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The limitations of conventional pesticides have raised the demand for

innovative and sustainable solutions for plant protection. RNA Interference

(RNAi) triggered by dsRNA has evolved as a promising strategy to control

insects in a species-specific manner. In this context, we review the methods

for mass production of dsRNA, the approaches of exogenous application of

dsRNA in the field, and the fate of dsRNA after application. Additionally, we

describe the opportunities and challenges of using nanoparticles as dsRNA

carriers to control insects. Furthermore, we provide future directions to

improve pest management efficiency by utilizing the synergistic effects of

multiple target genes. Meanwhile, the establishment of a standardized

framework for assessment and regulatory consensus is critical to the

commercialization of RNA pesticides.
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1 Introduction

Insects cause up to 40% of the loss of crops worldwide every year and food security has

always been the primary issue facing human survival and development. To meet the

increasing demands of a growing world population, chemical pesticides have been widely

used to reduce damages caused by pests and improve the quality and yield of products.

However, the frequent use of pesticides has led to an increase in pesticide resistance and

raised public concerns about its adverse effects on the environment and human health

(Rank and Koch, 2021; Tudi et al., 2021). Therefore, it is necessary to explore innovative

and sustainable approaches to protect crops.

RNA interference (RNAi), a highly conserved sequence-specific method of inhibiting

a targeted gene’s expression, emerges as a practical technology to control insects in a

species-specific manner. Although the transgenic maize SmartStax® Pro that is engineered
to express dsRNA targeting Diabrotica virgifera virgifera Dvsnf7 was approved in Canada

(2016) and the United States (2017) (Head et al., 2017), RNAi-based transgenic plants face

great constraints due to the public concerns about the safety of the transgenic plants and

the shortage of genetic transformation technology in some crops (Rank and Koch, 2021;
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Touzdjian Pinheiro Kohlrausch Tavora et al., 2022).

Alternatively, RNAi-based non-transgenic products can be

applied exogenously and are expected to reach global markets

soon. In the context, we introduce the cost-effective method for

mass production of dsRNA as well as the non-transgenic dsRNA

delivery approaches. Also, we introduce what the exogenously

applied dsRNA would experience before triggering insect RNAi

responses.

2 dsRNA production

Although field experimentation is still lacking, approximately

2–10 g of dsRNA per hectare is predicted to be needed for crop

protection (Zotti et al., 2018). The usage of dsRNA for crop

protection depends on the development of cost-effective methods

for the mass production of dsRNA. Recently, in vivo production

systems with engineered microorganisms as well as in vitro

synthesis strategies with RNA polymerase allow large-scale

dsRNA production (Table 1; Figure 1).

2.1 Escherichia coli

To date, the majority of studies have used E. coli strains,

especially the RNaseIII-deficient E. coli HT115/DE3, to produce

dsRNA under the control of an inducible T7 promoter. Initially,

the recombinant E. coli was engineered for dsRNA production

and fed to Spodoptera exigua to evoke RNAi (Tian et al., 2009).

Subsequently, ingestion of either live or heat-killed E. coli strains

expressing dsRNA has been proven to successfully trigger RNAi

responses in many insect species such as Bactrocera dorsalis (Li

et al., 2011), Aedes aegypti (Whyard et al., 2015), Leptinotarsa

decemlineata (Xu et al., 2019), Maruca vitrata (Al Baki et al.,

2020), and Nylanderia fulva (Meng et al., 2020).

The yields of dsRNA are correlated with the expression

plasmid and E. coli strains. Vectors used to express dsRNA

contain either single or dual T7 promoters and the construct

harboring a single T7 promoter (such as pGEM-T and pET28a/

22b) appears to produce higher yields of dsRNA than that

harboring dual T7 promoters (such as pL4440) (Yin et al.,

2009; Ma et al., 2020). It is likely the consumed energy during

transcription may differ between single and dual T7 promoters.

In addition, RNA transcribed from a single T7 promoter contains

two inverted complementary strands flanked by a loop that may

be readily annealed; while dual T7 promoters allow bi-directional

transcription of the insert and the transcribed ssRNA may be

easily degraded by the RNA endonucleases before forming

dsRNA. Notably, the yield of dsRNA is also affected by the

host strains. For example, dsRNA produced by the RNaseIII-

deficient strains of M-JM109 and M-JM109lacY is higher than

that produced by HT115 (DE3) strains (Yin et al., 2009).

Interestingly, pET28-BL21 (DE3) RNase III- system yields

higher quantities of dsRNA than the pET28-HT115 (DE3)

system, while the L4440-BL21 (DE3) RNase III-system has

lower dsRNA expression efficiency than L4440-HT115 (DE3)

(Ma et al., 2020). The inconsistent dsRNA expression efficiency

may be due to the sub-optimal conditions for dsRNA production

and optimizing the nutrition and fermentation approaches will

improve dsRNA synthesis efficiency (Guan et al., 2021; Nwokeoji

et al., 2022).

