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Hydrogen gas obtained from cheap or sustainable sources has been investigated as
an alternative to fossil fuels. By using hydrogenase (H2ase) and formate
dehydrogenase (FDH), H2 and CO2 gases can be converted to formate, which
can be conveniently stored and transported. However, developing an enzymatic
process that converts H2 and CO2 obtained from cheap sources into formate is
challenging because even a very small amount of O2 included in the cheap sources
damages most H2ases and FDHs. In order to overcome this limitation, we
investigated a pair of oxygen-tolerant H2ase and FDH. We achieved the cascade
reaction between H2ase from Ralstonia eutropha H16 (ReSH) and FDH from
Rhodobacter capsulatus (RcFDH) to convert H2 and CO2 to formate using in situ
regeneration of NAD+/NADH in the presence of O2.
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1 Introduction

The development of renewable energy technologies to replace fossil fuels is essential for the
sustainable growth of the economy and society. Hydrogen (H2), obtained from various sources
such as solar (Song et al., 2022), algae (Wang and Yin, 2018), biomass (Lepage et al., 2021), and
by-product gas (Lee and Elgowainy, 2018), is expected to be an alternative fuel with high
gravimetric energy density and net-zero carbon dioxide (CO2) production (Eppinger and
Huang, 2017). However, owing to the low volumetric energy capacity of H2, its transportation
and storage as a fuel are limited (Eppinger and Huang, 2017). Therefore, converting H2 into a
chemical with a high volumetric energy capacity while maintaining the molar energy capacity is
advantageous for the commercialization of alternative energy.

Suitable materials for converting H2 energy should satisfy the following conditions: 1) high
energy/volume capacity, 2) low energy loss during the conversion process, 3) liquid material at
ambient pressure and temperature, and 4) non-flammable chemicals for safety. Thus, the
conversion of H2 and CO2 into formate is an appropriate approach (Ping et al., 2013; Eppinger
and Huang, 2017; Mihet et al., 2020). Because formate is a non-flammable liquid at ambient
temperature and pressure, it is convenient to transport and store. However, the reaction
requires a catalyst, and synthetic catalysts cannot be applied to various H2 sources because of
their low selectivity, low efficiency, and requirement for precious metals (Loges et al., 2008;
Kuehnel et al., 2015; Sordakis et al., 2018). Thus, the substrate specificity and high reaction rate
of the enzymatic process reveal the potential for H2 and CO2 as alternative synthetic catalysts.
The oxidation of H2 and reduction of CO2 occur in hydrogenase (H2ase) (Lubitz et al., 2014)
and formate dehydrogenases (FDH) (Appel et al., 2013; Amao, 2018; Moon et al., 2020),
respectively, among oxidoreductases.
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Formate hydrogenlyase (FHL) is a natural FDH and H2ase-linked
enzyme complex that catalyzes formate/H2 interconversion
(McDowall et al., 2014). The catalytic bias of the FHL is H2

production from the oxidation of formate (Pinske and Sargent,
2016; Schwarz et al., 2018). The semi-artificial coupling of H2ase
and FDH from Desulfovibrio vulgaris Hildenborough successfully
demonstrated the interconversion of H2 and CO2 into formate
(Sokol et al., 2019). Cheap and sustainable H2 sources, such as
coke oven gas generated from steel industries, contain a small
portion of O2 (0.4–1.7%) (Li et al., 2019; García García et al.,
2020). Because of the transition metal active sites and low potential
electrons, most H2ases and FDHs are inhibited or irreversibly
damaged by a trace amount of O2 (Fontecilla-Camps et al., 2007;
Niks and Hille, 2018), limiting the application of H2 conversion
obtained from various renewable sources.

