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Aging is associated with multiple degenerative diseases, including atherosclerosis,
osteoporosis, and Alzheimer’s disease. As the most intuitive manifestation of aging,
skin aging has received the most significant attention. Skin aging results from various
intrinsic and extrinsic factors. Aged skin is characterized by wrinkles, laxity, elastosis,
telangiectasia, and aberrant pigmentation. The underlying mechanism is complex
and may involve cellular senescence, DNA damage, oxidative stress (OS),
inflammation, and genetic mutations, among other factors. Among them, OS
plays an important role in skin aging, and multiple antioxidants (e.g., vitamin C,
glutathione, andmelatonin) are considered to promote skin rejuvenation. In addition,
stem cells that exhibit self-replication, multi-directional differentiation, and a strong
paracrine function can exert anti-aging effects by inhibiting OS. With the further
development of stem cell technology, treatments related to OS mitigation and
involving stem cell use may have a promising future in anti-skin aging therapy.
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1 Introduction

Aging is currently defined as a progressive disorder of tissue and organ functions over time,
which eventually leads to numerous chronic pathologies (Calcinotto et al., 2019). Skin aging can
be categorized into intrinsic aging and extrinsic aging (primarily photoaging) (Wu et al., 2019).
Intrinsic aging occurs unavoidably as a result of chronological aging, whereas extrinsic aging
occurs upon exposure to environmental factors, such as pollutants and ultraviolet light (Kohl
et al., 2011). Both intrinsic and extrinsic aging damage the skin structure and cause dysfunction,
which leads to wrinkling, hair loss, reduction of elasticity, impairment of the epidermal barrier
maintenance, and multiple physical and psychological issues. In addition, aged skin is more
susceptible to injury and infection, poor wound healing, and primary skin cancer (Giangreco
et al., 2008). Oxidative stress (OS), a phenomenon characterized by an imbalance between
reactive oxygen species (ROS) and antioxidants, has long been considered one of the major
driving forces of accelerated skin aging and diseases (Velarde et al., 2012). Engendered by
various sources (such as mitochondrial respiration, UV light exposure, and environmental
pollution), the excessive accumulation of ROS can induce inflammation, cellular senescence,
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and aging in the skin (Sies et al., 2017). Skin rejuvenation, as an
attempt to reverse the visible signs of aging, involves protection from
OS (Yang et al., 2020).

Overall, the skin contains approximately 20 different types of cells
(e.g., keratinocytes, melanocytes, Langerhans cells, fibroblasts, and
others) which are constantly replenished by various stem cells
(Blanpain and Fuchs, 2006). Skin stem cells can be further
categorized as epidermal stem cells, hair follicle stem cells, dermal
stem cells, and sebaceous gland stem cells (Zouboulis et al., 2008).
Despite the tiny proportion they constitute (1%–10% in the basal layer
of the epidermis and 0.3% of dermal foreskin fibroblasts), stem cells
are highly valued for their self-renewal potential (Niemann and Watt,
2002). Findings from studies have shown the depletion of stem cells
during aging (Youn et al., 2004; Aleemardani et al., 2021).

Well known for their beneficial effects on wound healing and
skin rejuvenation, skin stem cell-based therapy is being investigated
extensively (Dahl, 2012). For example, adipose-derived stem cells
(ADSCs) are frequently used in regenerative medicine owing to their
extensive paracrine activity, role in angiogenesis and immune
modulation, and anti-oxidative potential (Kusuma et al., 2017). In
this paper, we review the relationship between OS exposure-related
skin aging and the role of stem cells, with an aim to provide novel
strategies.

2 Mechanisms underlying skin aging

2.1 Skin aging

As the largest and one of the most complex organs, the skin
primarily comprises three parts: epidermis, dermis, and subcutaneous
tissue (Campbell et al., 2004). The epidermal layer is further divided
into cornified, granular, spinous, and basal layers and contains
keratinocytes (accounting for approximately 95% of all cells),
melanocytes, and Langerhans cells (Eckhart and Zeeuwen, 2018).
Connected by the dermal-epidermal junction, the dermis is mostly
composed of fibroblasts and their secretory protein, the extracellular
matrix (ECM). According to a single-cell analysis led by Zou et al., the
inactivation of HES1 in fibroblasts and KLF6 in keratinocytes can
cause cellular senescence (Zou et al., 2021). The reduction of physical
interaction between fibroblasts and keratinocytes is suggested to be
associated with the impairment of epidermal stem cell maintenance in
aged skin (Gruber et al., 2020). Adipocytes are localized to the
subcutaneous tissue (Author Anonyms, 2017). Both intrinsic and
extrinsic aging leads to changes in all three layers (especially the
former two).

Intrinsic aging is a normal physiological process regulated by
various genetic factors. It is characterized by thinning, dryness, laxity,
fine wrinkles, decreased elasticity, increased brittleness, and
susceptibility to several skin disorders such as fibroma mole and
seborrheic keratosis (Lavker et al., 1986; Gilchrest, 1989; Gu et al.,
2020). Histologically, keratinocytes proliferate at a slow pace and
become less active, and the number of epidermal stem cells reduces
(Gu et al., 2020). Meanwhile, cytoheterogeneity is more frequent in the
basal region with lost polarity (Brégégère et al., 2003). The interface
between the epidermis and dermis flattens, making the skin less
tolerant to shearing forces (Lavker et al., 1987). Underneath, the
decreased activity of fibroblasts is observed with the reduced
production of collagen and elastin.