Although IPTG is a popular reagent for the induction of

dsRNA expression in the vector systems harboring T7 promoter,

the cost and the toxicity of IPTG should be taken into

consideration (Dvorak et al., 2015). Currently, lactose and

skimmed milk have been used to substitute IPTG for dsRNA

production (Papic et al., 2018; Khani and Bagheri, 2020;

Delgado-Martin and Velasco, 2021; Nwokeoji et al., 2022).

These cheap and natural materials will have great potential in

the scalable production of dsRNA. In addition, the utilization of a

TABLE 1 The advantages and disadvantages of the dsRNA production system.

dsRNA
production
system

Application
formulations

Advantages Disadvantages

E.coli Recombinant strains;
purified dsRNA

Easy to genetically manipulate; Mature fermentation
systems

May yield poor-quality dsRNA duplexes with errors; Cause
environmental issues when applying the recombinant
strains to the filed

Symbiotic bacteria Strains Use the host pests to express dsRNA; Can be used
directly without dsRNA isolation; Can be spread to the
colony horizontally and vertically

Hard to isolate symbiotic bacteria; Hard to stably re-
colonize the symbiotic bacteria; Hard to obtain RNaseIII-
deficient dsRNA-expressing symbiotic strains

Yeast Strains Non-toxic to humans; Can be used directly without
dsRNA isolation; Easy to genetically manipulate; Mature
fermentation systems

May yield poor-quality dsRNA duplexes with errors

Bacteriophage Purified dsRNA Do not need error-prone hybridization processes Need multiple expression cassettes/elements to express
dsRNA

Cell-free production
platform

Purified dsRNA High purity Need multiple robust enzymes
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constitutive expression system can be another approach to

express dsRNA without the addition of inducers (Delgado-

Martin and Velasco, 2021).

2.2 Symbiotic bacteria

Symbiotic bacteria wildly exist in the gut of insects and

utilizing symbiotic bacteria to express dsRNA is a promising

strategy. Whitten, et al. (2016) genetically engineered the

symbiotic bacteria R. rhodnii and BFo2 that were isolated

from the gut of Rhodnius prolixus and Frankliniella

occidentalis respectively to generate RNase III–deficient,

dsRNA-expressing strains. Upon ingestion, the engineered

strains could successfully colonize and persist in the insect,

allowing the constitutive synthesis of dsRNA to evoke effective

RNAi responses in insects (Whitten et al., 2016). In Apis

mellifera, the engineered gut bacterium Snodgrassella alvi

could stably recolonize bees and produce dsRNA to protect

bees from mites and viral challenges (Leonard et al., 2020).

Interestingly, the symbiotic bacteria in R. rhodnii can be

horizontally spread to other individuals via the feces (Whitten

et al., 2016), while the symbiotic bacteria Serratia isolated from

Anopheles stephensi ovaries can be sexually transmitted from

males to females and spread to the offspring from one generation

to the next (Wang et al., 2017). Horizontal and vertical spread of

symbiotic bacteria enable efficient dissemination of dsRNA-

producing strains throughout insect populations, thereby

enhancing symbiotic-mediated RNAi persistence and

efficiency. Notably, it would be challenging to isolate and

stably re-colonize the appropriate symbiotic bacteria in

insects. In addition, there may be technical bottlenecks in

generating RNaseIII-deficient dsRNA-expressing symbiotic

strains.

2.3 Yeast

Saccharomyces cerevisiae (baker’s yeast) is non-toxic to

humans and widely used as a dietary supplement. Its ease of

genetic manipulation and lack of RNAi machinery make it a

novel and ideal system to express and accumulate dsRNA

(Drinnenberg et al., 2009; Stewart et al., 2020). Several studies

have confirmed the feasibility of using yeast pesticides to control

insects. For example,Drosophila suzukii that fed with S. cerevisiae

expressing dsRNA targeting D. suzukii yTub23C showed a

significant reduction in target gene expression, locomotor

activity, survivorship as well as reproductive fitness (Murphy

et al., 2016). After feeding on yeast strains expressing dsRNA,

both larvae and adults of mosquitoes experienced decreased

expression of the target genes and severe neurological defects

and death (Hapairai et al., 2017; Mysore et al., 2017; Mysore et al.,

2019; Hapairai et al., 2020; Mysore et al., 2020). Interestingly, the

dried-inactivated and live yeast formulations have the same

larvicidal activities (Hapairai et al., 2017; Mysore et al., 2017),

and the dried yeast formulations can be distributed worldwide

and alleviate the public’s safety concerns. In addition, the

mosquito larvae fed with the stable yeast transformants

exhibit similar mortality rates to that fed with the transient

yeast transformants (Hapairai et al., 2017; Mysore et al.,

2019). Integration of shRNA expression cassettes into the

yeast genome could eliminate the use of plasmids with

antibiotic resistance markers and reduce the potential risk for

horizontal transfer of shRNA expression cassettes. Notably, the

shRNA expression is induced under the control of the galactose-

inducible GAL1 promoter in the current stable yeast

transformants. However, it is impractical for large-scale

industrial fermentation to use galactose as an inducer of gene

expression because galactose is more expensive than glucose and

the GAL1 promoter cannot be induced after the carbon source is

shifted from glucose to galactose under anaerobic conditions

(van den Brink et al., 2009). There is a need to select and assess

the promoters that are more readily used in industrial-sized

cultures.

