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Background: Type 2 diabetes mellitus (T2DM) is a crucial risk factor for

cognitive impairment. Accurate assessment of patients’ cognitive function

and early intervention is helpful to improve patient’s quality of life. At

present, neuropsychiatric screening tests is often used to perform this task

in clinical practice. However, it may have poor repeatability. Moreover, several

studies revealed that machine learning (ML) models can effectively assess

cognitive impairment in Alzheimer’s disease (AD) patients. We investigated

whether we could develop an MRI-based ML model to evaluate the

cognitive state of patients with T2DM.

Objective: To propose MRI-based ML models and assess their performance to

predict cognitive dysfunction in patients with type 2 diabetes mellitus (T2DM).

Methods: Fluid Attenuated Inversion Recovery (FLAIR) of magnetic resonance

images (MRI) were derived from 122 patients with T2DM. Cognitive functionwas

assessed using the Chinese version of the Montréal Cognitive Assessment

Scale-B (MoCA-B). Patients with T2DM were separated into the Dementia

(DM) group (n = 40), MCI group (n = 52), and normal cognitive state (N)

group (n = 30), according to the MoCA scores. Radiomics features were

extracted from MR images with the Radcloud platform. The variance

threshold, SelectKBest, and least absolute shrinkage and selection operator

(LASSO) were used for the feature selection. Based on the selected features, the

ML models were constructed with three classifiers, k-NearestNeighbor (KNN),

Support Vector Machine (SVM), and Logistic Regression (LR), and the validation
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methodwas used to improve the effectiveness of themodel. The area under the

receiver operating characteristic curve (ROC) determined the appearance of

the classification. The optimal classifier was determined by the principle of

maximizing the Youden index.

Results: 1,409 features were extracted and reduced to 13 features as the

optimal discriminators to build the radiomics model. In the validation set,

ROC curves revealed that the LR classifier had the best predictive

performance, with an area under the curve (AUC) of 0.831 in DM, 0.883 in

MIC, and 0.904 in the N group, compared with the SVM and KNN classifiers.

Conclusion: MRI-based ML models have the potential to predict cognitive

dysfunction in patients with T2DM. Compared with the SVM and KNN, the LR

algorithm showed the best performance.

KEYWORDS

MRI, machine learning model, mild cognitive impairment, dementia, type 2 diabetes
mellitus

1 Introduction

Diabetes is a group of metabolic diseases characterized by

hyperglycemia resulting from defects in insulin secretion, insulin

action, or both. Chronic hyperglycemia of diabetes is associated

with long-term damage, dysfunction, and failure of different

organs, especially the eyes, kidneys, nerves, heart, and blood

vessels (Roden, 2016). With the aging of the population and the

change in people’s living habits, diabetes mellitus has gradually

become a critical health issue worldwide owing to its high

morbidity, disability, and mortality (IDF Diabetes Atlas

Group, 2015; Li et al., 2020). There are two types of diabetes

mellitus, type 1 diabetes mellitus (T1DM), type 2 diabetes

mellitus (T2DM), gestational diabetes mellitus, and other

special types of diabetes. They are distinguished based on

etiology and clinical manifestation. T2DM, characterized by

insulin resistance (IR) and relative insulin deficiency, is the

most frequent type of diabetes mellitus, accounting for no less

than 90% of all types.

The association between T2DM and cognitive impairment

has been established. Numerous studies have demonstrated that

T2DM can increase the risk of cognitive impairment and may

even progress to dementia, such as vascular dementia and

Alzheimer’s disease (AD) (Stewart and Liolitsa, 1999; Strachan

et al., 2011; Moran et al., 2019; Alkethiri et al., 2021).

T2DM is associated with brain abnormalities on MRI scans,

containing brain structural and functional abnormalities. Some

MRI markers of cerebral small vessel disease, especially lacunar

infarcts, are more common in patients with T2DM (Geijselaers

et al., 2015; Lawson et al., 2020). Some previous studies have

focused on the brain functional changes of T2DM patients using

resting-state functional magnetic resonance imaging and

perfusion-weighted imaging (Chen et al., 2021; Xia et al.,

2022). Furthermore, artificial intelligence (AI) combined with

conventional medical imaging may be useful for detecting

cognitive dysfunction in patients with T2DM.

Radiomics is an emerging field that involves the process of

extracting a large number of high-dimensional mineable features

from medical images and subsequently analyzed using AI

methods. Radiomics workflow involves image acquisition,

region of interest (ROI) segmentation, features extraction, and

statistical analysis, then a statistical model is constructed based

on ML or deep learning algorithms with the selected features.

According to the clinical or biological question and a piece of

available prior knowledge, the model is tuned. In the field of

radiology, ML and deep learning algorithms were widely used

(Currie et al., 2019). Specific serviceability of ML in medical

imaging includes, not only extraction of radiomics features,

automated image segmentation, detection and classification of

lesions, and data analysis, but also providing rapid and accurate

noninvasive biomarkers for some disorder risk prediction,

diagnostics, prognosis, treatment response monitoring

(Libbrecht and Noble, 2015; Bi et al., 2019; Choi et al., 2020;

Greener et al., 2022).

However, there is a lack of a reliable predictive model based

on the ML method for the detection of cognitive dysfunction in

patients with T2DM. So far it is unclear whether cognitive

abnormity in patients with T2DM is related to brain texture.

Therefore, we consider the correlation analysis between brain

texture and cognitive impairment in people with T2DM essential.

