agent. Int. J. Biol. Macromol. 141, 290–298. doi:10.1016/j.ijbiomac.2019.08.234
Shahid Ul, I., Butola, B. S., and Verma, D. (2019). Facile synthesis of chitosan-silver nanoparticles onto linen for antibacterial activity and free-radical scavenging textiles. Int. J. Biol. Macromol. 133, 1134–1141. doi:10.1016/j.ijbiomac.2019.04.186
Wahid, F., Wang, H. S., Lu, Y. S., Zhong, C., and Chu, L. Q. (2017). Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int. J. Biol. Macromol. 101, 690–695. doi:10.1016/j.ijbiomac.2017.03.132
Wahid, F., Yin, J. J., Xue, D. D., Xue, H., Lu, Y. S., and Zhong, C. (2016). Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. Int. J. Biol. Macromol. 88, 273–279. doi:10.1016/j.ijbiomac.2016.03.044
Wahid, F., Zhou, Y. N., Wang, H. S., Wan, T., Zhong, C., and Chu, L. Q. (2018). Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity. Int. J. Biol. Macromol. 114, 1233–1239. doi:10.1016/j.ijbiomac.2018.04.025
Wang, G., and Fakhri, A. (2020). Preparation of CuS/polyvinyl alcohol-chitosan nanocomposites with photocatalysis activity and antibacterial behavior against G+/G- bacteria. Int. J. Biol. Macromol. 155, 36–41. doi:10.1016/j.ijbiomac.2020.03.077
Wang, X., Cheng, F., Wang, X., Feng, T., Xia, S., and Zhang, X. (2021). Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes. Int. J. Biol. Macromol. 168, 59–66. doi:10.1016/j.ijbiomac.2020.12.003
Wang, Y. L., Zhou, Y. N., Li, X. Y., Huang, J., Wahid, F., and Zhong, C. (2020). Continuous production of antibacterial carboxymethyl chitosan-zinc supramolecular hydrogel fiber using a double-syringe injection device. Int. J. Biol. Macromol. 156, 252–261. doi:10.1016/j.ijbiomac.2020.04.073
Wiarachai, O., Thongchul, N., Kiatkamjornwong, S., and Hoven, V. P. (2012). Surface-quaternized chitosan particles as an alternative and effective organic antibacterial material. Colloids Surfaces B Biointerfaces 92, 121–129. doi:10.1016/j.colsurfb.2011.11.034
Yan, F., Dang, Q., Liu, C., Yan, J., Wang, T., and Fan, B. (2016). 3, 6-O-[N-(2-Aminoethyl)-acetamide-yl]-chitosan exerts antibacterial activity by a membrane damage mechanism. Carbohydr. Polym. 149, 102–111. doi:10.1016/j.carbpol.2016.04.098
Yang, J., Lu, H., Li, M., Liu, J., Zhang, S., and Xiong, L. (2017). Development of chitosan-sodium phytate nanoparticles as a potent antibacterial agent. Carbohydr. Polym. 178, 311–321. doi:10.1016/j.carbpol.2017.09.053
Yin, M., Lin, X., Ren, T., Li, Z., Ren, X., and Huang, T. S. (2018). Cytocompatible quaternized carboxymethyl chitosan/poly(vinyl alcohol) blend film loaded copper for antibacterial application. Int. J. Biol. Macromol. 120, 992–998. doi:10.1016/j.ijbiomac.2018.08.105
Keywords: chitosan, soft tissue disease, biological property, drug-delivery carrier, regenerative medicine
Citation: Xia Y, Wang D, Liu D, Su J, Jin Y, Wang D, Han B, Jiang Z and Liu B (2022) Corrigendum: Applications of chitosan and its derivatives in skin and soft tissue diseases. Front. Bioeng. Biotechnol. 10:1082945. doi: 10.3389/fbioe.2022.1082945
Received: 28 October 2022; Accepted: 31 October 2022;
Published: 25 November 2022.
Approved by:
Frontiers in Editorial Office, Frontiers Media SA, SwitzerlandCopyright © 2022 Xia, Wang, Liu, Su, Jin, Wang, Han, Jiang and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Ziping Jiang, waterjzp@jlu.edu.cn; Bin Liu, l_bin@jlu.edu.cn
†These authors have contributed equally to this work