2.4 Bacteriophage

Bacteria and yeast cells can be used to produce dsRNA in

large quantities, which rely on the processes of DNA

transcription and post-transcriptionally ssRNA hybridization.

However, annealing of the two complementary ssRNA

molecules might yield poor-quality dsRNA duplexes with

errors. The bacteriophage phi6 is a dsRNA virus that utilizes

the RNA-dependent RNA polymerase (RdRP) to generate

dsRNA from an ssRNA template, which would be an excellent

tool to eliminate error-prone hybridization. phi6 genome

contains three segments termed “S” (2948 bp), “M” (4063 bp)

and “L” (6374 bp). Simultaneous introduction of all three

segments and their corresponding packaging signal into

Pseudomonas syringae cells enables the synthesis of dsRNA

molecules of L, M, and S. When replacing the M- and S-

segments with Tobacco mosaic virus (TMV) sequences, Niehl,

et al. (2018) successfully synthesized dsRNA of TMV that could

inhibit the transmission of TMV virus in infected Nicotiana

benthamiana plants (Niehl et al., 2018). Notably, the L-segment

is indispensable in the dsRNA production system (Frilander

et al., 1995). dsRNAs produced in the P. syringae cells

inevitably contain L-segment dsRNA molecules. It is critical to

use appropriate methods to quantify the produced dsRNA of the

target genes, and the potential off-target effect caused by the

L-segment should not be ignored as well. Furthermore, the lack

of an M-segment might fail to yield the expected dsRNA (Aalto

et al., 2007; Niehl et al., 2018). Incorporation of both M-and

S-segment into a dsRNA production system would promote the

stable production of dsRNA and the replacement of the M- and
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S-segment with different sequences allows for the simultaneous

synthesis of dsRNAs for different target genes. In addition, the

length of the target genes mimics the size of the natural phi6 M-

and S-segment, whether the phi6-based dsRNA production

system could be used to produce dsRNA with variable lengths

needs further investigation.

2.5 In vitro dsRNA production

In vitro transcription kits utilizing purified RNA polymerases

and nucleotides have been widely used in laboratory

experiments, but the high cost (~$700 per mg dsRNA) limits

the large-scale application in the field. GreenLight Biosciences

has developed a large-scale cell-free production platform that

uses endogenous cellular RNA to synthesize the desired dsRNA.

Briefly, the endogenous RNA was depolymerized into nucleoside

monophosphates (NMPs) with nucleases and then

phosphorylated with kinases to form nucleotide triphosphates

(NTPs). These NTPs were then polymerized into the target

dsRNA using the corresponding DNA template and RNA

polymerases (Cunningham et al., 2020). Compared to

fermentations that cost $1 to produce 1 g of dsRNA, this cell-

free platform can produce 1 g of dsRNA for as little as $0.50,

making it highly competitive in the market (http://www.

globalengage.co.uk/pgc/docs/PosterMaxwell.pdf). Notably, a

combination of different nucleases may be required to

depolymerize the various types of endogenous cellular RNA

including ssRNA and dsRNA. Also, the kinases and RNA

polymerase should be thermostable when heating the mixture

of cell lysates to inactivate nucleases and other endogenous

enzymes.

3 Exogenous application of dsRNA in
the field

After dsRNA production, proper approaches are needed to

deliver dsRNA into the target organisms. Currently, three

methods show great potential in dsRNA application in the

field, including foliar spraying, root irrigation, and trunk

injection (Figure 1).

3.1 Foliar spraying

Foliar spraying of dsRNA is an efficient method to control

pests feeding/growing on stems, foliage, or fruits. In

Henosepilachna vigintioctopunctata, spraying E. coli expressed

dsRNA targeting the ecdysone receptor (EcR) onto the foliage of

greenhouse-growing potato plants would inhibit larval-pupal

transition and reduce leaf consumption (Wu et al., 2021).

Similarly, foliar spraying dsRNA has been shown to protect

potato plants from Colorado potato beetle larvae, and Ledprona

targeting proteasome subunit beta 5 is under registration at the

United States Environmental Protection Agency (San Miguel and

Scott, 2016; Mehlhorn et al., 2020; Rodrigues et al., 2021).