H2ases and FDHs from aerobic organisms maintain their catalytic
activities under aerobic conditions. H2ase can be classified according
to the metal ion composition of their active sites in [NiFe], [FeFe], and
[Fe] H2ases (Lubitz et al., 2014). [NiFe] H2ase inactivation under
aerobic condition was shown to form an inactive state by O2 bridging
to Ni-Fe through X-Ray crystallography, electron paramagnetic
resonance (EPR) studies, and the density function theory
calculations (Volbeda et al., 2005; Shafaat et al., 2013; Qiu et al.,
2018). Well-studied O2-tolerant [NiFe] H2ases from Escherichia coli
(Sargent, 2016), Aquifex aeolicus (Pandelia et al., 2010), and Ralstonia
eutropha (Burgdorf et al., 2005) have potential biotechnological
applications such as biofuel cells and H2 production. Their O2

tolerance was attributed to the reduction of O2 bound to NiFe
active site into either hydrogen peroxide or water (Lauterbach and
Lenz, 2013; Wulff et al., 2014; Horch et al., 2015). The soluble H2ase
from the R. eutropha (ReSH) complex contains heterodimeric [NiFe]
hydrogenase (HoxHY) subunits and diaphorase (HoxFU) subunits,
which reduce NAD(P)+ while oxidizing H2 (Lauterbach and Lenz,
2013). FDH can be classified according to themetal ion composition of
their active sites in molybdenum (Mo) containing and tungsten (W)
containing formate dehydrogenase (Moon et al., 2020). Under aerobic
conditions, the inactivation of FDH occurs by substitution of oxo
ligand for sulfide ligand at the active site by O2 (Duffus et al., 2020). It
was proposed that the O2 tolerance of W-containing FDH2 from
Desulfovibrio vulgaris Hildenborough results from reduction of O2 to
hydrogen peroxide by formate oxidase activity (Graham et al., 2022).
The FDHs from Clostridium carboxidivorans strain P7T
(Alissandratos et al., 2013), Methylobacterium extorquens AM1
(Laukel et al., 2003; Baccour et al., 2020), and Rhodobacter

capsulatus (Hartmann and Leimkühler, 2013) maintain high CO2-
reducing activity under aerobic conditions. FDH from R. capsulatus
(RcFDH) consists of FdsA subunit containing the bis(molybdopterin
guanine dinucleotide) cofactor and FdsGB diaphorase subunit for
oxidizing NADH while reducing CO2. We hypothesized that H2 and
CO2 are converted to formate through a cascade reaction of O2-
tolerant H2ases and FDHs under oxic conditions. Here, we
demonstrated a cascade reaction of ReSH and RcFDH with NAD+

regeneration (Figure 1). Formate production was observed under
anaerobic and O2 concentration-controlled conditions.

2 Materials and methods

2.1 Materials

The 5X In-Fusion® HD Enzyme Premix was purchased from
Takara Bio (Kusatsu, Japan). Strep-Tactin XT 4 Flow high-capacity
resin was obtained from IBA Life Sciences (Göttingen, Germany).
Disposable PD-10 desalting columns were purchased from Cytiva
(Marlborough, MA, United States). Vivaspin 6 centrifugal
concentrators with a molecular weight cutoff (MWCO) of 100 kDa
were purchased from Sartorius (Göttingen, Germany). A
polypropylene column (1 ml) was purchased from Qiagen (Hilden,
Germany). The Ziptip C18 resin was purchased from Millipore
(Burlington, MA, United States). All other chemical reagents were
purchased from Sigma-Aldrich (St. Louis, MO, United States) unless
otherwise stated.

2.2 Construction of plasmids and strains

To construct the strep-tag II-fused RcFDH expression plasmid,
pTrcHis-RcFDH (Choi et al., 2018) was used as a template. Infusion
cloning was performed to substitute the hexahistidine-tag for strep
tag II. pTrcHis-RcFDH was amplified by PCR with the in-fusion
primer (FW: 5′-GCCACCCGCAGTTCGAAAAAGGTATGGCTA
GCATGACGGATACC-3′, RV: 5′-CGAACTGCGGGTGGCTCC
AAGAACCCCCCATGGTTTATTCCTCC-3′). The PCR product
was mixed with 5X In-Fusion HD Enzyme Premix to generate
pTrcHis-strep-RcFDH. The E. coli MC1061 strain was
transformed with pTrcHis-Strep-RcFDH, and the R. eutropha
HF210 [pGE771] strain (Lauterbach and Lenz, 2013) was used as
the ReSH-expressing strain.