Based on previous studies, we aimed to investigate cerebral

radiomics features based on MRI and construct three machine-

learning models to evaluate the cognitive state in patients with

T2DM. To evaluate the usefulness of the prediction model using

a ML algorithm, we constructed and compared them, and

subsequently, we screened out the optimal model. The model

could be useful to explain and should have a potential predictive

ability for cognitive impairment in patients with T2DM.
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2 Materials and methods

2.1 Study population

This study was approved by The Research Ethics Committee

of The Third People’s Hospital of Datong, and all the patients

included in the study were provided written informed consent for

the acquisition, analysis, and publishing of the anonymized data

collected. Also, the study was conducted according to the

declaration of Helsinki.

We enrolled 122 patients (47 men and 75 women; mean age,

63 years ± 7.07; range, 51–86 years) diagnosed with T2DM from

February 2020 to July 2021 in the Center for Endocrine and

Metabolic Diseases of The Third People’s Hospital of Datong,

Shanxi province, China. The diagnostic criterion of T2DM

patients was either fasting plasma glucose (FPG)

level ≥7.0 mmol/L or 2-h oral glucose tolerance test (OGTT)

glucose level ≥11.1 mmol/L (Roden, 2016). The inclusion criteria

also included: 1) Age >50 years old to minimize the adverse

effects of aging on cognitive function since numerous previous

studies have reported that aging is a risk factor for dementia

(Finkenzeller et al., 2019; Lee et al., 2020; Kaneko et al., 2021); 2)

no less than 6 years of education to ensure the literacy of all

subjects. 3) no history of central nervous system dysfunction or

medical diseases that considerably affect neurological function,

or severe heart, kidney, or liver diseases; 4)taking drugs within

3 months, such as psychoactive and steroid drugs; alcohol or

drug addiction; 5) within 3 months, no taking cognition-related

drugs, such as psychoactive and steroid drugs; alcohol or drug

addiction; 6) ability to perform the imaging procedure following

the instruction of the doctors; and 7) Right-handedness, walking

independently. The exclusion criteria included: 1) type 1 or other

type diabetes; 2) contraindications for MRI examination; 3) body

mass index (BMI) > 35 kg/m2, because obesity impairs cognition

(Dye et al., 2017; Ganguli et al., 2020); and 4) The acquired

images could not meet the analysis requirements.

2.2 Clinical, anthropometric, and
laboratory data

Clinical data related to diabetes were collected from the

patients’ medical records. The weight status was assessed by

measuring the body mass index (BMI). The blood pressure,

weight, and height of each participant were measured by the

standard survey method. Standard laboratory testings were

carried out to measure fasting plasma glucose (FPG),

glycosylated hemoglobin (HbA1c), alanine transaminase

(ALT), aspartate transaminase (AST), gamma-

glutamyltransferase (GGT), blood urea nitrogen (BUN), serum

creatinine (SCr), total cholesterol (TC), triglyceride (TG), high-

density lipoprotein (HDL), low-density lipoprotein (LDL), urine

creatinine (UCr). All enrolled individuals were required to

receive the Montreal Cognitive Assessment (MoCA), Rey

Auditory Verbal Learning test (RAVLT), Activities of Daily

Living (ADL), and Clinical Dementia Rating (CDR) scale test

independently. Furthermore, duration of diabetes, history of

smoking, whether or not complicated with coronary heart

disease, retinopathy, or intermittent claudication were also

recorded.

2.3 Cognitive impairment assessment

The Montréal Cognitive Assessment (MoCA) is one of the

most widely used screening tests for cognitive impairment

around the world (Nasreddine et al., 2005; Zhai et al., 2016;

Kopecek et al., 2017; Pinto et al., 2019). The Chinese version of

the Montréal Cognitive Assessment Scale-B (MoCA-B) is a

reliable cognitive screening test across all education levels in

Chinese adults, with high acceptance and good reliability (Yu

et al., 2014; Zhou et al., 2014; Chen et al., 2016; Hong et al., 2022).

It was administered as neuropsychological screening tests and

criteria for grouping in this study. All participants performed a

fully standardized cognitive assessment that covered various

cognitive domains. General cognitive function was assessed by

the Chinese version of the MoCA-B. The total scores range from

0 to 30 points, where higher scores indicate better cognitive

function. Participants were grouped into the Dementia (DM),

mild cognitive impairment (MCI) group, and normal cognitive

state(N) group, with corresponding MoCA scores of ≤18, 19–25,
and ≥26, respectively, according to the MoCA scores (Yu et al.,

2014; Chen et al., 2016).

The Rey Auditory Verbal Learning test (RAVLT) and clinical

dementia rating (CDR) scale were also administered as

neuropsychological screening tests in this study (Molloy et al.,

1991; Rai, 1993; Li et al., 2016; Arevalo-Rodriguez et al., 2021).

Verbal memory was evaluated with the RAVLT, including the

total score and the short delay recall, Wired quiz -A and B, digit

span task, clock draw test, Long-delayed recall and cue recall

(after an interval of 20 min).