To effectively control piercing-sucking insects as well as those

hiding in fruits, stems and the back of leaves, the sprayed dsRNA is

required to be internalization and spread by the plant cells, and

several studies have confirmed the systemic spread of dsRNA. For

example, the fluorescent-labeled dsRNA sprayed onto the barley

leaves can be detected in xylem, phloem parenchyma cells,

companion cells, mesophyll cells, trichomes and stomata cells

via the plant vascular system (Koch et al., 2016). With aphid

stylectomy, Biedenkopf, et al. (2020) visualized the phloem-

mediated transfer of sprayed-dsRNA in the distal, non-sprayed

barley leaves (Biedenkopf et al., 2020). The Zucchini yellow mosaic

virus derived dsRNA could be detectable in non-sprayed tomato

leaves, aphids (Myzus persicae) and whiteflies (Trialeurodes

vaporariorum) 14 days post foliar spraying (Gogoi et al., 2017).

Notably, long-distance spreading may result in dsRNA dilution

and it is needed to figure out howmuch and how often the dsRNA

needs to be sprayed to control pests efficiently.

3.2 Root irrigation

dsRNA can be absorbed by plants via root irrigation and

transmitted to insects that feed on the treated plants, which offers

an alternative method for pest management. For example,

dsRNA targeting arginine kinase showed persistence in the

citrus trees (2.5 m tall) for 57 days after root drench (2 g

dsRNA/15 L water) and could be detectable in the psyllids

and leafhoppers for 5–8 days after ingesting the treated plants

(Hunter et al., 2012). When Asian corn borer (Ostrinia

furnacalis) fed on maize seedlings that were irrigated with

solutions containing dsRNA of Kunitz-type trypsin inhibitors,

the expression level of the target genes was significantly decreased

and its mortality rate was significantly increased. Similarly,

soaking rice roots in a solution containing dsRNA targeting

carboxylesterase (Ces) and CYP18A1 enhanced rice resistance to

the brown planthopper (Nilaparvata lugens), respectively (Li H.

et al., 2015). Up to 80% of mortality rate was observed in Tuta

absoluta feeding on the tomato leaves when the plant roots were

immersed into ryanodine receptors (RyRs), acetylcholinesterase

(AChE), and nicotinic acetylcholine alpha 6 (nAChRs) dsRNA

solutions (Majidiani et al., 2019). Simultaneous RNAi of vestigial

(vg) and Ultrabithorax (Ubx) via root applications resulted in

32.2% wing aberration rates in M. persicae (Zhang et al., 2022).

3.3 Trunk injection

Trunk injection utilizes the tree’s vascular system to deliver

injected pesticides to the canopy and fruit. The technique can
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protect dsRNA from degradation caused by UV exposure or

being washed away, making it a promising approach to protect

horticultural trees. In apple trees, dsRNA injected into the trunk

could be detected in leaves for over 84 days, and the peak dsRNA

concentrations in leaves were as high as 8 ng/1 g leaf tissue (Wise

et al., 2022). However, it is unclear how effective the method is for

controlling insects, and more research is needed.

4 The fate of dsRNA post application

The exogenously applied dsRNA would be exposed to the

environment, absorbed by the plant cells, and ingested by the

insects. Upon ingestion, dsRNA has to survive the harsh

environment of the digestive tract and enter cells. The

internalized dsRNA is then diced siRNA to trigger the RNAi

machinery (Figure 1).

4.1 dsRNA in the environment

The sprayed dsRNA is not stable in the environment. UV

light is known to degrade nucleic acids and a visible dsRNA

degradation could be observed on the agarose gel after dsRNA

was exposed to UV irradiation for 30 min (San Miguel and Scott,

2016). Similarly, Li H et al. (2015) discovered that dsRNA

FIGURE 1
The schematic diagram of production, application and the fate of dsRNA.
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degraded gradually under continuous UV irradiation as well as

sunlight (Li H. et al., 2015). The rain and dew would lead to

dsRNA dissipation. In Arabidopsis, the leaves were rinsed with

water 24 h post foliar spraying of Cy3-labeled CMV2b-dsRNA

and most of the sprayed-dsRNA could be readily washed away as

determined by confocal microscopy (Mitter et al., 2017).

Surprisingly, San Miguel and Scott (2016) showed that

whether rinsing the potato leaves after spraying actin-dsRNA

would not affect the weight gain and mortality rate in L.

decemlineata, suggesting that the strong adhesion

characteristic of dsRNA onto the leaves (San Miguel and

Scott, 2016). The contradictory results may be due to the

different detection/quantification methods as well as the

paucity of data, and more research is needed.

dsRNA in the soil would be rapidly degraded as well. DvSnf7-

dsRNA degraded with a half-life of 15–28 h after being applied to

the three representative agricultural soils including silt loam,

loamy sand and clay loam soils, and the degradation rate was

independent of the amount of dsRNA applied to the soils

(Dubelman et al., 2014). A similar dissipation pattern was also

observed when DvSnf7-dsRNA was incorporated in tropical soils

from Brazil (Joaquim et al., 2019). Notably, the soil particles as

well as the soil microorganisms would account for dsRNA

dissipation in the soils (Parker et al., 2019). However, how the

dsRNA dissipation affects RNAi efficiency needs further

investigation.