FIGURE 1
Schematic showing the NAD+-dependent cascade reaction of ReSH and RcFDH in the presence of O2.
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2.3 Expression of ReSH and RcFDH

For the expression of ReSH and RcFDH, a 7 L scale fermenter was
used. Previously, Lenz described the heterotrophic cultivation of R.
eutropha derivatives (Lenz et al., 2018). A 10X H16 buffer (pH 7.0)
consisting of 250 mMNa2HPO4 and 110 mMKH2PO4 was used as the
medium. For a 1 L of fructose-ammonium (FN) medium, 100 ml of
10X H16 buffer was mixed with 850 ml of sterilized water (additional
13% (w/v) of Bacto agar in case of solid agar plates) and autoclaved.
Next, 10 ml of 20% (w/v) NH4Cl, 1 ml each of 20% (w/v) NH4Cl, 20%
(w/v) MgSO4*7H2O, 1% (w/v) CaCl2*H2O, 0.5% (w/v) FeCl3*6H2O
(in 0.1 NHCl), 1 mMNiCl2, and 1.25 ml of 40% (w/v) D-fructose were
mixed and filled up to 1000 ml with sterile H2O. A single colony of R.
eutropha was pre-cultured in 50 ml of FN medium containing
10 μg ml−1 tetracyclin until the OD436nm reached 1. For the main
culture, 5 L of modified fructose-glycerol-ammonium (FGNmod) with
0.05% (w/v) glycerol, 5 ml of SL6 trace element solution (Lenz et al.,
2018), and 5 ml of 1 mM ZnCl2 (added to the FN medium containing
10 μg/ml tetracycline) were prepared in the fermenter. The pre-culture
was inoculated into the FGNmod medium and subjected to 300 rpm
shaking and 1 VVM aeration at 30°C. The pH range was maintained
between 6.9 to 7.0 through automatic injection of 1 N NaOH. After
24 h, 5 ml of 1 mMNiCl2 was added. When the OD at 436 nm reached
9–11, the cells were harvested by centrifugation at 6,000 × g for 10 min
before storage at −80°C.

For RcFDH expression, a single-cell colony was pre-cultured in
Luria-Bertani (LB) medium containing 150 μg ml−1 ampicillin for 12 h
at 37°C. For the main culture, 5 L of LB medium containing
150 μg ml−1 ampicillin, 1 mM sodium molybdate, and 20 μM
isopropyl β-D-1-thiogalactopyranoside was prepared in the
fermenter. The pre-culture was inoculated into the LB medium and
subjected to 100 rpm shaking and 0.1 VVM aeration at 30°C. After
24 h, the cells were harvested by centrifugation at 6,000 × g for 10 min
before storage at -80°C.

2.4 Purification of ReSH and RcFDH

To purify ReSH and RcFDH, cell pellets were resuspended in
50 mM potassium phosphate buffer (pH 7.0) (Kpi buffer) containing
1 mg/ml lysozyme to a concentration of 1 g/10 ml. The resuspended

cells were lysed by sonication (amplitude 28%, on/off 2 s/4 s) for 1 h.
Insoluble cell debris was removed by centrifugation at 13,000 × g for
30 min. Strep-Tactin XT 4Flow high-capacity resin (2 ml) was mixed
with the clear supernatants and incubated at 4°C for 30 min. The resin
was washed with Kpi buffer containing 300 mM potassium chloride
on a gravity-flow polypropylene column to remove any impurities.
The proteins were eluted with 3 ml of Kpi buffer containing 50 mM
biotin and buffer-exchanged with Kpi buffer containing 10 mM
potassium nitrate using a PD-10 column. Protein purity was
verified by SDS-PAGE (Figure 2). The concentrations of purified
proteins were determined by measuring their absorbance at 280 nm
using a microplate reader (Synergy, BioTek, Winooski, VT,
United States), as previously reported for other proteins (Kim
et al., 2019; 2021; Bak et al., 2020). The extinction coefficients of
ReSH and RcFDH were calculated to be 165,710 and
350,000 M−1·cm−1, respectively, based on their amino acid sequences.