The CDR scale is widely used in clinical trials for staging the

severity of AD and other dementias (Lanctôt et al., 2009; Wessels

et al., 2018). It is comprised of six cognitive domains, including

memory, orientation, ability to judge and solve problems,

community affairs, housework and hobbies, and personal care

ability. After interviewing both participants and their informants,

trained physicians scored their points. Each domain is rated on a

5-point scale independently from each others, except the

personal care domain which is a 4-point scale without the

0.5 rating scale. Point 0 represents no impairment,

0.5 represents questionable/very mild impairment,

1 represents mild impairment, 2 represents moderate

impairment, and 3 represents severe impairment. The

diagnosis of MCI or dementia can be confirmed after the

assessment (Albert et al., 2011; McKhann et al., 2011).
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FIGURE 1
Radiomics workflow.
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2.4 Image acquisition

A 3T scanner (Philips Achieva 3.0T, Philips Medical Systems,

Best, Netherlands) with an 8-channel head coil was employed to

acquire each participant’s whole brain MRI data. Axial Fluid

Attenuated Inversion Recovery (FLAIR) was used as an MRI

study sequence. FLAIR images were acquired using

FLAIR_LongTR sequences (TR = 9000 ms, TE = 120 ms, flip

angle = 90°, Prep Time = 450 ms, slice thickness = 2mm, slice

gap = 0 mm, number of excitations (NEX) = 1, field of view

(FOV) = 256 mm × 256 mm, matrix size = 256 × 238, axial

slices = 100). To suppress head motion artifacts, foam pads were

used to fix the head during scanning. The participants lie in a

supine position, keep their eyes closed and awake, and try to

avoid ideological activities following the operator’s instructions.

In the whole process of scanning, the participants and their

images quality were monitored by two experienced radiologists.

If the images were abnormal or the participants were

uncomfortable, the acquisition would be terminated

immediately. For each participant, we kept the MRI scan on

the same day with neuropsychological tests, and within 1 week

after the medical history interview, neurological examination,

and laboratory examinations.

2.5 Image processing

Figure 1 presents the radiomics workflow, which involves:

Imaging acquisition, ROI segmentation, feature extraction and

analysis, then developing a statistical model based on ML

algorithms (Yamamoto and Hasegawa, 2017; Cheng and Hua,

2020; Mayerhoefer et al., 2020). Radcloud radiomics platform

(Huiying Medical Technology, Beijing, China) was employed to

analyze the MRI and clinical data, and subsequently to perform

radiomics statistics analysis. The original images of the

participants, exported from MRI scanners in DICOM format,

were uploaded to the Radcloud platform for the next step of the

analysis.

2.5.1 Image segmentation
We used all MRI-FLAIR sequences in the brain of the

subjects as ROIs, and all these images were reviewed by two

senior radiologists with 12 (reader 1) and 9 years (reader 2)

experience in radiology. The cerebrum in the FLAIR sequences of

the participants was delineated manually and layer-by-layer by

the two radiologists who were blinded to their clinical

information of them, then all contours were reviewed by a

third senior radiologist with 17 years of experience in this

field. Thus, the ROIs contained all the components of the

cerebrum, without the Cerebellum, brainstem, ventricles, and

other unrelated structures. Agreement of the VOIs between the

two radiologists who delineatedmanually the ROIs was evaluated

by intraclass correlation coefficient (ICC), ICC >0. 80 indicates

good consistency. Eventually, 122 VOIs were segmented from

122 patients’ MRI scans which were used for subject analysis.

2.5.2 Feature extraction
In total, 1,409 radiomics features were extracted from the

MRI with the Radcloud platform (https://mics.huiyihuiying.

com/). These features were comprised of three groups. Group

1 (first-order statistics) contained 126 descriptors that

quantitatively delineate the distribution of voxel intensities

within the MR image through commonly used and basic

metrics. Group 2 (shape- and size-based features) consisted of

14 three-dimensional features that reflect the shape and size of

the region. From grey-level run-length and grey-level co-

occurrence texture matrices, 525 textural features that can

quantify region heterogeneity differences were classified into

group 3 (texture features).

2.5.3 Feature selection
As described above, large amounts of radiomics features were

extracted from the MR images of participants. However, not all

these features were useful for the construction of the ML model.

Therefore, for the best performance of the model, dimensionality

reduction for the selection of task-specific features is an essential

procedure. The feature selection methods for reducing the

redundant features included the variance threshold (variance

threshold = 0.8), SelectKBest, and the least absolute shrinkage

and selection operator (LASSO) algorithm. For the variance

threshold method, the threshold is 0.8, so the features of the

variance bigger than 0.2 were used. The SelectKBest method,

which belongs to a single variable feature selection method,

employs a p-value to analyze the relationship between the

features and the results of classification, all the eigenvalues

with a p-value smaller than 0.05 will be retained. For the

LASSO model, the L1 regularizer was used as the cost

function, the error value of cross-validation is 5, and the

maximum number of iterations is 1,000. After the three-step

dimensionality reduction, the remaining features with the

greatest correlation were used to construct a radiomics model

employing a ML algorithm.

2.5.4 Development of MRI-based ML model
In this study, The validation dataset and training dataset were

divided by random method with a ratio of 2:8, and the random

seeds are 500. Based on the selected optimal features, we used

3 ML classifiers available for classification analysis, which creates

radiomics models that attempt to separate the data concerning

cognitive function in patients with T2DM. The three classifiers

included k-NearestNeighbor (KNN), Support Vector Machine

(SVM), and Logistic Regression (LR). The validation method was

used to improve the efficiency of these models.

Both The KNN and SVM are a type of supervised learning

method. The KNN attempts to predict the correct class for the

validation set by calculating the distance between the Validation
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set and the training set. For KNN, the parameters KNN

parameters: n_neighbors (5), weights (uniform) in this study.

The SVM tries to search for an optimal separating hyperplane

between classes, which maximizes the margin. For SVM, the

parameters SVM parameters: kernel (rbf), C (1), gamma (auto),

class_weight (balanced), decision_function_shape (ovr) in this

study. The LR is a statistical method used to evaluate the

correlation between the dependent and independent variables.