The plant foliar cuticle and cell wall would act as barriers to

the efficient uptake of dsRNA. When the adaxial surface of

Amaranthus palmeri leaves was sprayed with Cy3-labeled

siRNA, most of them were associated with the cuticle 4 h post

application. Cell wall pore size would prevent nucleic acid uptake

in BY-2 suspension cells, where 90 bp DNA is more difficult to be

internalized by flag22-stimulated endosomes than 21 and 50 bp

DNAs. Abrasion with microparticles or high-pressure spraying,

abaxial stomatal flooding, and surfactant utilization have been

shown to improve dsRNA penetration through the barriers and

achieve robust RNAi phenotype (Bennett et al., 2020).

4.2 dsRNA in the plant cells

The absorbed dsRNA can be spread in the plant cells. For

example, the fluorescent-labeled dsRNA sprayed onto the barley

leaves could be detected in xylem, phloem parenchyma cells,

companion cells, mesophyll cells, trichomes and stomata cells via

the plant vascular system (Koch et al., 2016). With aphid

stylectomy, Biedenkopf, et al. (2020) could visualize the

sprayed-dsRNA in the non-sprayed barley leaves (Biedenkopf

et al., 2020). The systemic spread of dsRNA provides a possibility

to effectively control the insects feeding on stems, leaves or fruits.

dsRNA absorbed by the plants will be processed into siRNA

via the plant’s intrinsic RNAi machinery. Silencing the plant

Dicer-like enables the accumulation of long dsRNAs, resulting in

an enhanced plant-mediated RNAi efficiency in Helicoverpa

armigera and Manduca sexta (Mao et al., 2007; Kumar et al.,

2012). Utilization of RNAi-deficiency plants seems to be a

selective method to increase the pest control efficiency of

dsRNA molecules. However, whether plants with decreased

Dicer activity would be susceptible to viral pathogens and

developmentally defective should be taken into consideration

and needs further investigation.

4.3 dsRNA in the digestive system and
hemolymph

Insect can ingest the exogenously applied dsRNA via feeding

behavior or epidermal penetration. Upon ingestion, dsRNA has

to survive the harsh environment in the digestive system and

hemolymph before entering the cells to evoke RNAi machinery.

In response to a feeding stimulus, the gut cells secrete a

peritrophic matrix (PM), through which ingested dsRNA

must pass before being taken up by intestinal epithelial cells.

However, the presence of negatively charged proteoglycans in the

PM would hinder the free transport of dsRNA through the PM

because of the negatively charged phosphate backbone of dsRNA

(Kunte et al., 2020). dsRNase in the gut fluid and hemolymph

could degrade dsRNA and inhibition of dsRNase activity has

been shown to enhance dsRNA stability and thus improve RNAi

efficiency (Supplementary Table S1). For example, knockout of

Spodoptera litura dsRNase1 and dsRNase2 simultaneously

resulted in a 96% decrease in dsRNA-degrading activity and

decreased the target gene mRNA expression level by 23% (Peng

et al., 2021). After silencing Cylas puncticollis CpdsRNase3,

dsRNA stability in midgut juices was significantly prolonged

and dsSnf7-feeding induced mortality was increased by 30%

(Prentice et al., 2019). dsRNase activity varies in different

developmental stages and different species, resulting in

different RNAi responses. For example, the nuclease activity

in S. exigua gut juice was relatively lower at the younger

stages than that at the older stages, while the mortality was

higher in the younger larvae than that in the older larvae after

oral treatment with dsSeCHY2-expressing bacteria (Vatanparast

and Kim, 2017). dsRNA was degraded more rapidly in gut

extracts of RNAi-insensitive pea aphid (Acyrthosiphon pisum)

than that of RNAi-sensitive red flour beetle (Tribolium

castaneum) (Cao et al., 2018). Notably, the body size and

weight of insect species have big differences and should be

taken into consideration.

The physiological pH may affect dsRNA stability by

influencing dsRNase activity. In L. migratoria,

LmdsRNase1 that is mainly expressed in hemolymph could

degrade dsRNA efficiently at an optimal pH of 5.0 but

showed no degrading activity at the physiological pH 7.0 of

hemolymph, resulting in high RNAi efficiency after dsRNA

injection; whereas gut-specific LmdsRNase2 exhibited
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degrading activity at pH from 6.0 to 10.0 and could effectively

digest dsRNA at the physiological pH of midgut juice (pH 6.8),

leading to a very low RNAi efficiency after feeding of dsRNA

(Song et al., 2017; Song et al., 2019). Interestingly, the type of

ingested food may alter the dsRNase activity or pH in the gut

(Peng et al., 2020). It would be promising to add additives to

change the enzymatic activity or pH to enhance RNAi efficiency.

