
Application of stem cells
combined with biomaterial in the
treatment of intervertebral disc
degeneration

Zongtai Liu1,2, Yuya Bian3, Guangzhi Wu4* and Changfeng Fu1*
1Department of Spine Surgery, First Hospital of Jilin University, Changchun, China, 2Department of
Orthopedics, Affiliated Hospital of Beihua University, Jilin, China, 3Jilin Institute of Scientific and
Technical Information, Changchun, China, 4Department of Hand Surgery, China-JapanUnionHospital
of Jilin University, Changchun, China

As the world population is aging, intervertebral disc degeneration (IDD) is

becoming a global health issue of increasing concern. A variety of disc

degeneration diseases (DDDs) have been proven to be associated with IDD,

and these illnesses have significant adverse effects on both individuals and

society. The application of stem cells in regenerative medicine, such as blood

and circulation, has been demonstrated by numerous studies. Similarly, stem

cells have made exciting progress in the treatment of IDD. However, due to

complex anatomical structures and functional requirements, traditional stem

cell injection makes it difficult to meet people’s expectations. With the

continuous development of tissue engineering and biomaterials, stem cell

combined with biomaterials has far more prospects than before. This review

aims to objectively and comprehensively summarize the development of stem

cells combined with contemporary biomaterials and the difficulties that need to

be overcome.
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1 Introduction

The intervertebral disc (IVD) is the cartilaginous tissue that lies between the spinal

segments and plays a crucial role in maintaining the normal physiological activity of the

spine. With the increase in aging populations worldwide, intervertebral disc degeneration

(IDD) is becoming a health problem that is difficult to ignore or compromise. IDD could

lead to disc degeneration diseases (DDDs), such as compression of blood vessels or nerves,

and disc herniation (KimH. S. et al., 2020). DDDs often cause lower back pain andmay be

associated with motor dysfunction and sensory abnormalities (Luoma et al., 2000). In the

United States alone, back problems account for more than seven million emergency

department visits and more than two million hospital admissions per year (Owens et al.,

2006). In social and economic terms, the direct cost of health care and the indirect

economic losses due to pain is still staggering. In 2016, lower back and neck pain
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accounted for the highest medical expenditure of around $

134.5 billion among 154 medical conditions included in the

United States (Dieleman et al., 2020).

The specific causes of disc degeneration are not fully

understood. The prevailing view is that IDD is a combination of

factors, such as age, genetics, and diabetes (Rider et al., 2019;

Francisco et al., 2022). Typical pathological features of IDD

include decreased water content and height of the disc, disturbed

balance between synthesis and decomposition of the extracellular

matrix (ECM), continuous loss of cells, and changes in the

microenvironment of the IVD tissue (Binch et al., 2021). At

present, the clinical treatment of DDD can be roughly

categorized as either conservative or surgical. Common

conservative treatments include analgesics, appropriate functional

exercise, acupuncture, andmassage. Conservative management may

be effective in patients with mild symptoms or early-stage IDD

(Corp et al., 2021). Surgery is still the only option for patients who do

not respond to conservative treatment or whomight have developed

severe complications. The most frequently used procedures include

discectomy and fusion. In recent years, the rapid development of

endoscopic and postoperative rapid rehabilitation technologies has

greatly shortened the length of hospital stays, in addition to reducing

the possibility of many postoperative complications. However, the

biomechanical changes that are brought by surgery to the overall

spine are still irreversible (Ahn, 2019; Gadjradj et al., 2021). The

abnormal mechanical structure will lead to further aggravation of

the load on the adjacent segments, which further expands the

possibility of disc degeneration of the adjacent spinal segments.

In addition, the persistent neurological symptoms during long-term

follow-up and the possibility of reoperation prove that surgery is not

a one-and-done option (Lurie and Tomkins-Lane, 2016; Wu et al.,

2021; Katz et al., 2022). In conclusion, all current treatments focus

on the remedy and resolution of existing symptoms. Earlier

interventions on the IDD pathological process or on the reversal

of the degeneration process have received extensive attention and a

lot of exploration research has been carried out in recent years.

Many promising therapeutic approaches have been developed

for the various mechanisms of the IDD, such as gene therapy,

biological agents, and growth factors. Some of themhave been in pre-

clinical trials while others have been approved for clinical use

(Kamali et al., 2021). However, the treatment for single

pathogeny is often difficult to meet people’s expectations in the

treatment of IDD cases that are caused by multiple pathological

processes. Due to the easier availability, stronger differentiation

ability and extremely low immunogenicity of stem cells, these

cells can target multiple pathological pathways (Zakrzewski et al.,

2019; Bhujel et al., 2022). The successful application of stem cells in

blood and circulatory related diseases seems to further raise the

hopes for the possible application of stem cell therapy for IDD.

However, even without external factors such as ethical approval, the

complex anatomical structure and functional requirements make

stem cells difficult to retain, not to talk about surviving in the

proposed location, which undoubtedly limits further exploration of

stem cell therapy for IDD. With the continuous development of

tissue engineering and biomaterials, stem cells combined with

biomaterials have shown promising application prospects.