For LR, the parameters LR parameters: penalty (L2), C (1), solver

(liblinear), class_weight (None), multi_class (ovr) in this study.

2.6 Statistical analysis

All the clinical data analyses were performed by IBM SPSS

Statistic version 22.0 (SPSS Inc.). Comparisons of clinical and

demographic features of patients among the three groups were

conducted by Chi-squared test, and one-way analysis of variance

(ANOVA) followed by LSD test or Tamhane’s T2 test, A

significant statistical difference was presented as p < 0.05.

Partitions of χ2 method calibration and inspection level α’ =

0.017. Statistical analyses were performed for both the training

and validation sets. Dice’s coefficients were used to evaluate the

intra- and inter-observer consistency for the ROI segmentation

and radiomics feature extraction with 30 randomly selected

samples. We interpreted a coefficient of 0.81–1.00 was

interpreted as perfect agreement.

The statistical analysis of ML models was performed in

the Radcloud platform. The receiver operating characteristic

(ROC) curve which presented the area under the curve

(AUC), was used both in the training and validation set

respectively to evaluate the predictive performance. To

evaluate the performance of classifier, four indicators

including P (precision = true positives/(true positives +

false positives)), R (recall = true positives/(true positives +

false negatives)), f1-score (f1-score = P*R*2/(P + R)), support

(total number in test set) were used in this study. The

precision is the overall evaluation of the classifier and

represents the proportion of correctly divided samples to

the determined divided samples. The f1-score is used to

evaluate the classification efficiency of the classifier. The

higher the F1 value, the better the classification effect. The

AUC evaluates the classifier’s performance. The optimal

classifier was determined by the principle of maximizing

the Youden index (ie, sensitivity + specificity-1).

3 Results

3.1 Characteristics of the study population

In this study, A total of 122 participants were analyzed:

40 participants in the DM group, 52 in the MCI group, and 30 in

the N group. The mean age of the subjects was 63 (7.07) years,

47 men and 75 women.

Table 1 summarizes the clinical and demographic

characteristics of the MCI, DM, and N groups. No significant

differences were found in BMI, systolic blood pressure, FBG,

ALT, AST, GGT, BUN, BUA, SCr, TG, TC, LDL, HDL, UCr,

Coronary heart disease, history of smoking, retinopathy,

Intermittent claudication and duration of diabetes (p > 0.05).

Compared with the N group, the DM group had a higher level of

age (p = 0.013), Diastolic blood pressure (p = 0.019), HbA1c (p =

0.001), and lower level of gender (male) (p = 0.003). Compared

with the N group, both the DM and MCI group had lower levels

of MoCA, RAVLT (p < 0.001, p < 0.001 and p < 0.001, p < 0.001,

respectively). Compared with the MCI group, the DM group also

had lower levels of MoCA (p < 0.001) and RAVLT (p = 0.003).

Compared with the DM group, both the MCI and N groups had

lower levels of CDR (p = 0.002, p = 0.005, respectively).

Furthermore, compared with the N group, the MCI group

had a higher level of HbA1c (p = 0.020).

3.2 MRI-based radiomics features

The inter-observer and intra-observer agreement was perfect

for the segmentation of the VOIs for theMRI-FLAIR images. The

VOIs had a better correlation between the two radiologists (ICC:

0.897; 95% CI: 0.829–0.932).

We firstly selected 344 features from 1,409 features using the

variance threshold method (Figure 2), then with the Select-K best

methods, we selected 192 features (Figure 3), and finally, 13 most

relevant features were selected with the LASSO algorithm

(Figure 4). Details of the selected 18 features were shown in

Table 2.

3.3 MRI-based ML model evaluation and
comparison

All the participants were divided into training (n = 98) and

validation (n = 24) sets. Three ML algorithms, including the

KNN, SVM, and LR, were applied for the construction of the

prediction models in the training set. To evaluate the prediction

model in test data, the ROC curve, sensitivity, specificity,

Precision, F1-score, and Support were used. The analysis

results of the ROC curve were displayed in Table 3 for the

training set and Table 4 for the validation set. Before the

assessment, the Youden index by the ROC curve in the

validation set was employed to determine the optimal

algorithm. The KNN model was better than those of other

classifiers, with Youden index of 0.59 in DM, 0.57 in MCI,

and 0.62 in N respectively.

In the validation set, the ROC curves revealed that the LR

algorithm had the best predictive performances, with an area
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under the curve (AUC) of 0.831 in DM, 0.883 in MCI, and

0.904 in the normal cognitive group(N). Relatively, the SVM and

KNN algorithms had the second and third predictive

performances respectively. In the SVM model, the AUCs of

the test set were 0.846 in DM, 0.857 in MCI, 0.825 in N

respectively, and in the KNN model, they were 0.875 in DM,

0.828 in MCI, 0.803 in N respectively (Figures 5–7).

Table 5 summarized these four indicators (precision, recall,

f1-score, support) for the three classifiers. When training with LR

classifier, the precision, recall, f1-score and support of training set

were 0.93, 0.84, 0.89 and 32 in DM, 0.78, 0.93, 0.84 and 41 in

MIC, 0.95, 0.75, 0.84 and 24 in N, the precision, recall, f1-score

and support of validation set were 0.58, 0.88, 0.70 and 8 in DM

and 0.88, 0.64, 0.74 and 11 inMIC and 0.80, 0.67, 0.73 and 6 in N.