4.4 dsRNA cellular uptake in insects

dsRNA cellular uptake is an indispensable step to generate

RNAi responses and two pathways have been identified to play

roles in internalizing dsRNA from gut lumen: 1) Systemic RNA

Interference Deficient protein 1 (SID1)-mediated uptake

pathway and 2) clathrin-dependent endocytic pathway.

Regarding the SID1-mediated dsRNA uptake,

SID1 orthologues (also known as Sil) have been identified in

many insects except Diptera (Horn et al., 2022). A. mellifera

administrated with dsRNA showed a significant increase in

AmSid1 expression level (Aronstein et al., 2006) and

knockdown of Sil led to a decreased RNAi efficiency in insects

such as L. decemlineata, N. lugens and D. virgifera virgifera,

suggesting the functional role of SID1 in dsRNA internalization

(Xu et al., 2013; Miyata et al., 2014; Cappelle et al., 2016).

However, suppression of Sil failed to abolish RNAi responses

in insect species such as P. xylostella, T. castaneum, Schistocerca

gregaria, and Locusta migratoria (Tomoyasu et al., 2008; Luo

et al., 2012;Wang et al., 2014;Wynant et al., 2014). An alternative

pathway would be responsible for dsRNA uptake in these species.

Clathrin-dependent endocytosis associated with dsRNA

uptake in insects is first described in Drosophila S2 cells

which lack a sid1 homologous sequence (Saleh et al., 2006;

Ulvila et al., 2006). In T. castaneum, RNAi response of TcLgl

was significantly impaired when utilization of endocytosis

inhibitors or suppression of genes encoding proteins

involved in clathrin-dependent endocytosis, indicating the

role of clathrin-mediated endocytosis in dsRNA cellular

uptake processes (Xiao et al., 2015). With a similar

approach, clathrin-dependent endocytosis has been identified

for dsRNA internalization in other insects such as L.

decemlineata, B. dorsalis, D. virgifera virgifera and A. pisum

(Li X. et al., 2015; Cappelle et al., 2016; Pinheiro et al., 2018; Ye

et al., 2021).

It is noteworthy that both SID1 and endocytosis pathways

would be involved in dsRNA uptake in the same species such as

the case in L. decemlineata (Cappelle et al., 2016). However, the

synergetic effect has only been confirmed in limited species and it

remains unknown whether the two pathways function

individually or in tandem. In Spodoptera frugiperda

overexpressing CeSid1, RNAi efficiency was enhanced in

ovary-derived Sf9 cells and Verson’s gland tissues, but not

improved in midgut-derived Sf17 cells and midgut tissues

(Chen et al., 2021). The uptake mechanisms seem to differ in

different tissues and more investigations are needed.

Long dsRNA seems to be more efficient to be internalization

than short dsRNA molecules. In D. virgifera virgifera, the 240 bp

Cy3-dsRNAs could be observed in midgut cells while the 21 bp

Cy3-siRNAs were barely detectable (Bolognesi et al., 2012). In

Drosophila S2 cells, transfection reagents were needed to aid the

efficient cellular uptake of siRNA (Saleh et al., 2006). It should be

noted that long dsRNA will increase the chances of off-target and

non-target effects. Considering the diversity of organisms present

in and around a given agroecosystem that are potentially exposed

to the applied dsRNA, bioinformatic-based analysis would be

helpful to minimize the potential environmental risk.

4.5 dsRNA processing in insects

Upon dsRNA uptake, the type III ribonuclease Dicer 2 (Dcr

2) cleaves the dsRNA into siRNA that is approximately 21 bp in

length with 2 nucleotides overhanging at each 3’ end (Elbashir

et al., 2001; Santos et al., 2019). The dsRNA binding protein

R2D2 then binds to siRNA duplex and Dcr 2, allowing the

loading of the siRNA duplex to Argonaute 2 (Ago 2) of the

RNA-induced silencing complex (RISC) (Tomari et al., 2004).

Within RISC, siRNA is unwound and one of the siRNA strands

(“passenger” strand) is degraded; while the other strand (“guide”

strand) is retained and directs the RISC to the complementary

mRNA, resulting in the cleavage and degradation of target gene

expression (Rand et al., 2004; Rand et al., 2005).

dsRNA treatment can rapidly and transiently increase the

expression of core siRNA enzyme (e.g., Ago 2, Dcr 2), and Ago 2

expression is independent of the Dcr 2 activity (Rubio et al., 2018;

Cooper et al., 2019; Montanes et al., 2021). The expression of the

core siRNA enzymes seems to be highly correlated with RNAi

efficiency. Suppression of Dcr 2 or Ago2 would limit RNAi

efficiency (Wynant et al., 2012; Li Z. et al., 2015; Velez et al.,

2016; Yoon et al., 2016; Rubio et al., 2018); whereas

overexpression of Dcr 2 and Ago 2 can lead to an enhanced

RNAi efficiency in D. melanogaster and Bombyx mori,

respectively (Dietzl et al., 2007; Li Z. et al., 2015). In RNAi-

sensitive species such as L. decemlineata and T. castaneum, both

two copies of Ago 2 genes were involved in dsRNA-triggered

RNAi (Tomoyasu et al., 2008; Yoon et al., 2016). It is reasonable

to suspect that the extra copy of the Ago 2 is responsible for the

robust RNAi efficiency. Notably, gene duplications or deletions

of Dcr 2 and Ago 2 have been identified in a variety of insect

species (Dowling et al., 2016). However, more investigations are

needed to determine the relationships between the copy number

of siRNA pathway genes and the different RNAi sensitivity in

insects.