Biomaterials do not only provide a suitable physical and chemical

environment for stem cells, but also carry drugs or cytokines, to

promote better directional differentiation of the stem cells. The

designed biomaterials can also have a good immobilization effect

on the stem cells, in addition to preventing the leakage of the cells.

This review aims to provide an overview of the current advances in

the treatment of IDD with stem cells combined with biomaterials.

We will also discuss the selection of stem cells and biomaterials.

Finally, we will summarize the current limitations and future

challenges that are associated with treatment of IDD.

2 Anatomy of intervertebral disc

IVD is the largest avascular tissue in the human body, which

is mainly composed of nucleus pulposus (NP), annulus fibrosus

(AF) and cartilage endplate (CEP) (Roberts et al., 2006; Smith

et al., 2011). Due to its avascular nature, it has a poor ability to

repair itself after injury and degeneration. To better understand

the mechanism of stem cell therapy for IDD, it is necessary to

understand the main physiological characteristics and functional

requirements of each part in IVD (Figure 1).

2.1 The nucleus pulposus

The NP is the colloidal part that is located at the center of the

IVD. The NP contains more than 70% water, which reduces the

effects of external pressure and prevents internal stress

concentration (Raj, 2008). The remaining components of the

NP are mainly proteoglycan and collagen. Aggrecan is the most

abundant type of proteoglycan in NP, though other forms such as

biglycan and versican are also present (Melrose et al., 2001).

Proteoglycans are essential for maintaining the high-water

content of NP. There is type Ⅰ and type II collagen. The NP

FIGURE 1
Anatomical changes between normal and degenerated discs.
(The Figure was partly generated using Servier Medical Art,
provided by Servier, licensed under a Creative Commons
Attribution 3.0 unported license).
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has a higher content of type II collagen than other IVD tissues

(Raj, 2008). The NP cells are present in a colloid-like matrix that

is composed of proteoglycan and collagen. In general, the cell

density in the NP tissue is relatively low, only 2–5*106 cells/ml,

and it further decreases with age (Maroudas et al., 1975;

Stairmand et al., 1991). In the early stage of IVD

development, the NP has vascular distribution and notochord-

derived cells (Roberts et al., 2006; de Bree et al., 2018), both of

which are not found in adult NPs (Colombini et al., 2008). The

presence of notochord-derived cells has been linked to self-repair

abilities, while the lack of vascular distribution means that NP

cells are in a relatively anoxic environment, so nutrition or drugs

are difficult to transport through the blood (Risbud and Shapiro,

2011; Boubriak et al., 2013). All these suggest that NP has a fragile

ability to repair itself.

As mentioned above, proteoglycans and high osmotic

pressure are essential for resisting axial compressive forces

and spinal pressure during daily motion and activities. The

range of mechanical loads required by the NP is enormous.

When lying prone, the pressure load on the NP is only 0.1 MPa,

but when bending down to lift heavy objects, the pressure load

will rise to 2.3 MPa (Schultz et al., 1982; Adams et al., 1996).

Abnormal mechanical loads have been proved to be an important

factor that contributes to IDD (Vergroesen et al., 2015). The

main pathological changes in the NP are proteoglycan loss, type

II collagen and osmolality reduction. In spine magnetic

resonance imaging (MRI), these changes manifest as decreased

disc and appear darkened to black on the T2 signal (Antoniou

et al., 1996; Brinjikji et al., 2015).

2.2 The anulus fibrosus

The AF is the fibrocartilage that surrounds the NP, and can

be further divided into outer and inner AF (Hsieh and Twomey,

2010). The main function of the AF is to stabilize and encapsulate

the NP. In the presence of an intact AF structure, the NP tissue

can maintain a high hydrostatic pressure, and the entire disc can

resist the high intensity pressure that emanates from daily

motion such as flexion-extension and lateral bending. The AF

is a lamellar structure that is predominantly composed of type Ⅰ
collagen in a highly oriented manner, with about 15–25 layers

(Marchand and Ahmed, 1990). As the AF approaches the NP, the

proportion of type II collagen and water content gradually

increases (Feng et al., 2006). The cell density in the AF is

higher than that in the NP, with a range of about 5–10*106

cells/ml (Bowles and Setton, 2017). These cells are arranged in

concentric lamellae that interleave each other and are offset by

30–60° from the vertical spinal axis (Walker and Anderson, 2004;

Raj, 2008). During the early stages of IVD development, the

boundary between the NP and AF is not obvious but as the

development approaches maturity, clear morphological

boundary begins to appear (Roberts et al., 2006).

When the AF structure is damaged or fractured, the uneven

distribution of stress may lead to the herniation or displacement

of the IVD tissue, which may further compress the surrounding

blood vessels and nerves, thereby causing obvious clinical

symptoms. Despite the possibility of adequate decompression

by surgical treatment, the AF structure is not repaired, and the

abnormal biomechanical structure is not effectively corrected.