The results unveiled that the models could differentiate cognitive

dysfunction from normal cognitive state and roughly assess its

severity in patients with T2DM, and the LR model outperformed

other models.

4 Discussion

In this study, MRI-based ML models were constructed to

screen out MCI and dementia in patients with T2DM, which was

always performed by neuropsychological screening tests in

clinical practice. Our research results demonstrated that ML

models, which can extract high dimensional radiomics

features from conventional FLAIR sequences of MRI, were

able to distinguish dementia and MCI from the normal

cognitive state in patients with T2DM. LR outperformed other

TABLE 1 Demographic and clinical characteristics of the MCI, DM, and N groups.

Characteristics DM (n = 40) MCI (n = 52) N (n = 30) F/χ2 p-value

Age (years)d 65.08 ± 7.38a 62.67 ± 6.90 60.77 ± 6.83 3.30 0.04

Gender (male)e 8 (11.1%)a 16 (18.2%) 15 (33.3%) 8.95 0.01

MoCA (scores)d 14.83 ± 2.90ab 22.06 ± 2.25c 26.73 ± 0.98 276.37 0.00

RAVLT (scores)d 10.03 ± 3.839ab 13.12 ± 5.29c 18.20 ± 4.92 25.31 0.00

ADLs (scores)d 21.92 ± 6.310 20.09 ± 0.570 20.03 ± 0.183 2.21 0.14

CDR (scores)d 0.31 ± 0.74ab 0.03 ± 0.12 0.02 ± 0.091 5.85 0.01

BMI (kg/m2)d 27.38 ± 3.36 26.89 ± 3.08 27.03 ± 2.37 0.30 0.74

Systolic blood pressure (mmHg)d 121.23 ± 16.19 124.94 ± 13.54 126.87 ± 13.10 1.45 0.24

Diastolic blood pressure (mmHg)d 65.75 ± 13.26a 70.35 ± 9.16 72.1 ± 10.85 3.25 0.04

FBG (mmol/L)d 9.29 ± 3.08 8.95 ± 2.90 8.26 ± 2.31 1.16 0.32

HbA1c (mmol/mol)%d 8.088 ± 1.69a 7.71 ± 1.33c 6.94 ± 1.21 5.65 0.01

ALT (U/L)d 31.83 ± 21.13 30.04 ± 17.61 27.11 ± 12.80 0.60 0.55

AST (U/L)d 24.68 ± 11.21 23.64 ± 11.62 21.45 ± 6.58 0.83 0.44

GGT (U/L)d 44.25 ± 47.76 48.04 ± 81.28 37.87 ± 37.20 0.25 0.78

BUN (mmol/L)d 6.32 ± 6.81 5.18 ± 1.44 4.74 ± 1.12 1.46 0.24

SCr (μmol/L)d 62.90 ± 13.61 67.65 ± 16.10 66.10 ± 12.85 1.15 0.32

TG (mmol/L)d 2.26 ± 1.74 2.03 ± 1.23 2.77 ± 2.33 1.50 0.23

TC (mmol/L)d 4.34 ± 1.22 4.13 ± 0.99 4.59 ± 1.30 1.51 0.23

LDL (mmol/L)d 2.27 ± 0.98 2.30 ± 0.82 2.59 ± 0.96 1.23 0.30

HDL (mmol/L)d 1.14 ± 0.29 1.06 ± 0.28 1.08 ± 0.22 1.01 0.37

UCr (mmol/L)d 5.79 ± 3.50 7.89 ± 7.07 6.66 ± 9.80 3.01 0.14

duration of diabetes (years)d 15.86 ± 9.59 21.61 ± 19.37 18.23 ± 2.69 0.298 0.74

Coronary heart diseasee 14 (19.4%) 22 (25.0%) 12 (26.7%) 1.02 0.60

Smoker,nowe 5 (6.9%) 14 (15.9%) 6 (13.3%) 3.04 0.22

Smoker, paste 8 (11.1%) 20 (22.7%) 12 (26.7%) 5.28 0.07

Retinopathye 2 (2.8%) 1 (1.1%) 3 (6.7%) 3.21 0.20

Intermittent claudicatione 5 (6.9%) 4 (4.5%) 0 (0%) 3.19 0.20

dData are presented as mean ± SD.
eData are presented as cases (percentage%).

a, b, and c represents a statistically significant difference between the DM and N group, the DM group andMIC, as well as theMIC and N group, respectively. The test level of gender was α,
< 0.017. p < 0.05 was considered significant. DM, dementia; MIC, mild cognitive dysfunction; N, normal cognitive state; MoCA, montreal cognitive assessment scale, RAVLT, rey auditory

verbal learning test; ADLs, Activities of Daily Living; CDR, clinical dementia rating scale; FBG, fasting blood-glucose; HBALC, glycated hemoglobin; GGT, gamma-glutamyltransferase;

AST, glutamic oxalacetic transaminase; BUN, blood urea nitrogen; BUA, blood uric acid; TC, total cholesterol; SCr, serum creatinine; UCr, Urine creatinine.
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classifiers with the highest predictive performances, and its AUCs

were 0.881 for MCI, 0.883 for dementia, and 0.904 for the normal

cognitive state, respectively.

This study shows that several clinical characteristics may be

risk factors for cognitive dysfunction in patients with T2DM.

Cognitive impairment in patients with T2DM is increasingly

FIGURE 2
Variance threshold on feature selection. We used variance threshold methods to select radiomics features (variance threshold = 0.8), and we
selected 344 features from 1,409 features.