The processing of dsRNA to siRNA is variable in different

insects. The dsRNA in L. decemlineata tissues and cell lines could

be efficiently processed into siRNA, while siRNA was
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undetectable in total RNA isolated from Heliothis virescens

tissues and cell lines (Shukla et al., 2016). All tested

Coleoptera exhibited efficient cleavage of injected or fed

dsRNA to siRNA, whereas dsRNA processing into siRNA was

less efficient in Hemiptera, Orthoptera, Diptera and Lepidoptera

than that in Coleoptera (Singh et al., 2017). It is likely that the

variations in the structure and activity of Dicer contribute to the

different efficiency of dsRNA processing into siRNA in different

insects. Notably, Loquacious-PD (Loqs-PD) isoform, a dsRNA-

binding protein, could facilitate siRNA production by interacting

with and modulating the ATP-dependent conformational

changes of the helicase domain of Dicer-2 (Fukunaga et al.,

2012; Sinha et al., 2015; Trettin et al., 2017; Fukunaga, 2018; Su

et al., 2022). In addition, Staufen C (StauC) is also involved in

processing dsRNA into siRNA (Yoon et al., 2018), and

overexpression of StauC in D. melanogaster Kc cells could

restore the loss-of-the function of Loqs-PD (Kim et al., 2021).

Interestingly, StauC homologs have only been identified in

RNAi-sensitive Coleoptera insects, suggesting a correlation

between the presence of StauC and high RNAi efficiency.

5 Nanoparticle: An efficient dsRNA
carrier

dsRNA would experience hostile environments before

triggering RNAi responses and various types of nanoparticles

have been proven as efficient dsRNA carriers that can be used to

improve RNAi efficiency by enhancing dsRNA stability and

dsRNA uptake (Pugsley et al., 2021; Silver et al., 2021; Yan

et al., 2021). For example, the layered double hydroxide

(LDH) nanocarrier termed “Bioclay” can protect the dsRNA

from degradation by the UV irradiation, improve dsRNA

adhesion to leaf surfaces, and enhance cellular uptake and

spread of dsRNA, resulting in sustained release of dsRNA and

extended protection period (Mitter et al., 2017; Jain et al., 2022).

Incorporation of the shaped poly (2-(dimethylamino) ethyl

acrylate into dsRNA would increase the lifetime of dsRNA in

soil up to 3 weeks (Whitfield et al., 2018). During feeding, the

cationic nanoparticles shielded the negatively charged dsRNA

and promote the efficiency of transporting dsRNA through the

peritrophic matrix (Kunte et al., 2020). When incubation dsRNA

with gut juice of S. exigua, dsRNA associated with guanidine-

containing polymers was persistence for up to 30 h, while the

naked dsRNA was completely degraded within 1 h (Christiaens

et al., 2018). Notably, several issues should be taken into

consideration when utilization of nanoparticle-dsRNA delivery

system for RNAi-based pest management, First, the raw

materials used to synthesis nanoparticles should be cheap,

non-toxic, and environmentally friendly. Second, nanoparticles

should carry cationic group to bind to the negatively charged

dsRNA phosphate groups. At the same time, dsRNA could be

dissociated from the nanopaticles in the cells, allowing dsRNA to

be processed into siRNA by Dicer 2 (Kunte et al., 2020). Third,

some nanoparticles may clog pores and barriers in the apoplastic

stream, resulting in reduced nutrient uptake, inhibited

photosynthetic process and damaged DNA structures in

plants (Tripathi et al., 2017). The impact of nanoparticles in

the environment needs to be evaluated before they can be safely

used on crops.

6 Future perspective

Given that RNAi has shown great potentials in controlling

pests, global scientists, enterprises and government regulatory

agencies need to work together to accelerate the

commercialization of dsRNA insecticides. It will be obvious

that the development of dsRNA pesticides to improve the

control efficiency of target pests is of great importance in the

commercialization of dsRNA pesticides. Also, adequate risk

assessment is required to minimize off-target risks for non-

target organisms and develop handling recommendations in

the field. In addition, a regulatory framework is needed to

direct the development of dsRNA pesticides.

6.1 Synergistic effects

dsRNAs targeting multiple genes have shown potential for

synergistic effects. InAgrilus planipennis, larvae fedwith dsIAP and

dsCOP sequentially showed a higher mortality (55%) than that

with only dsIAP (33%) or dsCOP (24%) (Rodrigues et al., 2017).