Although AF and NP are significantly different in composition

and structure, they are closely related in maintaining normal

physiological functions. Moreover, any tiny damage on any single

part will lead to the disorder of the overall function.

2.3 The cartilage endplate

The CEP is composed of the hyaline cartilage and lies

between the soft tissue of the IVD and the bony structure of

the vertebral body (Luo et al., 2021). The hyaline cartilage is

mainly composed of water, proteoglycans, and collagen. The

CEPs are critical for maintaining the mechanical integrity, as well

as the vascular and avascular separation of the IVDs. Due to the

avascular structure of the IVD, the essential substances such as

glucose and oxygen are mainly supplied by the capillaries that are

around the IVD through CEP, to maintain cell activity (Urban

et al., 2004; Malandrino et al., 2014; Bowles and Setton, 2017).

The CEP in adults is thinner and less vascularized than the

endplates in the early development stage (Harmon et al., 2020).

Comparable to osteoarthritis, cartilage damage is also one of the

pathological features of IDD (Francisco et al., 2022). Thinning

and mineralized CEP not only makes it difficult to maintain

spinal biomechanical stability, but also prevent nutrients from

entering the NP and AF through the CEP (Huang et al., 2014). All

these factors will further aggravate the rate of intervertebral disc

degeneration. In addition to these, the increase in nerve fibers in

the CEP of the degenerative segment is also thought to be related

to the pain that is caused by IDD. In recent years, promoting CEP

repair in a bid to enhance the nutrient supply to the IVD has

become an alternative way to interfere with the progression of

IDD. Having said this, stem cells have also achieved promising

application prospects in promoting cartilage regeneration (Yang

et al., 2018; Kangari et al., 2020).

3 Applications of stem cells in
combination with biomaterials

3.1 Types and selection of stem cells and
biomaterials

3.1.1 Selection of stem cells
Overall, stem cells have the advantages of low

immunogenicity, strong ability to induce differentiation, and

tolerance to hypoxia and low glucose. There are also some
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differences in the function, survival, and acquisition of different

types of stem cells. Choosing the right type of stem cell is

undoubtedly an important step in using stem cells to treat

IDD (Table.1). At present, stem cells can be divided into

mesenchymal stem cells (MSCs), pluripotent stem cells

(PSCs), and IVD-derived stem cells (IVDSCs). According to

their source, MSCs can be further divided into umbilical cord

mesenchymal stem cells (UCMSCs), adipose-derived

mesenchymal stem cells (ADMSCs), and bone marrow

mesenchymal stem cells (BMSCs) (Zhang et al., 2022).

UCMSCs are relatively young stem cells with excellent

differentiation potential, and because they are self-provided

and the means of acquisition are non-invasive, there is no

need to consider ethical barriers (Chen et al., 2013; Garzón

et al., 2014). Unfortunately, the retention and acquisition time

of UCMSCs is short. Additionally, IDD patients lose the

opportunity to obtain autologous UCMSCs when symptoms

are obvious. Another thing to note is that the experimental

cost of UCMSCs is high yet the treatment outcome is not

significantly different from the results of using other stem

cells. Considering the wide distribution and easy availability of

adipose tissue in the human body, ADMSCs seem to be an ideal

choice. A large number of in vivo or in vitro experiments have

proved that ADMSCs can intervene or even reverse the

pathological process of IDD (Lu et al., 2008; Jin et al., 2013;

Clarke et al., 2014). Unfortunately, the endochondral

osteogenesis ability of ASMCS is not satisfactory (Diekman

et al., 2010). At present, BMSCs have attracted the most

attention in stem cell therapy for IDD. BMSCs are non-

hematopoietic stem cells that are located in the bone marrow.

These stem cells are characterized by an ideal differentiation

potential and self-renewal attributes. Although many previous

studies that used animal models and some small clinical cohort

studies have pointed out that BMSCs have exciting application

prospects in the treatment of IDD (Cao et al., 2015; Kumar et al.,

2017; Teixeira et al., 2018), the method for obtaining these stem

cells is invasive. Also, there is a lack of long-term clinical cohort

observation so the application of BMSCs in the treatment of IDD

still needs to be carefully evaluated. PSCs include embryonic stem

cells (ESCs) and induced pluripotent stem cells (IPSCs).

Considering that ESCs are extracted from frozen embryos,

their clinical application is subject to strict ethical restrictions.

IPSCs can differentiate into NP cells in the ECM after receiving

some inducing factors that are secreted by NP cells (Liu et al.,

2015b). It is worth noting that the proliferation and

differentiation patterns of IPSCs are similar to tumor cells,

which makes them potentially carcinogenic. In recent years,

the method of avoiding carcinogenicity using IPSC-based

exosomes has gradually received attention (Qi et al., 2016).

Comparable to MSCs, IVDSCs can be classified according to

their origin from NP, AF, and CEP. Although these native tissue-

derived stem cells seem to have a broad application prospect, the

low separation efficiency and harsh microenvironment in the

degenerated IVD hinder the further exploration of IVDSCs.