2.5 Matrix-assisted laser desorption
ionization–time of flight (MALDI-TOF) mass
spectrometry

Proteins in buffer were desalted using Ziptip C18 according to the
manufacturer’s protocol. Purified ReSH and RcFDH were mixed in a
1:1 (v/v) ratio with a sinapinic acid-saturated matrix solution
consisting of 30% acetonitrile, 0.1% trifluoroacetic acid (TFA), and
70% water (v/v). The mixtures were subjected to mass characterization
by Autoflex speed (Bruker Corporation, Billerica, United States).

2.6 Enzyme kinetics

The enzyme reaction kinetics of ReSH were measured for the
NAD+-dependent oxidation of H2 to H

+ in the presence or absence of
O2. The sealing cuvette was filled with 900 μL of Kpi buffer
containing NAD+ and sealed; then, 100% H2 and a mixed gas
consisting of 10% O2 and 90% N2 (or 100% N2 for anaerobic
conditions) were injected simultaneously for 30 min at 10 ml/min.
ReSH (2 ml, 80 nM) was purged with 10 ml/min N2 gas bubbling in a
10 ml sealing vial for 30 min to remove O2 from the air. The reaction
was initiated by mixing 100 μL of 80 nM ReSH with a gas-saturated

FIGURE 2
SDS-PAGE of purified proteins. (A) ReSH and (B) RcFDH stained with Coomassie blue. The lanes are molecular weight markers (MW), cell lysate after
sonication (CL), flow-through streptavidin resin (FT), and eluted protein (E).
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solution in a sealed cuvette. The final concentration of NAD+ was
varied from 0 to 2 mM.

The enzyme reaction kinetics of RcFDH were measured for
NADH-dependent reduction of CO2 to formate in the presence or
absence of O2. The sealing cuvette was filled with 900 μL of Kpi buffer
containing NADH and sealed; then, 100% CO2 and a mixed gas
consisting of 4% O2 and 96% N2 (or 100% N2 for anaerobic
conditions) were injected simultaneously for 30 min at 10 ml/min,
respectively. RcFDH (2 ml, 2 μM) was purged with 10 ml/min N2 gas
bubbling in a 10 ml sealing vial for 30 min to remove O2 from the air.
The reaction was initiated by mixing 100 μL of 2 μM RcFDH with a
gas-saturated solution in a sealing cuvette. The final concentration of
NADH was varied from 0 to 1 mM.

All measurements were performed in triplicate based on the
change in the absorbance at 365 nm in the cuvette, measured using
a T60 UV-Vis spectrophotometer (PG Instruments Ltd., Lutterworth,
UK). The change in absorbance over 1 min was plotted using the
Michaelis-Menten equation to calculate the kinetic parameters.

2.7 Formate production and quantification

For the cascade reaction in the presence or absence of O2, the gas
content was controlled in a 20 ml polytetrafluoroethylene (PTFE)
septa sealing vial. The vials were filled with 500 μL of reaction solution
containing 3.2 U/mL ReSH, 0.16 U/mL RcFDH, 1 mM NAD+, and
0.5 M Kpi buffer and sealed. A needle was inserted into the septa for
gas evacuation. Then, 10 ml/min CO2 and 20 ml/min N2/O2mixed gas
were injected for 30 min (the needle did not enter the reaction
solution). The O2 ratios of the mixed gas varied from 0%–2%–4%;
therefore, the final concentrations of O2 were 0, 1, and 2%. The
reaction was initiated by a 10 ml/min H2 gas injection. Formate
production was sampled every 20 min during incubation for 1 h,
and 10 μL of 6 N H2SO4 was added to the 100 μL sample to inactivate
the enzymes immediately. Additionally, 240 μL of distilled water was
mixed with the sample, and the aggregate enzymes were removed by
centrifugation at 13,000 × g. Formate production was quantified by
HPLC (1260, Agilent, CA, United States) equipped with a diode-array
detector and an Aminex HPX-87H column (BIO-RAD, CA,

United States) with a mobile phase of 5 μM H2SO4 at a flow rate
of 0.6 ml/min. The retention time of formate was 13.010 min. The
formate concentration was calculated using a formate calibration
curve (Supplementary Figure S1).