FIGURE 3
Select K best on feature selected. We used Select K best methods to further select radiomics features, we selected 192 features.
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recognized and taken seriously. Moreover, with aging, the

incidences of both T2DM and dementia increase, which

contributes to the prevalence of the comorbidity of these

pathologies. A meta-analysis confirmed that the incidence of

MCI in patients with T2DMwas approximately 45.0% (95% CI =

36.0, 54.0) (You et al., 2021). Multiple pieces of evidence have

indicated that T2DM is related to vascular dementia (VD) and

Alzheimer’s disease (AD) (Chau et al., 2020; Lyu et al., 2020;

Ortiz et al., 2022). Recent studies have revealed that older patients

with T2DM have a higher risk of MCI or dementia, compared to

young patients with a similar condition (Sanke et al., 2014; Gao

et al., 2016; Machii et al., 2020; Suain Bon et al., 2021). The result

was consistent with our study which demonstrated that there is a

significant difference between the N and DM groups. In other

words, aging may be a risk factor for cognitive dysfunction in

patients with T2DM. In addition, the duration of diabetes may be

FIGURE 4
Lasso algorithm on feature selected. (A) Lasso path; (B) MSE path; (C) coefficients in Lass model. Using the Lasso model, 13 features that
correspond to the optimal alpha value were selected.
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related to cognitive dysfunction. Previous studies have shown

that there is a linear association between the duration of T2DM

and the decline in cognition (Tuligenga et al., 2014; Wood et al.,

2016). However, our study did not demonstrate significant

differences among the MCI, dementia, and normal cognitive

state in patients with T2DM (p < 0.05), which may owe to the

small sample size and selection bias and needs to be further

confirmed by some more advanced methods. Moreover, this

study demonstrated that HbA1c was associated with an increased

risk of MCI and dementia. Yaffe K et al. studied

1983 postmenopausal women with osteoporosis who had

HbA1C levels measured at baseline. Development of mild

cognitive impairment (MCI) or dementia over 4 years was

determined as part of a dementia ancillary study. They found

an association between HbA1C level and the risk of developing

MCI or dementia in postmenopausal osteoporotic women

primarily without diabetes (Yaffe et al., 2006).

In clinical practice, various strategies such as

neuropsychological screening tests, medical history, and brain

imaging findings, have been proposed to identify cognitive

impairment in patients. Recently, some studies suggested that

both Amyloid-βand tau has helped assess cognitive dysfunction,

but the data for such biomarkers are not easy to be acquired

clinically (Groot et al., 2021). Neuropsychological screening tests

are easily performed in most clinics or hospitals, but the fact that

the neuropsychological data were difficult to be interpreted has

increased the necessity of medical images, artificial intelligence,

and even a combination of them. In the field of medical image,

several Cognitive dysfunction biomarkers have been studied

including the brain metabolic change derived from

TABLE 2 Description of the selected radiomics features with their
associated feature group and filter.

Radiomic feature Radiomic class Filter

LargeAreaHighGrayLevelEmphasis glszm wavelet-HLH

SizeZoneNonUniformity glszm wavelet-HHL

LargeAreaEmphasis glszm wavelet-LHL

TotalEnergy firstorder lbp-2D

SizeZoneNonUniformity glszm wavelet-HLH

LeastAxisLength shape original

Skewness firstorder wavelet-LLL

GrayLevelNonUniformity glszm wavelet-LLL

Kurtosis firstorder wavelet-LLH

LargeDependenceLowGrayLevelEmphasis gldm wavelet-LLH

Maximum firstorder wavelet-LLH

Range firstorder wavelet-LLH

Energy firstorder wavelet-HLL

TABLE 3 ROC results with KNN, SVM, and LR classifiers of the training set.

Classifiers Category AUC 95% CI Sensitivity Specificity Youden index

KNN DM 0.928 0.830–0.932 0.780 0.830 0.61

MCI 0.837 0.745–0.929 0.710 0.750 0.46

N 0.924 0.815–0.941 0.670 0.970 0.64

SVM DM 0.974 0.888–0.982 0.840 0.920 0.76

MCI 0.939 0.868–0.984 0.850 0.820 0.67

N 0.983 0.882–0.993 0.750 0.970 0.72

LR DM 0.979 0.893–0.995 0.840 0.970 0.81

MCI 0.920 0.856–0.984 0.930 0.800 0.73

N 0.926 0.820–0.978 0.750 0.990 0.74

TABLE 4 The results of AUC, 95% CI, Sensitivity, and Specificity in the validation cohort.

Classifiers Category AUC 95% CI Sensitivity Specificity Youden index

KNN DM 0.875 0.678–0.948 0.750 0.880 0.63

MCI 0.828 0.655–0.962 0.820 0.710 0.53

N 0.803 0.569–0.921 0.500 0.950 0.45

SVM DM 0.846 0.674–0.984 0.880 0.760 0.64

MCI 0.857 0.687–0.947 0.730 0.860 0.59

N 0.825 0.625–0.938 0.500 0.950 0.45

LR DM 0.831 0.662–0.974 0.880 0.710 0.59

MCI 0.883 0.719–0.948 0.640 0.930 0.57

N 0.904 0.791–0.991 0.670 0.950 0.62
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fluorodeoxyglucose positron emission tomography (FDG-PET)