3.1.2 Selection of biomaterials
Compared with the limited selection of stem cell types, the

options for materials have become more diversified due to the

TABLE 1 Advantages and disadvantages of various stem cells.

Cell
subtype

Cell source Major advantage Major disadvantages

MSC

UCMSC umbilical cord Autologous cells have low immunogenicity and can avoid ethical
problems; near-ideal potential for proliferation and differentiation

It is very difficult to obtain human UCMSC due to the
special existence period

ADMSC adipose tissue A wide range of cell sources; cell can be obtained noninvasively;
autologous cells have low immunogenicity and can avoid ethical
problems

Cartilage and bone regeneration capacity is not as good
as BMSC

BMSC bone marrow Autologous cells have low immunogenicity and can avoid ethical
problems; mature preparation technology; strong cartilage
regeneration capacity

The acquisition method is invasive operation

PSC

ESC early embryos Near-ideal potential for proliferation and differentiation Cell sources are scarce and face ethical issues

IPSC Reprogramming
differentiated somatic cells

Strong proliferation and differentiation ability, cells can be derived
from patients, low immunogenicity

May integrate viral or oncogenic external genes

IVDSC

NPSC NP Present in NP tissue inherently; promotes self-renewal of the NP
tissue and no external cells are needed

The cell stock is low; difficulty in isolating cells; limited
capacity for proliferation and differentiation

AFSC AF Present in AF tissue inherently; sensitive to the mechanical
environment

The cell stock is low; difficulty in isolating cells; limited
capacity for proliferation and differentiation

CEPSC CEP Strong osteogenesis and chondrogenesis ability; promote the
proliferation of other cells

The cell stock is low; difficulty in isolating cells; limited
capacity for proliferation and differentiation
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continuous development of materials through science and

industrial technology. However, multiple options do not

always simplify the problem; they sometimes even make it

more complex. Considering the load-bearing requirements of

a normal disc, the materials need to simulate the mechanical

properties of normal tissue as much as possible (Manoukian

et al., 2018; Zhu et al., 2021). In addition, targeted selection of

biocompatibility such as cell adhesion should be made according

to the characteristics of the corresponding tissue. Finally,

cytotoxicity, immunogenicity, degradability, and

manufacturing cost are inescapable problems for all implants.

At present, the choice of materials is often a trade-off between the

above-mentioned properties, to a certain extent. When one

property is improved, another performance is usually

compromised (Table 2). For example, in the selection of

scaffold materials, it is often difficult to have both remarkable

mechanical properties and porosity.

Hydrogels are widely used to deliver cells due to their

excellent water content, which can provide a suitable

microenvironment for cell survival. Hydrogels have various

components that can be classified into natural and synthetic

components. The natural ingredients include collagen,

hyaluronic acid, chitosan, and alginate. Generally, natural

components have good biocompatibility and low cytotoxicity,

but their mechanical properties are often unsatisfactory. Some of

the common synthetic components are poly (N-isopropyl

acrylamide), poly (ethylene glycol), and poly (lactic-co-glycolic

acid) copolymers. These materials can be industrially produced

in large quantities and have strong mechanical properties, but

their cytotoxicity and immunogenicity should be considered.

Composite hydrogels can combine components with different

properties to achieve more ideal performance. However, the

involvement of different components bring new problems to

the overall material design. The in vivo safety of various

combinations of components needs to be rigorously evaluated.

Several decellularized scaffolds have been developed. To

better mimic the component composition of normal disc

tissue. However, the scarcity of healthy donor sources that are

suitable for humans limits their further development, and the use

of animal-derived substitutes requires strict safety assessment.

The microsphere system can control the release of substances in

the delivery system in a more precise way, in addition to

providing attachment sites for cells. Some of the common

microsphere materials include natural materials such as

gelatin, collagen and chitosan, as well as polylactic acid-

glycolic acid, poly (L-lactic acid) and polycaprolactone.

Unfortunately, it is difficult for the microspheres to provide

mechanical support so other materials should be introduced,

though this makes system design more difficult.

In recent years, some artificial polymer materials significantly

improved the performance of biomaterials, with a remarkable

balance in mechanical strength and porosity. Increased

understanding of the structure of IVD and continuous

improvement of the material preparation technology has

made it possible to imitate the structure of tissues to provide

a more suitable environment for stem cells. Additionally,

scaffolds that are loaded with drugs or cytokines are better

applicable cell differentiation and expression of corresponding

products.

3.2 Replenish cells and improve the
microenvironment

Most tissues and cells in the human body are undergoing

constant renewal, and sufficient cells plays a crucial role in

maintaining normal tissue function and metabolism. This rule

also holds true for the IVD tissue. Again, it is worth noting that

the low cell density, lack of a powerful source of regenerative

cells, and the harsh microenvironment after IDD make the

TABLE 2 A brief comparison of different biomaterials used to deliver stem cells.