3 Results and discussion

3.1 Preparation of ReSH and RcFDH

ReSH and RcFDH are expressed in R. eutropha and E. coli,
respectively. They were purified using affinity resins, as described
in the Materials and methods. Five bands of purified ReSH subunits
were observed, which matched the expected molecular weights (HoxF,
68,110 Da; HoxH, 54,863 Da; HoxU, 26,173 Da; HoxY, 22,881 Da;
HoxI, 18,567 Da) (Figure 2A). Similarly, three bands of purified
RcFDH subunits were observed, which were consistent with the
expected molecular weights (FdsA, 104,466 Da; FdsB, 52,699 Da;
FdsG, 17,304 Da) (Figure 2B). Both enzymes showed high purity.
The identity of the purified enzymes was confirmed by MALDI-TOF
mass spectrometry. The experimentally determined masses of ReSH
subunits were 67,542, 54,492, 26,038, 22,836, and 18,545 m/z, which
matched well with the expected masses (68,111, 54,864, 26,174, 22,882,
and 18,568 m/z, respectively) with less than 1% deviation
(Supplementary Figures S2A–C). The experimentally determined
masses of RcFDH subunits were 104,259, 52,385, and 17,136 m/z,
which matched well with the expected masses (104,467, 52,700, and
17,305 m/z, respectively) with less than 1% deviation (Supplementary
Figures S2D, E). These results showed that the purified ReSH and
RcFDH were successfully prepared.

3.2 Enzyme kinetics in the presence or
absence of O2

We investigated the enzymatic activities of ReSH and RcFDH in
the presence or absence of O2. The NAD+-dependent H2 oxidation
reaction rate by ReSH was measured, and the Michaelis-Menten curve
was fitted to calculate the kinetic parameters using Origin

FIGURE 3
Kinetic analysis. (A)NAD+-dependent H2 oxidation of ReSH in the presence of O2, or not. (B)NADH-dependent CO2 reduction of RcFDH in the presence
of O2, or not.
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2022 program (Figure 3A). Both kcat and Km values of ReSH showed
an insignificant difference under the 0% and 5% O2 conditions
(Table 1). Similarly, The NADH-dependent CO2 reduction reaction
rate by RcFDH was measured, and the Michaelis-Menten curve was
fitted to calculate the kinetic parameters (Figure 3B). Likewise, kcat and
Km values of RcFDH showed an insignificant difference between the
0% and 2% O2 conditions (Table 2). These results show that purified
ReSH and RcFDH retained the enzymatic activity at least under less
than 2% O2.

3.3 Cascade reaction condition control

We determined the NAD+, ReSH, and RcFDH contents for the
cascade reaction of ReSH and RcFDH. Owing to the relatively low kcat
value (Tables 1, 2), the rate-determining step was the CO2 reduction
by RcFDH. Because the reaction rate of RcFDH was saturated at
NADH concentrations above 1 mM (Figure 3B), the NAD+

concentration was determined to be 1 mM. For the continuous
CO2 reduction by RcFDH, the concentration of ReSH was
determined to maintain a state in which all NAD+ was reduced to
NADH. The concentration of RcFDH was fixed at 0.08 U/mL and the
amount of ReSH was adjusted to 0, 0.08, 0.8, and 1.6 U/mL (U/mL
ratio of ReSH:RcFDH = 0:1, 1:1, 5:1, 10:1, 20:1). Reaction solutions

were placed in a 20 ml sealing vial, and 10 ml/min CO2 and 10 ml/min
H2 were injected for 1 h simultaneously, after which formate was
measured (Supplementary Figure S3). Formate production was not
observed in the reaction solution without ReSH. In contrast,
substantial formate production was observed in the reaction
solution with the three components (ReSH, RcFDH, and NAD+).
Formate production was saturated above a 5:1 ratio. At higher ReSH
concentrations, NAD+ was immediately converted to NADH through
H2 oxidation. This result set the cascade reaction content to 1 mM
NAD+, and the U/mL ratio of ReSH:RcFDH = 20:1.