Long-term exposure to noxious pollutants (such as ozone,
particulate matter, and cigarette smoke), ultraviolet radiation
(UVR), and an unhealthy lifestyle accelerate skin aging (Burke,
2018; Pecorelli et al., 2019). Among them, UVR is the most
common cause of photoaging and the primary reason for extrinsic
aging (Cavinato and Jansen-Dürr, 2017). Unlike intrinsic aging,
photoaging is characterized by pachulosis, thickness, laxity, deep
and thick wrinkle formation, hyperpigmentation, telangiectasis, and
a higher risk of malignancy (Gu et al., 2020). Histologically, one of the
most prominent characteristics is the accumulation of amorphous
elastic fibers and disordered collagen formation (Varani et al., 2004).
Other typical changes include the flattening of endothelial cells,
dilation of remaining skin vessels, and the redistribution of skin
adipose (Hughes et al., 2004).

2.2 Involvement of OS in skin aging

The mechanisms underlying skin aging involve cellular,
molecular, and genetic changes. Among them, OS is usually
considered as the core influencing factor, exerting a key role in
both intrinsic aging and photoaging (during which the effect is
strengthened) through multiple signaling pathways and subsequent
structural remodeling (Figure 1) (Bocheva et al., 2019; Prasanth et al.,
2019).

OS results from redox imbalances, which involve ROS
accumulation and antioxidant effect suppression (Birch-Machin
and Bowman, 2016). Superoxide anion, hydrogen peroxide, the
highly active hydroxyl radical, lipid peroxides, and nitrogen oxides
are common ROS present in the body (Mailloux, 2015). They are
derived from both intrinsic (e.g., electron transport chain, reactions by
oxidases) and extrinsic (e.g., UVR, PM2.5) sources. Excessive ROS can
directly damage the cellular structure and function, mediate
inflammatory responses, and impair genetic components, leading to
skin aging (Kammeyer and Luiten, 2015). As a key regulatory target in
ROS-induced skin aging, matrix metalloproteinases (MMPs) mediate
the degradation of the different components of the ECM (collagen in
particular) (Quan et al., 2009). The synthesis of MMPs is stimulated by
ROS through the mitogen-activated protein kinase (MAPK) signaling
pathway, in which extracellular signal-regulated kinase (ERK), p38,
and c-Jun N-terminal kinase (JNK) are common members. The
transcription factor, activator protein 1 (AP-1), is then induced
and regulates the transcription of MMP-1, MMP-3, MMP-9, and
MMP-12 (Shaulian and Karin, 2002). Nuclear factor-κB (NF-κB),
another transcription factor, is also activated and mediates the
responses to UVR and photoaging by regulating inflammation and
MMP expression (Wang et al., 2019a). Thus, MMPs can be modulated
by both AP-1 and NF-κB, which makes it a major effector. Another
signaling pathway in which MMP is involved in skin aging is the
transforming growth factor beta (TGF-β)/Smad pathway, which is
impaired upon the downregulation of TβRII expression (partially
induced by AP-1) and leads to the reduced production of type I
collagen (Quan et al., 2004; Kim et al., 2012).

In the skin, MMPs are primarily secreted by dermal fibroblasts,
whereas epidermal keratinocytes are considered the major source of
cytokines (Ansel et al., 1990). The expression of MMPs increases in
aged skin owing to OS and relative signaling pathways, and tissue
inhibitors of metalloproteinases (TIMPs) decrease the level of MMPs
(Nagase et al., 2006). Several factors have been reported to fuel ROS-
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induced aging through upregulated MMPs (Lee et al., 2021a). For
example, MMP-9 expression elevation is linked to increased tumor
necrosis factor alpha (TNF-α) expression via NF-kB, AP-1, hypoxia-
inducible factor 1 alpha (HIF-1α), and nuclear factor erythroid 2-
related factor 2 (Nrf2) (Holvoet et al., 2003). The accumulation of
cysteine-rich protein 61 (CCN1), another cytokine, stimulates the
production of MMP1 while downregulating TGF-β type-II receptor,
thereby hindering ECM homeostasis during aging (Quan et al., 2011).
MMP1 expression can also be enhanced by environmental stressors
(e.g., tobacco smoke) via the activation of the aryl hydrocarbon
receptor (AhR) signaling pathway (Ono et al., 2013).