Delivery vehicles Major advantages Major disadvantages

Hydrogel

natural composition Provide a suitable environment for cell survival; low immunogenicity and
cytotoxicity

Mechanical properties are usually unsatisfactory

synthetic composition Stimulus-response hydrogels have a good degree of tissue fit; Some
parameters that can be adjusted manually

Potential cytotoxicity

Tissue derived scaffold Similar to the composition of the intervertebral disc Difficult to manufacture on a large scale; some
parameters are difficult to adjust manually

Microsphere Injectability results in a good tissue fit; controlled release of the carried drug
allows better control of the microenvironment

difficult to provide mechanical support

Artificial polymer materials

Synthetic scaffold mimicking the
IVD structure

Provides spatial structure and mechanical support similar to health IVD Lack of ability to interfere with the microenvironment

Synthetic scaffolds loaded with
therapeutic substances

Provides mechanical support and regulates the microenvironment at the
same time

Difficult to design and the high manufacturing cost
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endogenous self-cell recruitment of IVD difficult. In degenerated

IVD, cell loss was reflected by higher rates of senescence,

apoptosis, and pyroptosis. Direct replacement of the missing

cells seems to be the most straightforward and effective method,

though there are still many limitations, such as the survival rate of

the implanted cells and unnecessary cell dissipation. Stem cells

combined with biomaterials offer new hope for stem cell-based

endogenous repair.

Many experiments have shown that various stem cells can

differentiate into functional cells of IVD if they are exposed to

appropriate stimulation. Although conditions such as hypoxia

are often considered to be unfavorable for cell survival,

appropriate hypoxia is indeed a stimulating condition for

further cell differentiation. Han et al. (Han et al., 2015), co-

cultured human ligamentum derived stem cells and NP cells

in vitro under hypoxia conditions and successfully differentiated

ligamentum derived stem cells into NP-like cells. Strassburg et al.

(Strassburg et al., 2010), reported varying stimulating effects of

different NP cells. BMSCs were co-cultured with NP cells from

degenerated or non -degenerated discs for 7 days. Co-culturing

with NP cells derived from degenerated discs enhanced the

expression of the transforming growth factor (TGF) -β and

cartilage-derived morphogenetic protein -1, which can

regulate NP cell metabolism and promote the production of

ECM (Thompson et al., 1991). In an in vivo study using rabbit

model, BMSCs were transplanted into degenerated IVD and

resulted in significant improvement in cell numbers, cell

survival rate, and disc water content after 24 weeks (Sakai

et al., 2006). Similar findings have been reported in other

types of stem cells. Zhao et al. (Zhao et al., 2020), isolated NP

cells from patients with severe IDD and induced apoptosis by

in vitro compression. After co-culturing with UCMSCs, the

apoptosis was significantly reversed. Lu et al. (Lu et al., 2008),

co-cultured ADMSCs with NP cells in a hydrogel containing

collagen Ⅱ. The results showed that the number of cells that were

producing type II collagen was significantly increased and the

aggrecan-related genes were upregulated. In another in vivo

study, when ESCs were induced for differentiation by TGF-β
and ascorbic acid, they were implanted into the IDD model by

needle puncture (Sheikh et al., 2009). The results revealed the

presence of notochord-derived cells and higher proteoglycan

content was observed. In recent years, notochord-derived cells

have been identified as key points in IVD regeneration (Harfe,

2022). He et al. (He et al., 2018), also reported that co-culturing

cartilage endplate stem cells (CESCs) with NP cells promoted the

proliferation of NP cells.

Although the growth and differentiation of stem cells are

necessary for the stem cell-based therapy, the differentiation of

abnormal location and direction caused by stem cell leakage often

reduces the therapeutic effect, sometimes leading to serious

consequences such as tumorigenesis. Therefore, the

introduction of biomaterials cannot only prevent stem cell

leakage but also provide suitable spatial structure for stem

cells. In addition, the combination of drugs can provide

further support for stem cells. Bertolo et al. (Bertolo et al.,

2015), developed an injectable microcarrier with a size

between 100 and 1,500 µm based on collagen, which achieved

significant cell proliferation under 5% hypoxia. Andrea et al.

(Friedmann et al., 2021), implanted collagen-based scaffolds

loaded with ADMSCs into a sheep IDD model and made

observations for up to 1 year. The researchers noted a

stabilization of disc degeneration but did not observe recovery

of disc height (Figure 2). Similarly, Zhang et al. (Zhang et al.,

2014), used chitosan and alginate to fabricate an injectable 3D

scaffold and achieved good growth and differentiation of

ADMSCs under 2% hypoxia. Daisuke et al. (Ukeba et al.,

2020), combined ultra-pure alginate-based gel with BMSCs.

Compared with the gel-free control group, stem cells that

were cultured in vitro showed higher expression of growth

factors and ECM-related genes, and the stem cells combined

with the gel group effectively induced IVD regeneration in vivo.