(Yuan et al., 2009; Pardo et al., 2010; Newberg et al., 2022), and

the structural or functional change in the brain measured byMRI

(van Harten et al., 2007; Belfort-Deaguiar et al., 2014; Lei et al.,

2021). In recent years, with the development of MRI scanner and

its increasingly enhanced data processing function, the level of

analysis has been moving from assessment of brain structure and

morphology such as volume and general atrophy to more

FIGURE 5
ROC curves of LR methods to classification. (A) ROC curve of training set, the AUC were 0.979 in DM (sensitivity and specificity were 0.84 and
{"MCI”: 0.8, “DM”: 0.97, “N": 0.99}), 0.92 in MCI (sensitivity and specificity were 0.93 and {"MCI”: 0.8, “DM”: 0.97, “N": 0.99}), 0.926 in N (sensitivity and
specificity were 0.75 and {"MCI”: 0.8, “DM”: 0.97, “N": 0.99}) respectively; (B) ROC curve of validation set, the AUC were 0.831 in DM (sensitivity and
specificity were 0.88 and {"MCI”: 0.93, “DM”: 0.71, “N": 0.95}), 0.883 in MCI (sensitivity and specificity were 0.64 and {"MCI”: 0.93, “DM”: 0.71, “N":
0.95}), 0.904 in N (sensitivity and specificity were 0.67 and {"MCI”: 0.93, “DM”: 0.71, “N": 0.95}) respectively.

FIGURE 6
ROC curves of SVMmethods to classification. (A) ROC curve of training set, the AUCwere 0.974 in DM (sensitivity and specificity were 0.84 and
{"MCI”: 0.82, “DM”: 0.92, “N": 0.97}), 0.939 in MCI (sensitivity and specificity were 0.85 and {"MCI”: 0.82, “DM”: 0.92, “N": 0.97}), 0.983 in N (sensitivity
and specificity were 0.75 and {"MCI”: 0.82, “DM”: 0.92, “N": 0.97}) respectively; (B) ROC curve of validation set, the AUC were 0.846 in DM (sensitivity
and specificity were 0.88 and {"MCI”: 0.86, “DM”: 0.76, “N": 0.95}), 0.857 inMCI (sensitivity and specificity were 0.73 and {"MCI”: 0.86, “DM”: 0.76,
“N": 0.95}), 0.825 in N (sensitivity and specificity were 0.50 and {"MCI”: 0.86, “DM”: 0.76, “N": 0.95}) respectively.
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detailed and in-depth analysis of white matter tracts, using

diffusion tensor imaging (DTI), a newer method. These

neuroimaging studies had the potential to identify both

functional and structural brain abnormalities that may serve

as early biomarkers for cognitive dysfunction.

Themechanisms of cognitive impairment in diabetic patients

need to be further studied since it is still unclear so far, and

radiomics combined with ML may be useful. For cognition in

patients with T2DM, previous research based on DTI revealed

that abnormalities in brain structural and functional connectivity

are related to widely cognitive impairments (McCrimmon et al.,

2012; Biessels, 2013; Biessels and Reijmer, 2014; Yang et al.,

2020). Diabetes may be a risk factor for white matter (WM)

disease (Ogama et al., 2018; Werhane et al., 2021). Multiple

neuroimaging studies have revealed that abnormalities in the

WM tract are related to the dysfunction of glucose metabolism

and cognition. (van Bussel et al., 2016). A series of disorders with

cognitive impairment, including T2DM, has previously been

observed to be associated with impaired connectivity of the

default mode network (DMN), (Chen et al., 2019; Zarifkar

et al., 2021; Magalhães et al., 2022). The structural and DMN

connectivity abnormalities observed in DM(Yin et al., 2016;

Crockett et al., 2017; McKinnon et al., 2017), but further

investigation of the mechanisms of DMN impairment is

needed. Resting-state functional magnetic resonance imaging

(rs-fMRI) technique can be used to explore the topological

properties of functional whole-brain networks. Qin et al.

(2019) revealed the abnormalities of the topological properties

of whole-brain networks in T2DM patients with theoretical

graph analysis using an rs-fMRI technique. At the

macroscopic level, the brain can be viewed as a network

composed of anatomically separated brain regions, between

which the information is transmitted based on the white matter.

The hippocampus has been confirmed long ago as one of the

most important brain regions associated with cognition. In

patients with T2DM, it was also related to cognitive

impairment, and the disruptions of structural and functional

connectivity are identified in it (Wang et al., 2014; van Bussel

et al., 2016). Sun et al. revealed that the reduced functional

FIGURE 7
ROC curves of KNNmethods to classification. (A) ROC curve of training set, the AUCwere 0.928 in DM (sensitivity and specificity were 0.78 and
{"MCI”: 0.75, “DM”: 0.83, “N": 0.97}), 0.837 in MCI (sensitivity and specificity were 0.71 and {"MCI”: 0.75, “DM”: 0.83, “N": 0.97}), 0.924 in N (sensitivity
and specificity were 0.67 and {"MCI”: 0.75, “DM”: 0.83, “N": 0.97}) respectively; (B) ROC curve of validation set, the AUC were 0.875 in DM (sensitivity
and specificity were 0.75 and {"MCI”: 0.71, “DM”: 0.88, “N": 0.95}), 0.828 in MCI (sensitivity and specificity were 0.82 and {"MCI”: 0.71, “DM”: 0.88,
“N": 0.95}), 0.803 in N (sensitivity and specificity were 0.50 and {"MCI”: 0.71, “DM”: 0.88, “N": 0.95}) respectively.

TABLE 5 The results of four indicators -Precision, Sensitivity, F1-score,
Support in training, and validation set.