The over-production of ROS accelerates skin aging. The
mitochondria are considered the major source of cellular OS.
Endogenous ROS is constantly produced as the byproduct of
oxidative phosphorylation in the mitochondrion (Mailloux, 2015).
Meanwhile, chronic exposure to UVR also generates ROS, besides
increasing nicotinamide adenine dinucleotide phosphate (NADPH)
production (Fuller, 2019). During skin aging, ROS also causes damage
by inducing mitochondrial dysfunction. Singh et al. revealed that the
loss of mtDNA homeostasis is responsible for causing skin wrinkles
(Singh et al., 2018). This finding was supported by Umbayev et al. The
authors showed a reduction in fibroblast mitochondrial abundance
and mtDNA copy number as well as enhanced mtDNA damage in
aged skin (Wei et al., 2016; Umbayev et al., 2020). Besides mtDNA,
other evidence indicates associations between the mitochondrial redox
imbalance and Nrf2 expression. Jinapath et al. confirmed the
preventive role of mitochondria-targeted H2S delivery in the
mouse skin in vivo through Nrf2 activation (Lohakul et al., 2022).
The activation of NRF1/NRF2 transcription was also observed in α-
L-hexaguluroic acid hexasodium salt-treated HaCaT cells with
improved mitochondrial energy metabolism, and subsequently, the

increased expression of MMP and silent information regulator 1
(SIRT1) was also observed (Li et al., 2020a). Similar results were
noted in HaCaT cells treated with D-tetramannuronic acid
tetrasodium salt (Li et al., 2020b). Moreover, the mitochondrial
redox imbalance induces JunB proto-oncogene (JunB) expression,
causing fibroblast senescence through p16 upregulation and type
1 insulin-like growth factor (IGF-1) downregulation and eventually
leading to skin atrophy via the disruption of stem cell niches (Maity
et al., 2021).

2.3 Antioxidants in skin aging

In the past 5 years, several hundred preclinical and clinical studies
have shown that the application of antioxidants inhibits skin aging.
Herein, we discuss findings from some of the related studies about
antioxidants used in treating skin aging to identify potential
treatments (Table 1). The anti-aging effect of plant extracts and
dietary supplementation has been widely investigated. Additionally,
antioxidants extracted from humans and other animals were also
shown to be ROS-antagonistic.

First, antioxidants alleviate skin aging by attenuating OS activity
and protecting mitochondrial function. For example, citrus sinensis
peel extract (CSPE) nanoformulation (Amer et al., 2021), extracts and
bioactive compounds derived from seaweed (Pangestuti et al., 2021),
and atractyligenin (Xuan et al., 2019) were reported to suppress ROS
by activating the MAPK pathway. As such, CSPE nanoformulations
(Amer et al., 2021), BlendE, BlendIP (Namkoong et al., 2018), and
tannic acid (Daré et al., 2020) are associated with either an increase in
antioxidative enzyme expression or a decrease in ROS generation.
Second, the regulation of inflammatory responses is beneficial to anti-

FIGURE 1
Schematicmodel of themechanisms of ROS-related skin aging. ROS are generated from various intrinsic (e g., electron transport chain, various oxidases)
and extrinsic sources (e.g., UVR, PM2.5). Overproduction of ROS can lead to upregulated MMP expression and inflammation and suppressed collagen
synthesis via mitochondrial dysfunction and activation of MAPK and TGF-β signaling pathways. Antioxidants and TIMP can ameliorate ROS production, thus
delaying skin aging.
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TABLE 1 Antioxidants in skin aging.

Antioxidants Anti-ROS activity Mechanism of anti-ROS
activity and others

References

Plant extracts Artesunate Anti-ROS Increased β-catenin expression Tian et al. (2021)

Mixture of marigold and rosemary extracts Anti-ROS, anti-inflammation Suppression of IL and TNF-α
expression, removal of ROS by the
restoration of antioxidative enzymes
such as SOD, CAT, and GPx

Auh and Madhavan,
(2021)

CSPE nanoformulation Anti-ROS, anti-inflammation Downregulation of the mRNA
expression of MMP1 via the MAPK/
C-JNK pathway, increase in collagen
and SOD levels, decrease in PGE2,
COX2, JNK, MDA and elastin levels

Amer et al. (2021)

Hydroxytyrosol from olive fruits Anti-ROS, anti-DNA damage Inhibition of the formation of 8-
dihydroxy-2′-deoxyguanosine (8-
OHdG), activation of PCNA, reduction
of MMP mRNA expression

Avola et al. (2019)

Fucoidan isolated from Hizikia fusiforme Anti-ROS, anti-melanogenesis Regulation of the ERK–MAPK
(extracellular signal regulated kinase-
mitogen activated protein kinase)
pathway

Wang et al. (2020a)

Extracts and bioactive compounds derived
from seaweeds

Anti-ROS, anti-inflammation,
anti-apoptosis

Inhibition of AP-1 and NF-κB
expression

Pangestuti et al. (2021)

Low molecular-weight fucoidan Anti-ROS, anti-inflammation Inhibition of the MAPK pathway Kim et al. (2018)

BlendE, BlendIP Anti-ROS, epigenetic
modulation

Stimulation of SOD gene expression,
modulation of microRNA expression

Namkoong et al. (2018)

Atractyligenin Anti-ROS Inhibition of MAPK pathway,
attenuation of c-Fos and c-Jun
expression

Xuan et al. (2019)

BLF Anti-ROS, anti-inflammation Regulation of MAPK and autophagy
signaling

Gu et al. (2022)