Upon further comparison of four kinds of commercial scaffolds

approved for medical use, Alessandro et al. (Bertolo et al., 2012),

indicated that collagen and gelation-based scaffolds had better

cell survival rate and aggrecan expression. Peroglio et al.

(Peroglio et al., 2013), developed a hyaluronic acid-based

thermoreversible hydrogel, which showed better differentiation

induction than the alginate in vitro culture. The hydrogel

maintained 90% of MSCs viability in nucleotomized IVD for

at least 1 week. To compensate for the lack of cell binding sites in

alginate-based materials and the unsatisfactory mechanical

properties of collagen-based materials, Guillaume et al.

(Guillaume et al., 2015), developed an alginate-collagen

composite scaffold with the property of shape memory. In

addition, the composite scaffold showed better cell fixation

ability than alginate only scaffold and maintained the viability

of BMSCs for 5 weeks.

The high pressure in human IVD may cause the

displacement of liquid cell carrier, which has higher

requirements on the mechanical properties of the material.

Zeng et al. (Zeng et al., 2015), loaded the alginate precursor

encapsulated with ADMSCs into Poly (ethylene glycol) diacrylate

(PEGDA). This thermos-responsive hydrogel improved cell

survival rate while preventing cell leakage. Moreover, a better

reduction in degeneration was observed than in other treatment

groups in an IDD dog model after 6 months. In 2017, Diba et al.

(Diba et al., 2017), assembled silica and gelatin nanoparticles to

form a colloidal gel with excellent mechanical properties and

impressive self-healing ability upon shear failure. In their

subsequent study, they used this colloidal gel as the carrier to

deliver BMSCs and injected it into rabbit IDD models. The gel

showed excellent biocompatibility and degradability in vivo.

Besides, the colloidal gel effectively prevented cell leakage, in

addition to providing a favorable environment for the growth

and differentiation of the BMSCs. Apart from the characteristics

of the material itself, external physical stimulation can also affect
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stem cells. Elsaadany et al. (Elsaadany et al., 2017), evaluated the

effects of different equiaxial mechanical strains and frequencies

on the survival of ADMSCs in the scaffold and indicated that

under suitable loading, ECM protein secretion and AD marker

gene expression were significantly increased. Similarly, Li et al.

(Li et al., 2021), used poly-caprolactone and nano-hydroxyapatite

to fabricate scaffolds to load BMSCs, prior to treating these

scaffolds with a sinusoidal electromagnetic field. The results

indicated that stimulated BMSCs exhibited excellent

osteogenic potential (Figure 3). Artificial polymer materials

are easy to work with so they can be used to determine the

relationship betweenmaterial properties and stem cells. Tasi et al.

(Tsai et al., 2014), used poly-l-lactic acid and poly-caprolactone

to construct a fibrous scaffold mimicking the AF structure. Zhu

et al. (Zhu et al., 2016a), used a biodegradable poly (ether

carbonate urethane) urea material to achieve adjustable

scaffold elasticity. AFSCs exhibited significant differences in

protein expression on different elastic scaffolds. Chu et al.

(Chu et al., 2019), further used this scaffold to demonstrate

that the mechanical properties, topography, and geometric

characteristics of the material affect the growth and

differentiation of AFSCs.

Adding cytokines or drugs to the material offers more

possibilities to control stem cell growth and differentiation in

the material. TGF is an important signal factor for IVD

development and repair, considering that it can stimulate

FIGURE 2
After 12 months of experiment, Masson-Goldner histological light microscopy was used to observe the representative IVD segments in a sheep
model. The healthy segment view (A) and enlarged view of the NP region (D); The IDD segment (B) and enlarged view of the NP region (E); The IDD
segment receiving scaffolds injection (C) and enlarged view of the NP region (F). Reproduced with permission from (Friedmann et al., 2021).

FIGURE 3
Masson trichrome staining (A) and HE staining (B)were used to observe the new bone formation in the scaffolds after 12 weeks of implantation.
Quantification analysis of new bone fraction in four groups after 12 weeks of implantation (n= 6) (C). **means p < 0.01 compared to the blank group,
## means p < 0.01 compared to the only scaffold group, &means p < 0.05 compared to the S + Cell group. EMF: electromagnetic field. Reproduced
with permission from (Li et al., 2021).
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ECM anabolism, induce stem cell differentiation, and inhibit

inflammatory response and ECM catabolism (Watabe and

Miyazono, 2009; Yang et al., 2015; Chen et al., 2019). Liang

et al. (Liang et al., 2013), reported a cell carrier by adding

nanoparticles containing dexamethasone and TGF-β3 to poly

(lactide-co-glycolide) microspheres loaded with ADMSCs. At

week 24 post-transplantation, the mice models showed

significant disc height recovery and proteoglycan

accumulation. Similar results were reported by Kim et al.,

(Kim M. J. et al., 2020), who engineered porous particles with

leaf-stack structures to simultaneously load BMSCs and TGF-β3;
such particles released TGF-β3 continuously for up to 18 days. As
a result, significant disc regeneration was observed in dog IDD

models. To further overcome the defects of rapid clearance and

short half-life of TGF in vivo, Shen et al. (Shen et al., 2020), used

graphene oxide nanosheets to achieve slow release of TGF.