3.4 Formate production under O2 conditions

We demonstrated H2 and CO2 conversion into formate under 0%–
2% O2 conditions. ReSH, RcFDH, and 1 mM NAD+ were mixed and
placed in a 20 ml sealing vial. Changes in the concentrations of NADH
and formate over time were investigated when O2 (at a controlled
concentration), H2, and CO2 were simultaneously and continuously
injected into the vial. During the injection of the gases, under all O2

conditions from 0% to 2%, NAD+ was reduced to NADH and
maintained at 1 mM by H2 oxidation of ReSH (Figure 4A).
Furthermore, the formate concentration increased continuously
(Figure 4B) owing to the CO2 reduction of RcFDH. Approximately
230 μMof formate was produced after 1 h, which showed a statistically
insignificant difference at 0, 1, or 2% O2 conditions (p > 0.05). In order
to investigate the O2-tolerant limit of the system, we tested the formate
production in a higher concentration of O2 (Supplementary Figure
S4). We observed a substantial reduction in formate production at 5%
O2 compared to 0%. Therefore, in the specific enzyme systems we
chose, the O2-tolerance limit was between 2% and 5%. The O2-
tolerance of both H2ase and FDH is attributed to the reduction of
O2 bound to the active site of enzymes, leading to the reactivation of
active site. Therefore, we speculated that the substantial loss of
enzymatic activities at 5% O2 results from that O2 binding to the
active site is more favorable than O2 reduction at the active site. These
results demonstrate, as hypothesized, the plausibility of a cascade
reaction using ReSH and RcFDH, even in the presence of O2. Of
course, greater O2-tolerance limit would be beneficial in developing
practical processes. We speculate that there are ways to increase the

TABLE 1 Kinetic parameters of ReSH under presence of O2 or not.

O2 concentration (%) kcat (s−1) Km (mM) (NAD+)

0 39.7 ± 1.5 0.393 ± 0.041

5 39.2 ± 1.3 0.364 ± 0.033

TABLE 2 Kinetic parameters of RcFDH under presence of O2 or not.

O2 concentration (%) kcat (s−1) Km (mM) (NADH)

0 0.703 ± 0.043 0.166 ± 0.030

2 0.699 ± 0.035 0.141 ± 0.022

FIGURE 4
H2 and CO2 conversion into formate by NAD+-dependent ReSH and RcFDH cascade reactions. (A) NADH concentration. (B) Formate concentration. All
measurements were performed in triplicate.
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O2-tolerance limit of enzymes. First, the enzyme concentration can be
adjusted to increase O2-tolerance limit. O2-tolerance is likely
attributed to the reduction mechanism of O2 to either H2O or
H2O2. In this case, O2 is a co-substrate of these enzymes.
Therefore, if the concentrations of enzymes were sufficiently high,
the enzymes would quickly reduce O2, leading to the increased O2-
tolerance limit. Another possible approach to increase O2-tolerance is
engineering enzyme. Recently it was reported that the simple point
mutations in the gas tunnel region of O2-sensitive CO dehydrogenase
greatly increased the O2-tolerance limit (Kim et al., 2022). We
speculate that such enzyme engineering strategy can be applied to
ReSH and RcFDH to increase O2-tolerance limit.

4 Conclusion

We demonstrated the conversion of H2 and CO2 into formate
using an NAD+-dependent cascade reaction of O2-tolerant H2ase and
FDH in the presence of O2. However, in order to produce formate
using H2 and CO2 obtained from cheap sources, such as by-product
gas from steel industries, we may need to tackle other obstacles. For
instances, it was reported that H2ases are often damaged by CO
(Bagley et al., 1994; Vincent et al., 2007), one of components in
by-product gas. We plan to investigate the enzymatic process which is
tolerant to both O2 and CO in future. Furthermore, we could not
obtain the kinetic parameters for both CO2 and H2 due to difficulty in
determining the actual concentration of the gases in the aqueous
reaction solution. We plan to determine the kinetic parameters for
CO2 and H2 once suitable gas control facilities are in place.
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