EGA and DHM Anti-ROS, anti-inflammation Possible activation of both TGF-β1 and
Wnt signaling pathways

Moon et al. (2018)

AGE Anti-ROS, anti-inflammation Regulation of MAPK/AP-1, NF-κB, and
TGFβ/Smad signaling pathways

Jin et al. (2021)

Salvia haenkei Anti-ROS Reduction of IL1α release and ROS
generation

Cocetta et al. (2021)

Hydrangea serrata (Thunb.) Ser. Extract Anti-ROS Inhibit AP-1, STAT1, and MAPK
signaling pathways

Han et al. (2019)

Ursolic Acid Anti-ROS, anti-inflammation,
anti-apoptosis

Inhibition of TNF-α-induced MMP
activation, suppression of
p53 production

Samivel et al. (2020)

(-)-Loliolide isolated from Sargassum horneri Anti-ROS, anti-inflammation Suppression of NF-κB and MAPK
signaling proteins, downregulation pro-
inflammatory cytokines (IL-1β, 6, 8, 33,
and TNF-α)

Fernando et al. (2021)

Tannic acid Anti-ROS Inhibition of ROS production and
NADPH oxidase activation

Daré et al. (2020)

Resveratrol Anti-ROS, anti-inflammation,
anti-apoptosis

Inhibition of MAPK and COX-2
signaling pathways, promotion of the
Nrf2 signaling pathway, inhibition of
caspase activation, upregulation VEGF-
B expression

Cui et al. (2022)

Diphlorethohydroxycarmalol isolated from
Ishige okamurae

Anti-ROS Regulation of NF-κB, AP-1, and MAPK
signaling pathways

Wang et al. (2020b)

Dietary
supplementation

Ergothioneine Anti-ROS Inhibition of the AP-1 pathway and
activation of the ARE/Nrf2 pathways

Hseu et al. (2020)

(Continued on following page)
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aging therapy, such as that with a mixture of marigold and rosemary
extracts, CSPE nanoformulation (Amer et al., 2021), bamboo leaf
flavonoids (BLF) (Gu et al., 2022), and ursolic acid (Samivel et al.,
2020). The level of cytokines is reduced, and other signaling pathways,
such as TGF-β and hedgehog signaling pathways, are involved. Third,
antioxidant systems exert protective effects on DNA (hydroxytyrosol
from olive fruit (Avola et al., 2019)), inhibit apoptosis (ursolic acid
(Samivel et al., 2020), resveratrol (Cui et al., 2022)), and promote
autophagy (caffeine (Li et al., 2018)).

3 Anti-aging effect of stem cells

Stem cells are generally considered powerful candidates in
regenerative medicine for combatting skin aging. The disrupted
homeostasis and subsequent regulation of ROS activity are
considered to be associated with skin aging. Several factors
affecting the number, status, and differentiation of stem cells
participate in skin aging. Laminins are considered potential anti-
aging targets because of their regulatory effects in stem cells. For
instance, laminin-332 was confirmed to be responsible for the proper
differentiation of interfollicular epidermal stem cells, and the loss of
laminin-511 expression results in the reduction of epidermal stem/
progenitor cell generation (Yamada et al., 2018; Iriyama et al., 2020).
Collagen XVII (COL17A1) showed differential expression in
epidermal stem cells in response to genomic or oxidative stress,
driving stem cell competition through symmetric cell division.
Clones expressing low levels of COL17A1 were eliminated, which
promoted skin aging via the depletion of adjacent melanocytes and
fibroblasts. Meanwhile, the forced maintenance of COL17A1 showed

anti-aging potential (Liu et al., 2019). Besides, the crucial role of
nuclear receptor interacting protein 1 (Nrip1) in aging was proposed
by Hu et al. Skin aging was indicated to be delayed with the reduced
expression of senescence-associated (p21 and p53), inflammation-
associated (p65, IL6, and IL-1α), and growth factor-associated
(mTOR, Igf1) genes under Nrip1 knockout in ADMSCs (Hu et al.,
2021). The disruption of circadian clock activity through
BMAL1 depletion is linked to the increased differentiation of
interfollicular epidermal stem cells (IFESCs) in arrhythmic,
prematurely aging mice (Welz et al., 2019).

The anti-aging effect of stem cells (including its derivatives) is
closely related to their anti-ROS potential, with MAPK and TGF-β
signaling pathways (which regulate MMP expression and ECM
synthesis) as potential junctions. For example, ADSC-CM was
found to prevent photoaging and down-regulate ROS activity
through the modulation of the MAPKs/AP-1/NF-κB signaling
pathway, with the suppressed expression of MMP-1 and IL-6 and
elevated level of antioxidant phase II gene heme oxygenase-1 (HO-1)
(Li et al., 2019). Meanwhile, TGF-β and Smad expression was
recovered after perturbation by UVB (Li et al., 2019). Additionally,
the activation of the NF-κB pathway was also observed in another
study conducted by Hwang et al. MMP expression and ROS
production were ameliorated in the treatment group (with neural
stem cell-conditioned medium (NSC-CM) and its secreted factors
TIMP-1 and TIMP-2) (Hwang et al., 2019). Moreover, the protective
effect of NSC-CM was demonstrated by the activation of the DNA
repair enzyme Rad50 and subsequent inhibition of γ-H2AX, a DNA
damage marker (Hwang et al., 2019). These results indicate the anti-
aging effect of anti-ROS signaling pathways and their promising
application of stem cell-conditioned medium.