Whether cultured in vitro or implanted subcutaneously, the

addition of this material caused BMSCs in the hydrogel to

express more cartilage matrix. In addition, the initial

compression strength of the hydrogel was also enhanced by

graphene oxide nanosheets. Furthermore, the repair

stimulatory effect of TGF on the NP and AF cells has also

been demonstrated (Guillaume et al., 2014; Ligorio et al.,

2021). Platelet-rich plasma (PRP) obtained by autologous

whole blood centrifugation can provide a greater variety of

bioactive factors than a single TGF component, and its

application in regeneration medicine has received extensive

attention in recent years (Everts et al., 2020; Everts et al.,

2021). Chen et al. (Chen et al., 2009), used the culture system

containing PRP to culture MSCs and observed the upregulation

of genes that are related to type II collagen, aggrecan, and an

increased cartilage matrix deposition in vivo. Wang et al. (Wang

FIGURE 4
IVD cross-sections were visualized using safranin O/fast green staining. Healthy disc controls in low (1.25×) (A) and high (20×) (B)magnification
images. Low cell density hydrogel (1 million MSCs) in low (1.25×) (C) and high (20×) (D) magnification images. High cell density hydrogel (2 million
MSCs) in low (1.25×) (E) and high (20×) (F) magnification images. Only hydrogel group in low (1.25×) (G) and high (20×) (H) magnification images.
Scale bar = 1,000 μm (low magnification); 50 μm (high magnification). Reproduced with permission from (Russo et al., 2021).
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et al., 2018), further compared the effects of different doses of

PRP and the presence or absence of leukocytes in PRP on NP

stem cells, and at a 10% dose, PRP without leukocytes exerted the

best differentiation effects on NP stem cells. Russo et al. (Russo

et al., 2021), further developed a hydrogel composed of PRP and

hyaluronic acid as the carrier to deliver the BMSCs, and this

could integrate well with the surrounding tissue while

maintaining cell viability (Figure 4).

New tissue engineering technologies allow people to design

and manipulate material properties more accurately. In recent

years, an emerging technology called 3D bioprinting has

attracted much attention in tissue engineering, a scenario that

improves the control of the spatial distribution of materials to a

new level (Shapira and Dvir, 2021; Zhu et al., 2016b; D’Este et al.,

2018). Serra et al. (Serra et al., 2016), used 3D bioprinting to

design an anatomical lumbar spine skeleton with similar

mechanical properties to trabecular bone and demonstrated

ideal biocompatibility in preliminary cell culture. Tarafder

et al. (Tarafder et al., 2016), achieved precise spatial control of

growth factor release by exploiting the differences in the melting

points of various materials, in addition to interchanging

dispensing cartridges during a single printing process.

Electrospinning is a technology that can be used to produce

ultrathin fibers. It makes it possible to reduce the diameter of

ultrathin fibers to nanometer levels (Hong et al., 2019; Xue et al.,

2019). Liu et al. (Liu et al., 2015a), fabricated an aligned fiber-

polyurethane scaffold carrying AF stem cells using the

electrospinning technology, and the AFSCs on this kind of

scaffold were more aligned and produced more collagen Ⅰ and
aggrecan (Figure 5). Wang et al. (Wang et al., 2020), compared

the effects of static culture, intermittent centrifugation culture,

and dynamic bioreactor on the infiltration ability of BMSCs in

low-porosity electrospinning scaffolds. Zhu et al. (Zhu et al.,

2021), combined 3D printing and electrospinning technology to

construct a composite scaffold, which simulate the structure and

properties of the NP and AF at the same time. The BMSCs that

are distributed in the scaffold maintain ideal cell viability. In an in

vivo experiment, new ECM production was observed and IVD

height was maintained.

3.3 New directions based on stem cells

Considering the unavoidable ethical and cell survival

problems of stem cell therapy, extracellular vesicles based on

stem cells have attracted attention as a new treatment method for

IDD in recent years. Extracellular vesicles can be roughly divided

into exosomes, microvesicles, and apoptotic bodies, according to

their size. Exosomes are the smallest category, with a size of about

30–150 nm (Vader et al., 2016; Li et al., 2019). Apoptotic bodies

are the largest, with a size of between 50 nm and 5 μm.

Microvescicles are in the middle with a size of about

50–100 nm. Of all the extracellular vesicles, exosomes have

been the most extensively studied. Almost all cells will

produce exosomes, the outer layer is the lipid double layer,

which contains a variety of substances like cytokines, proteins,

lipids, mRNA, among others (DiStefano et al., 2022a; Bhujel

et al., 2022). Due to their cell origin, exosomes have extremely

low immunogenicity. As a carrier of intercellular information,

exosomes can act on a variety of signal transduction pathways,

FIGURE 5
AF stem cell cytoskeletal images of aligned (A–C) and random (D–F) scaffolds were processed using FITC-phalloidin (green) and DAPI (blue)
staining. White arrow and circle are the selected represent area. Scale bar = 400 μm. DAPI (4′,6-diamidino-2-phenylindole). Reproduced with
permission from (Liu et al., 2015a).
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such as fusion, endocytosis, and soluble signaling pathways

(Zhang et al., 2019). A remarkable number of studies

confirmed that stem cell-derived exosomes interfere with the

pathological development of IDD through various mechanisms.