Indicators Training set Validation set

KNN SVM LR KNN SVM LR

DM Precision 0.690 0.840 0.930 0.750 0.640 0.580

Sensitivity 0.780 0.840 0.840 0.750 0.880 0.880

F1-score 0.740 0.840 0.890 0.750 0.740 0.700

Support 32 32 32 8 8 8

MCI Precision 0.670 0.780 0.780 0.690 0.800 0.880

Sensitivity 0.710 0.850 0.930 0.820 0.730 0.640

F1-score 0.690 0.810 0.840 0.750 0.760 0.740

Support 41 41 41 11 11 11

N Precision 0.890 0.900 0.950 0.750 0.750 0.800

Sensitivity 0.670 0.750 0.750 0.500 0.500 0.670

F1-score 0.760 0.820 0.840 0.600 0.600 0.730

Support 24 24 24 24 24 24
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connectivity of the hippocampus may be closely related to the

disruption of white matter integrity (Sun et al., 2018). Wang et al.

combined the textural features and structural images in the

hippocampus to investigate their diagnostic performance for

AD and MCI using multimodal radiomics technique, and

found that the textural features reflecting local functional

activity could improve the diagnostic performance of

traditional structural models for both AD and MCI (Wang

et al., 2022). This study may lay the groundwork for future

research on the brain structural and functional connectivity by

radiomics methods since the abnormalities in the brain of

patients with T2DM were identified by both the DTI and ML

model for the whole cerebrum.

Compared to the MRI-based investigations above on the

evaluation of cognitive performance in patients with T2DM, our

study had an improvement. We utilized the MRI-based ML

model as a direct predictor of cognitive performance in

patients with T2DM. In the process of research, the selection

of features or variables is of great importance in the construction

of a prediction model, which can successfully interpret data, with

improved classification performance (Saeys et al., 2007;

Handelman et al., 2018; Rajkomar et al., 2019). The data

employed in our study were acquired from MRI-FLAIR

sequence using radiomics features-extracted software, the

Radcloud. In the process of feature extraction, a total of

1,409 features were extracted from the original images in

DICOM format. In the step of selecting radiomics features, to

reduce redundant features for avoiding the curse of

dimensionality, we successively used three feature dimension

reduction methods, including the variance threshold (variance

threshold = 0.8), SelectKBest, and LASSO. Eventually, 13 optimal

descriptive radiomics features were enrolled in the model that

showed promising predictive performance for the assessment of

cognitive function in patients with T2DM, as mentioned above.

These radiomics features reflected intrinsic information as

textural features that cannot otherwise be detected by

radiologists (Loizou et al., 2020; Ta et al., 2020). The first-

order statistical features reflect the internal voxel intensity

ofthe lesions, and the texture features reflect the gray

distribution characteristics in dimensional space, suggesting

the heterogeneity of the lesions. Among the 13 features,

6 first-order features, 6 texture features, and 1 shape features

comprised the optimal feature set, indicating different feature

dimensions to be considered among the DM, MCI, and normal

cognitive state in patients with T2DM.

In model establishment, we trained three classifiers,

including the KNN, LR, and SVM. LR had the best prediction

performance among the three classifiers. Because radiomics

contain multiple high-dimensional data, proper strategies for

feature selection and model classifiers are required, and machine

learning algorithms can be effective for these purposes. LR is a

traditional statistical method by obtaining interpretable estimates

of the nature and statistical significance of associations between

predictors and the outcome. LR is an excellent machine learning

algorithm because it is a statistical method used to evaluate the

correlation between the dependent and independent variables.

Both LR and SVM are linear classification algorithms if the kernel

function is not considered. However, SVM only considers the

points near the local boundary line, while LR considers all.

Nevertheless, the difference in performance across algorithms

was sometimes small, including when compared to logistic

regression. It is not possible to provide precise rules about

sample size requirements for supervised learning. In general,

prediction performance improves as sample size increases (Shatte

et al., 2019; Jiang et al., 2020). In this study, the performance of

the MRI-based ML prediction model for cognitive dysfunction

such as MCI and dementia in patients with T2DM was explicitly

evaluated. As a type of MRI biomarker, the MRI-based ML

prediction model is arguably easier to obtain and implement,

less expensive, and explains a significant proportion of variation

in cognitive performance, compared to the demographic and

genetic risk factor data (Ford et al., 2019; Hall et al., 2019).

We acknowledge that there are several limitations to this

study. First of all, because it is a retrospective study, the

reproducibility and comparability of the results may exist on

account of potential selection bias. Thus, further studies may

be needed to improve the clinical usefulness of this machine-

learning model. Secondly, multicenter studies with a larger

sample for further validation of its reproducibility are

required in that this study was a single-center experience

limited to our institute. Thirdly, manual ROI segmentation is

complicated and time-consuming, especially for the

connection of the cerebrum and cerebellum without a

well-defined boundary, the automatic segmentation

technique with satisfactory reliability and reproducibility is

needed. In addition, we only used FLAIR sequence, and other

sequences such as T1 and T2 weighted images may also

contain useful information. In further research, we will

explore the useful information of these sequences.

5 Conclusion

In conclusion, by MRI-based radiomics features, we

constructed a radiomics model to predict cognitive

dysfunction in patients with T2DM, and it was shown to have

a good performance and may serve as a potential tool to guide

personalized treatment. Compared with the SVM and KNN, the

LR algorithm for the construction of the model showed better

performance. However, more studies with independent

replication datasets are needed to confirm our findings, so

that the hypothetical prediction model can be used as a

clinical tool to screen for cognitive function. It is believed that

as an important part of precision medicine, radiomics will be

widely used in the diagnosis and evaluation of cognitive states in

patients with T2DM in the future.
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