TABLE 1 (Continued) Antioxidants in skin aging.

Antioxidants Anti-ROS activity Mechanism of anti-ROS
activity and others

References

Walnut protein hydrolysates Anti-ROS Modulation of the MAPK/AP-1/MMP-
1 and TGF-β/Smad signaling pathways

Xu et al. (2022)

Caffeine Anti-ROS, autophagy Activation of A2AR/SIRT3/AMPK-
mediated autophagy

Li et al. (2018)

Sulforaphane Anti-ROS Activation of the Keap1-Nrf2 pathway,
macroautophagy/autophagy, and
detoxification pathways

Li et al. (2021); Petkovic
et al. (2021)

Alchemilla mollis Anti-ROS Regulation of transcription factor
NFATc1 and Nrf2/ARE pathways

Hwang et al. (2018)

Green tea catechin Anti-ROS Regulation of NF-κB, AP-1, and MAPK
signaling pathways

Wang et al. (2019b)

Endogenous extracts Melatonin Anti-ROS, anti-inflammation Inhibition of hedgehog signaling and
inflammatory proteins such as NF-κB/
COX-2/ERK/MMP1

Park et al. (2018)

Growth factors-based platelet lysate Anti-ROS Inhibition of the NF-κB signaling
pathway

Li et al. (2022)

Animal extracts Fermented Fish Oil Anti-ROS Blockade of the MAPK/AP-1 pathway Hyun et al. (2019)

Others Hydrolyzed CTP Anti-ROS Anti-ROS, inhibition of glycation Lee et al. (2022)

LAB Anti-ROS Stabilization of mitochondrial function Chen et al. (2022)

30% ethanol extract of EEB Anti-ROS Regulation of MAPK/AP-1 and Smad
pathways

Choi et al. (2021)
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Besides, other processes, such as the regulation of superoxide
dismutase (SOD) expression and fibroblast senescence phenotype by
various types of stem cells and their derivatives, are involved. A
SOD-dependent mechanism and reversed aging phenotype was
suggested by Adam et al., who observed the inhibition of
advanced glycation end product and malondialdehyde (MDA, a
major product generated by oxygen free radicals) generation and
increased SOD expression in their animal model (Zhang et al., 2014;
Surowiecka and Strużyna, 2022). Similarly, the injection of ADSC-
derived exosomes (ADSC-EVs) observably decreased skin wrinkling,
promoted type I collagen synthesis, and suppressed MMP-3
expression (Xu et al., 2020). Evidence from in vivo and in vitro
experiments revealed that ROS production was counteracted with
the increased expression of the antioxidant enzymes SOD-1 and
CAT (Xu et al., 2020). In another experiment led by Deng et al.,
hucMSC-derived extracellular vesicles (hucMSC-EVs) suppressed
photoaging by inhibiting ROS generation, promoting fibroblast
proliferation, and preventing cell cycle arrest, presented with the
upregulation of glutathione peroxidase one and Col-1 and
downregulation of MMP-1 (Deng et al., 2020). In contrast, the

combined use of ADSCs and fractional CO2 laser was shown to
ameliorate skin aging with a decrease in the MDA content through a
SOD-independent pathway (Xu et al., 2014). Xu et al. also observed
the improvement of cell cycle arrest and increased expression of
Wnt3a and β-catenin, which is positively correlated with TGF-β2
and COLI expression (Xu et al., 2014).

Moreover, an adipose tissue extracellular fraction isolated by
Barbara et al. improved skin aging by reducing OS-induced
damage and preventing fibroblast senescence (Bellei et al., 2018). In
this process, a slight induction of SESN1 (a p53-responsive protein
encoding antioxidant modulators of peroxiredoxins) was observed,
indicating the attenuation of ROS (Kopnin et al., 2007; Bellei et al.,
2018). Real-time RT-PCR and ELISA analyses conducted by Choi et al.
revealed the significant suppression of MMP-1, -2, -3, and -9 as well as
the enhanced level of collagen and elastin production under the
treatment of human adipose-derived stem cell extracellular vesicles
(Choi et al., 2019). This was supported by the PCR results reported by
Liang et al., which confirmed the increased mRNA expression of type I
collagen and decreased expression of type III collagen, MMP-1, and
MMP-3 under ADSC-derived exosome treatment (Liang et al., 2020).

TABLE 2 The clinical trials rendering stem cell-based skin rejuvenation.

