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Editorial on the Research Topic

Gene therapy 2.0: Biotechnology for circuit engineering and complex

therapeutic approaches

The tremendous progress seen in the Gene Therapy field has been made possible by

significant biotechnological breakthroughs of the last decades. In light of this, the purpose

of this Research Topic is to provide a snapshot of the Gene Therapy field by assessing the

status of current gene therapy technologies and if possible how close is the field to start

addressing complex diseases.

The American Society for Gene andCell Therapy defines gene therapy as “the use of genetic

material to treat or prevent disease” (ASGCT). As such, there are currently twomain alternatives

to deliver genetic material to cells. One is to deliver therapeutic genetic material via non viral

vectors. Alternatively, viral vectors can be used as delivery tools of therapeutic genetic payloads.

Non viral vectors have recently come to the fore with the industrious development of

mRNA-based vaccines for COVID-19. It is therefore very timely that within the current

Research Topic Damase et al. have written a review focusing on this type of gene therapy.

The authors start briefly with the current methods employed in more conventional DNA

therapeutics. Nevertheless, the bulk of the paper is a detailed description of RNA

therapeutics, including the different types of therapies, an extensive assessment of

current RNA therapies in clinical trials, as well as the crucial issue of delivery

strategies, providing a very good entry point on this subject.

Viral vectors, on the other hand, are derived from viruses where viral particles have

been reengineered to deliver therapeutic genetic material safely and efficiently. The key

advantage when compared to non viral vectors is that viral vectors are substantially more

effective in delivering genetic material, especially in gene therapy applications that require

direct delivery to patients.

Adeno-associated viral vectors (AAV) are the viral vectors leading the way in treating

rare genetic diseases in clinical trials focusing on gene replacement strategies (Mendell
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et al., 2020). In gene replacement approaches, viral vectors deliver

a functional copy of a gene that is defective in that specific genetic

disease. One key success for the field has been with the

Zolgensma clinical trials (Blair, 2022). In this gene therapy

clinical trial, AAV were used to successfully treat young

children suffering from spinal muscular atrophy (SMA) by

delivering a functional copy of the survival motor neuron 1

(SMN1) gene to cells of the brainstem and spinal cord. With

clinical success stories, researchers also gain a more thorough

understanding of the limitations of the gene therapy technologies

used in clinical trials. For example, immunological reactions and

viral vector toxicity events have been observed in non-human

primates and patients (Ertl, 2022). Moreover, when expressed at

very high levels certain therapeutic genes can also be toxic.

To solve the immunity and toxicity issues, researchers have

turned to redesigning the AAV outer protein shell or capsid to

effectively create novel artificial serotypes (Becker et al., 2022).

The hope is that tailoring the AAV to the specific gene therapy

application will increase transduction efficiency and decrease

AAV dosages. In addition, the artificial AAV may, in theory,

circumvent acquired immunity to wildtype AAVs. It is in this

context that the work from Pietersz et al. provides a useful

contribution. In the paper, the authors take the PHP.B

peptide and assess its potential to cross the blood-brain

barrier when inserted in AAV serotype 5. This peptide is a

milestone in AAV capsid reengineering as it allowed a

significantly more efficient brain targeting when AAV are

delivered systemically (Challis et al., 2022). The authors

observed that the presence of this peptide alone was not

sufficient to enable blood-brain barrier crossing of the

AAV5 serotype and that in the context of direct brain

parenchymal striatal delivery, AAV5 seems to be a better gene

therapy vehicle.

High therapeutic gene expression can be harmful, such as in

inner ear gene therapy applications using neurotrophins. Peter

et al. show a simple and efficient solution to this problem by

combining the use of a transient viral vector with a latency

promoter. With this vector and promoter combination, BDNF

and NT-3 could be safely expressed, effectively protecting inner

ear cells while simultaneously avoiding side-effects occurring

from overexpression of these factors.

In addition to gene therapy strategies focused on gene

replacement or trophic factor support as the ones

highlighted above, it is possible to instead correct the

gene in question by directly editing the mRNA. While

RNA editing approaches such as trans-splicing has been

used in several disease models, Muñiz et al. show how

powerful this strategy can be. The authors used lentiviral

vectors to express an RNA donor that efficiently modulates

tau isoforms from 3R to 4R. They then tested this RNA

editing approach in an animal model of human tau and show

that shifting tau isoforms to 4R can rescue the motor and

cognitive deficits observed in this model. The key strength of

this study is that the therapeutic intervention was done after

symptom onset, highlighting the robustness of this

approach.

When taken together, the papers that are a part of this

Research Topic show where the field is at. We now start to

have the biotechnological tools and know-how to earnestly tackle

more complex diseases. We are witnessing the “end of the

beginning” of the Gene Therapy field and remain very

optimistic as the field matures.
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