Simultaneous ingestion of both dsRNAs at low concentrations

(1 μg/μL) caused up to 90% mortality, while dsRNA treatment

alone showed similar mortality but at much higher concentrations

(10 μg/μl) (Rodrigues et al., 2018). Chilo suppresallis larvae fed with

the mixture of dsCYP15C1 and dsC-factor showed approximately

40% higher mortality than those fed with either dsCYP15C1or

dsC-factor alone, while dsRNA complexed with DMAEMA

polycationic nanomaterial resulted in at least 10% higher

mortality than the naked dsRNAs (Niu et al., 2022). Association

nanoparticles with dsRNA targeting multiple genes will further

increase the synergistic effects. Interestingly, T. castaneum larvae

simultaneously fed with two dsRNAs complexed with BACPs

showed 20% and 30% higher mortality than those fed with

dsBiP/BACPs and dsArmet/BACPs, respectively (Avila et al.,

2018), while larvae injected with combinations of two dsRNAs

showed no synergistic effects (Ulrich et al., 2015). Silencing

multiple genes in Aphis glycines seemed to have lower mortality

compared to silencing two genes (Yan et al., 2019). The failure to

show a synergistic effect may due to overloading of the RNAi

machinery and it is needed to determine the optimal values for the

number of target genes and dsRNA concentration ranges. Also, the

dsRNA delivery method may affect synergistic effects and more

investigation is needed.
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6.2 dsRNA pesticides risk assessment

Insects can be resistant to almost all conventional chemical

insecticides. However, the mechanism of insect resistance to dsRNA

insecticides is different. The mismatch between dsRNA and target

mRNA sequences caused by gene mutations or polymorphisms can

drive the evolution of resistance (Yu et al., 2016). Insects can become

resistance to RNAi by preventing cellular uptake of dsRNA as well.

In D. virgifera virgifera, the Cy3-labeled-DvSnf7 dsRNA could be

observed inside the midgut cells of the RNAi-susceptible population

but not the RNAi-resistance colony (Khajuria et al., 2018). In B.

dorsalis, genes required for dsRNA internalization were suppressed

in RNAi refractory flies and the RNAi refractoriness was disrupted

when the endocytic capacity was increased by improving F-actin

polymerization (Li X. et al., 2015). In addition, down-regulation or

mutation of genes involved in RNAi machinery genes is a potential

mechanism for resistance development. In L. decemlineata, Staufen

C, a dsRNA-binding protein that is required for dsRNA processing,

was expressed at lower levels in RNAi-resistant cells than in RNAi-

susceptible cells (Yoon et al., 2018). Interestingly, RNAi efficiencies

differed among three different field populations of D. virgifera

virgifera even though there are no sequence differences in the

target gene region (Chu et al., 2014), suggesting that the inherent

physiological and genetic variation will lead to the development of

resistance. Notably, the resistance caused by target gene mutation

can be easily mitigated by utilizing a dsRNA that targets a different

region or a different gene, which is also one of the unique advantages

of RNA insecticides in pest resistance management.

RNA molecules are natural components of food and

consumed by humans and other vertebrates and invertebrates.

However, in order to avoid the potential risks of RNAi products,

researchers need to rule out that dsRNA may impose risks on

non-target organisms in a sequence-specific manner when

designing exogenous dsRNA insecticides. Usually,

bioinformatics-based analysis can help eliminate out of target

effects by constantly understanding RNAi mechanisms, sequence

information and improved algorithms. dsRNA treatment at a

high concentration may saturate RNAi core machinery and

activate the immune systems, which may cause hazardous

effects on the organisms (De Schutter et al., 2022). It is

needed to determine the optimal dsRNA concentrations to

minimize the potential risk for non-target species. Though the

naked dsRNAs have a short half life after foliar spraying or root

irrigation, association with nanoparticles and other formulations

will prolong the persistence of dsRNA. The potential risks of

these additives should be taken into consideration.

6.3 dsRNA pesticides regulation

Despite that the sprayable dsRNA pesticides will reach the

market soon, a clear regulatory framework has yet to be

developed (Rank and Koch, 2021; De Schutter et al., 2022).

The Australian Pesticides and Veterinary Medicines Authority

(APVMA), US Environmental Protection Agency (EPA) as well

as the European Food Safety Authority (EFSA) have utilized the

existing regulatory frameworks for the agricultural chemical

products, biochemical pesticides and plant protection products

as the basis to evaluate dsRNA pesticides, respectively.

Additionally, the meeting organized by the Organization for

Economic Co-operation and Development (OECD) developed

a set of recommendations for risk assessment considerations of

the exogenously-applied dsRNA-based products (OECD, 2020).

With an upswing market interest in dsRNA-based pesticides,

drafting a consensus regulatory framework will facilitate the

commercialization process.
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