Study type Interventions/
treatments

Results Side effects and limitations References

An analytic experimental
research

AMSC-CM Significantly better improvement with the
AMSC-CM than with normal saline (NS)
(p < 0.05)

Minor side effects, including erythema for
2 days and urticaria for 3 days; absence of
long-term follow-up

Prakoeswa et al.
(2019)

A double-blind, split-face,
randomized, control study

Protein extracts from medium of
ADSCs via microneedles

Significantly improved skin roughness,
decreased melanin index, increased skin
brightness and elasticity, and reduced
wrinkles

No adverse reaction observed in 12 weeks Wang et al.
(2018)

A non-randomized, non-
blinded study

SVF-enriched fat or expanded
ADSCs or fat plus PRP

No significant advantages with the addition
of PRP, increased inflammatory infiltration
and vascular reactivity

Lack of precise quantification of the changes
induced by the treatments, the use of a
unique volume ratio (fat/PRP = 1:1), non-
randomized study method

Rigotti et al.
(2016)

A split-face comparative study AF-MSC-CM combined with
skin needling

Increased epidermal thickness on both
sides, greater percentage of improvement,
and remodeling of dermal structures on the
combined side

Low number of cases, lack of long-term
follow-up

El-Domyati
et al. (2020)

A randomized controlled trial Orobanche rapum extract Stimulated skin renewal through protection
of skin stem cells and maintenance of skin
microbiota balance

Low number of samples Meunier et al.
(2019)

An analytic experimental
research

Autologous ADSCs De novo formation of elaunin and oxytalan
fibers in the upper papillary dermis,
concomitant with degradation of elastotic
abnormal elastin deposits in the deeper
dermis

No adverse effects observed; limited patient
series

Charles-de-Sá
et al. (2020)

A double-blind, randomized,
vehicle-controlled study

Post-laser treatment with ADSC-
CMs in combination with
niacinamide

Better skin rejuvenation with decreased
levels of pro-inflammatory cytokines and
MMP-1 and MMP-2 expression

The need for further research on each
component of the product, a relatively short
study duration

Lee et al.
(2021b)

A prospective, randomized,
double-blind, split-face,
placebo-controlled study

Red deer mesenchymal stem cell
extract

Significant improvement on both sides The small number of samples Alhaddad et al.
(2019)

A phase one, open-label,
single arm study

SVF (containing ADSCs)-
enriched fat grafts

Data publicly unavailable at present Not specified NCT01828723

A phase 2, randomized,
double-blind study

NutraStem Decreased percentage of CD133+ cells,
slightly decreased percentage of CD34+ cells,
considerably reduced blood level of
C-reactive protein

Not specified NCT01847027
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Simultaneously, TIMP-1 and TGF-β1 were upregulated, which aided
the recovery of photo-damaged dermal fibroblasts (Choi et al., 2019).

4 Stem cell-based anti-aging treatments

4.1 Summary of findings from current clinical
trials

Stem cells have shown great potential in skin rejuvenation.
Associated treatments include stem cell transplantation and the use
of derivatives such as conditioned medium and extracellular vesicles.
As a common type of stem cell, mesenchymal stem cells (MSCs) are an
essential source for skin rejuvenation and can be categorized into
several subpopulations, such as amniotic membrane stem cells
(AMSCs), ADSCs, human umbilical cord MSCs (hucMSCs), bone
marrow stem cells, and human induced pluripotent stem cells (iPSCs)
(Charles-de-Sá et al., 2020). Several clinical trials have been conducted
or are underway to address the safety, feasibility, and efficacy of stem
cell-based therapeutics to improve skin aging in humans (Table 2).
Although some study reports have not yet been published, various
clinical trials have evidenced the safety and efficacy of MSCs in this
regard.

AMSCs are easily obtainable and exhibit low immunogenicity.
Also, they secrete several growth factors and cytokines, which can
improve collagen synthesis and the proliferation and migration of
fibroblasts and keratinocytes (Harrell et al., 2019). Recently, a study on
48 women aged between 41 and 60 years revealed that AMSC-
conditioned medium (AMSC-CM) yields significantly lower scores
in pore, wrinkle, spot polarized, and spot UV compared to the control
group (Prakoeswa et al., 2019). Microneedling was used to enhance the
penetration of AMSC-CM. Likewise, the administration of AF-MSC-
CM combined with skin needling considerably improved the skin
texture, increased collagen and elastic fiber production, and supported
the management of facial aging (El-Domyati et al., 2020). According to
single-cell profiles, compared with bone marrow stem cells, ADSCs are
less heterogenous and less dependent on mitochondrial respiration for
energy production, indicating better stemness maintenance and
resistance against apoptosis (Zhou et al., 2019).

Evaluation of the potential therapeutic merits of protein extracts
(such as IL-6, IL-8, and TGF-β) from ADSCs in 30 Chinese female
volunteers showed that, compared with the control group, the
intervention group exhibited a considerable improvement in skin
roughness, a decreased melanin index, increased skin brightness
and elasticity, and reduced wrinkle formation (Wang et al., 2018).
Also, an analytical clinical trial of 20 healthy participants (16 women
and four men) confirmed the safety and efficacy of autologous ADSC
injection in the 3-to-4-month follow-up, as shown by the complete
regeneration of solar elastosis (Charles-de-Sá et al., 2020). Further, the
remodeling of elaunin and oxytalan fibers in the upper papillary
dermis, concomitant with the degradation of elastotic abnormal
elastin deposits in the deeper dermis, was observed in the
harvested skin samples. Interestingly, an increased level of
cathepsin K and MMP-12 and expanded M2 macrophage
infiltration were also observed in the post-treatment skin tissues,
indicating elastinolysis and the potential anti-inflammatory effects
(Charles-de-Sá et al., 2020). Additionally, the application of ADSC-
CM (which contains multiple anti-inflammatory cytokines, growth
factors, and ECM-regulating molecules) in combination with

niacinamide resulted in a statistically more drastic improvement of
wrinkles and skin pigmentation in patients post-laser therapy (Lee
et al., 2021b).