Liao et al. (Liao et al., 2019), demonstrated that exosome-derived

BMSCs could ameliorate excessive apoptosis in IDD, through

endoplasmic reticulum stress. Similarly, Xiang et al. (Xiang et al.,

2020), indicated that urine-derived stem cells could also regulate

endoplasmic reticulum stress. Zhu et al. (Guo et al., 2021), further

demonstrated that exosomes from urine-derived stem cells have

the effect of promoting cell proliferation and ECM synthesis by

regulating TGF-β. In an in vivo experiment using a rabbit IDD

model, exosomes derived from MSCs also exhibited anti-

oxidative and anti-inflammatory effects and prevented further

degeneration. The combination of exosomes and biomaterials

also has a broad application prospect. Luo et al. (Luo et al., 2022),

designed a cartilage ECM hydrogel that was loaded with CEP

stem cells and injected the hydrogel near the CEPs in mouse

models. They observed that the exosomes produced by the stem

cells penetrated the AFs to reach the NP cells and attenuated the

development of IDD. Xing et al. (Xing et al., 2021), designed a

thermosensitive hydrogel loaded with ADSC exosomes. The

hydrogel provides a suitable environment for the growth of

NP cells, and the exosomes regulate the anabolism and

catabolism of the ECM by regulating metalloproteinases

(Figure 6). DiStefano et al. (DiStefano et al., 2022b), loaded

exosomes produced by MSCs under different oxygen

concentrations into poly (lactic-co-glycolic acid) microspheres

and showed that AF cells were more sensitive to the production

of exosomes under hypoxic conditions.

Generally, the exosome strategy avoids many problems that

are difficult for stem cells to circumvent while retaining most of

the advantages of the stem cell strategy. Although exosomes

brought a new direction to regenerative medicine, their

application in IDD is still in its infancy. Its formal application

in clinical practice still requires extensive evaluation. The

metabolism, distribution, appropriate dosage, and

administration frequency of exosomes in the human body still

need a lot of research. In addition, the differences in the

expression of genetic information between different

individuals may lead to significant variations in the

therapeutic effects of exosomes. Therefore, a comprehensive

and multi-level evaluation system is necessary. From the point

of view of drug production, their large-scale preparation is still

FIGURE 6
Images of each group were obtained by H&E and saffron O staining method at different times (A). Scale bar = 1 mm. Immunohistochemical
images of aggrecan and collagen II were examined (B). Quantitative analysis of histological grade in each group at 16 weeks (C). *means p < 0.05. NC:
normal disc group. DC: degenerated disc group. dECM: only the hydrogel was injected. dECM@exo: hydrogel containing exosomes were injected.
Reproduced with permission from (Xing et al., 2021).
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difficult, not to talk of a lack of unified standards. The storage and

transportation of exosome also need to be considered.

4 Conclusion

The improvement effect of stem cells combined with

biomaterials on IDD has been fully proved through a wealth

of experiments. However, there are still many problems that are

worth considering besides the benefits that comes with the

application of the “stem cell-biomaterial” combo the human

body. First, the structure of the IVD and the types of

functional cells that are involved are complex. The

pathological mechanism of IDD is also multifaceted. It is

often difficult to obtain satisfactory results for the repair and

supplementation of a tissue or cell. Second, despite the increasing

understanding of various stem cells and the continuous

developments in tissue engineering, choosing a personalized

match according to the actual situation of patients still

requires extensive pre-clinical testing. In addition to long-

standing issues such as safety, cell origin, and ethics, large-

scale preparation and production costs are key factors in that

need to be carefully considered in practical applications. Finally,

considering that IDD is not always accompanied by obvious

symptoms, the procedure for screening patients with early IDD

in a manner that is comprehensive enough to persuade them to

employ timely interventions is a problem that needs to dealt with

in clinical application.

Future research may focus on the following aspects: 1) A

deeper understanding of the pathological mechanism of IDD and

more effective therapeutic targets will provide more succinct

directions for selecting drugs and preparing materials; 2) Further

exploration of stem cell repair mechanisms, as well as efficient

and stable differentiation induction methods; 3) Identification of

materials with good properties that can withstand different

mechanical requirements in various areas of IVD, in addition

to providing a suitable microenvironment for cells; 4)

Development of IDD models that closely imitate human IVD

environment development and the corresponding in vivo

experiments; 5) Earlier, faster, more economical screening

techniques for IDD, as well as comprehensive and easy-to-

accept patient education.
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