Moreover, the results of the in vitro analysis suggested the
upregulation of type I collagen and decreased pro-inflammatory
cytokine, MMP-1, and MMP-2 expression in a dose-dependent
manner (Lee et al., 2021b). To compare the regenerative effects of
platelet-rich plasma (PRP) injection and ADSCs, 13 patients were
injected with stromal vascular fraction (SVF)-enriched fat, expanded
adipose-derived stem cells, or fat plus PRP (Rigotti et al., 2016). In
addition to findings from their previous study, Gino et al. showed the
revearsal of aging in collagen and elastin morphology (Charles-de-Sá
et al., 2015; Cohen, 2016). However, the addition of PRP led to no
significant advantages but increased inflammatory infiltration and
vascular reactivity (Rigotti et al., 2016).

Red deer mesenchymal stem cell extract, another source of stem
cells, also showed the ability to rejuvenate aging facial skin with
acceptable safety and feasibility (Alhaddad et al., 2019). Besides,
some forms of skin rejuvenation occur along with an increase in the
level of stem cells. For example, O. rapum extract was demonstrated
to reactivate skin renewal via the protection of skin stem cells and
maintenance of skin microbiota balance (Meunier et al., 2019).
While the level of peripheral CD34+ and CD133+ stem cells failed
to increase under the treatment of NutraStem® in combination with
an exercise stimulus, a relative restorative potential and anti-
oxidative effect was implied. In addition, no severe side effects
were observed among the treated groups, which indicated the
safety and feasibility of stem cell-based therapy. The common
limitations of such studies include the small sample size and lack
of long-term follow-up.

4.2 Promising applications of nano-materials:
Nanofat and stem cell-derived extracellular
vesicles

As mentioned above, skin aging is an extremely complex process
that is primarily induced by OS and other intrinsic and environmental
factors. In this process, stem cell homeostasis exhibits significant anti-
ROS potential in delaying the aging process. The primary goal of skin
rejuvenation is to help prevent serious diseases related to skin aging
(such as skin cancers) as well as tomeet the psychological and aesthetic
needs of patients.

Classic options include plastic surgeries, infrared therapy, topical
medication (i.e., lotions, injections, and fillers), and dietary
supplements (Tsai and Hamblin, 2017; Wang et al., 2020c;
Geahchan et al., 2022). Although some of them have been
confirmed to be effective, many patients undergoing these
treatments complain of limited improvement and lengthy
therapeutic cycles. Thus, the development of novel technologies is
required. Nanosized ingredients offer enormous advantages, such as
better permeation across skin layers, to mediate the intended anti-
aging effects (Bhatia et al., 2022). Here, we will discuss the
development of combined nanotechnology with stem cells over the
last decade, with an aim of providing a useful framework of stem cell-
related nano-products.

Generally, nanofat and stem cell (especially ADSC)-derived
extracellular vesicles (EVs) (primarily exosomes) are the two core
components used. With respect to nanofat, single grafting as well as
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integrated use with other techniques such as microneedling were
invented. When the dimensions are 400–600 μm or less, nanofats
include micro-fragmented adipose tissue-containing matrix, stromal
vascular cells, and free fatty acids. This can be easily obtained through
emulsification and injected through a 27-gauge needle or smaller
needle, which is considered an in vivo tissue-engineering treatment
(Cohen et al., 2017). As adipocytes cannot survive the isolation
process, enhanced stem cell activity is probably a major effect.

For example, the enrichment of ADSCs in nanofat samples was
observed by Patrick et al. The subsequent 67 cases treated with nanofat
grafting reported improved skin quality with reduced rhytides and
pigmentation (Tonnard et al., 2013). Similarly, the combined use of
microfat and nanofat grafting yielded satisfactory results in lower
eyelid dark circles, indicating the stem cell-like activity of nanofat as
potential therapy for skin rejuvenation (Oh et al., 2014). The nanofat
group exhibited significantly improved facial soft tissue depression
and skin texture as well as an overall satisfaction rate above 90% (Wei
et al., 2017). Nanofat-derived stem cells, which show enhanced
proliferation and adipogenic differentiation induced by platelet-rich
fibrin, functioned similarly to MSCs and shared many of the biological
characteristics, such as high levels of CD29, CD44, CD49days, CD54,
CD90, and CD105 expression and low levels of CD34, CD45, and
CD106 expression (Wei et al., 2017). While microneedling alone
requires repeated treatment, its incorporation with nanofat yielded
a more lasting anti-aging effect (Verpaele et al., 2019).

The second strategy used for stem cell-derived EV treatment
refers to delivery and regulation through nanosized vesicles.
Common sources include human umbilical cord mesenchymal
stem cells, ADSCs, and iPSCs. EVs are lipid-bilayer carriers (such
as exosomes, microvesicles, and apoptotic bodies) containing
proteins, lipids, RNAs, and DNAs, responsible for intercellular
communication (Théry et al., 2018). As a major subtype of EVs,
exosomes are nanoparticles with a diameter of 40–150 nm, known
for their ability to deliver not only numerous proteins (e.g., enzymes,
cytokines, and transcription factors) but also nucleic acids (especially
miRNAs) (Cha et al., 2020). Therefore, stem cell-derived exosomes
have shown great potential in skin aging treatment by enhancing
fibroblast proliferation and bioactivity, reducing ROS and
inflammation, upregulating collagen expression, and
downregulating MMP expression. For example, the treatment of
exosomes derived from hucMSCs (hucMSC-ex) promoted H2O2

detoxification, repressed DNA damage, and inhibited apoptosis,
leading to the attenuation of skin redness, scaling, and
inflammatory cell infiltration. Additionally, the cytoprotective
effects of hucMSC-ex-derived 14-3-3ζ protein might be associated
with the modulation of the antioxidant SIRT1-dependent pathway
(Wu et al., 2021). Besides, the anti-aging effect of hucMSC-ex can be
strengthened through combination with the marine sponge
Haliclona sp. Spicules (SHSs) (Zhang et al., 2020), which resulted
in the promotion of HDF proliferation, reduction in the proportion
of senescent cells, and rebuilding of the dermal ECM (Zhang et al.,
2020). Similarities with remodeled ECM are visible in corneal
stromal cells treated with ADSC-derived exosomes (Shen et al.,
2018). Besides, Oh et al. reported the suppression of SA-β-Gal
and MMP-1/3 and restored type I collagen expression in
senescent HDFs treated with exosomes derived from human
iPSCs (iPSCs-Exo) (Oh et al., 2018).

Recently, a novel bioinspired approach, cell-engineered
nanovesicles (CENVs), with diameters less than 150 nm, was

proposed for treating issues like the inhibited production of
exosomes while maintaining similar characteristics. In addition
to the above changes, iPSC-CENV also inhibited the elevation of
p53 and p21 expression, indicating the potential modulation of
cell cycle arrest, apoptosis, and cellular senescence (Lee et al.,
2020).

5 Discussion

As the human life span extends, the need of people for anti-aging
treatment increases. As the direct manifestation of aging, skin aging is
a major concern for health-related and aesthetic reasons. It is caused
by a joint attack by genetic and environmental factors and can lead to
consequences such as elevated risks of injuries, infection, impaired
wound healing, and cancer. Thus, it is important to identify methods
to delay skin aging.

Chronological and extrinsic skin aging exhibit distinct
differences in clinical indicators but involve similar regulatory
pathways. In the past few years, numerous studies have been
conducted in the field of skin rejuvenation, and some have
achieved promising results. OS is considered to initiate skin
aging. The overproduction of ROS can induce mitochondrial
dysfunction, inflammation, DNA damage and ECM alteration
via the activation of MAPK and TGF-β signaling pathways,
leading to the upregulation of MMP expression and suppression
of collagen synthesis. Antioxidants, including dietary supplements
and extracts from plants and animals, ameliorate ROS production,
and their therapeutic effects have been confirmed in animal
models. Owing to their convenience, easy accessibility and
portability, and relatively lower prices, antioxidants are
considered as potential treatments. This also led us to determine
whether the use of antioxidants from an early age can reduce or
prevent further harm. The ingredients need to be used for extended
periods to ensure visible improvement and may require lifetime
intake/application. Meanwhile, their safety and anti-aging effects
need further confirmation.

Stem cell-based treatment has shown great potential in skin
rejuvenation and regenerative medicine, as evidenced by findings
from several clinical trials. Stem cells such as ADSCs protect cells
from oxidative damage by secreting growth factors (such as HGF and
VEGF), cytokines such as IL-6 (through the promotion of
STAT3 and Nrf2 expression), and antioxidant enzymes (eg. GPx,
SOD, and catalase). Protective factors such as laminins, COL17A1,
Nrip1, and BAML1 participate in skin aging by promoting stem cell
homeostasis. Therefore, it is likely that these factors can serve as anti-
aging targets. In addition, the recent progressive application of stem
cell-based nanotechnologies has provided insights on this issue.
Physical and histological therapeutic effects were observed in
nanofat grafting and exosomes derived from stem cells, some of
these therapeutic effects were observed in human. Skin rejuvenation
yields more significant effects in a shorter time span. However, many
of the procedures are invasive and can only be performed at certain
qualified facilities. Besides, challenges involving healthcare
regulatory issues, poor survival of administered cells, and the risk
of biological contamination are present. Furthermore, a cell-free
system, such as the sustained release of adipose collagen fragments,
has been suggested to overcome the disadvantages of stem cell
treatment. Based on the minor complications reported, the safety
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and feasibility of stem cell-based therapy need to be confirmed in a
larger population.
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