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Light is an easy acquired, effective and non-invasive external stimulus with great

flexibility and focusability. Thus, light responsive hydrogels are of particular

interests to researchers in developing accurate and controlled drug delivery

systems. Light responsive hydrogels are obtained by incorporating

photosensitive moieties into their polymeric structures. Drug release can be

realized through threemajor mechanisms: photoisomerization, photochemical

reaction and photothermal reaction. Recent advances in material science have

resulted in great development of photosensitizers, such as rare metal

nanostructures and black phosphorus nanoparticles, in order to respond to

a variety of light sources. Hydrogels incorporated with photosensitizers are

crucial for clinical applications, and the use of ultraviolet and near-infrared light

as well as up-conversion nanoparticles has greatly increased the therapeutic

effects. Existing light responsive drug delivery systems have been utilized in

delivering drugs, proteins and genes for chemotherapy, immunotherapy,

photodynamic therapy, gene therapy, wound healing and other applications.

Principles associated with site-specific targeting, metabolism, and toxicity are

used to optimize efficacy and safety, and to improve patient compliance and

convenience. In view of the importance of this field, we review current

development, challenges and future perspectives of light responsive

hydrogels for controlled drug delivery.
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1 Introduction

Hydrogels are three-dimensional crosslinked polymeric networks that can absorb

large amounts of water or biological fluids. Their structures are formed through chemical

or physical crosslinking of different polymer chains, between which either covalent bonds

or physical interactions exist to maintain their structural stability (Ebara et al., 2014).

Hydrogels are usually characterized with pH-neutral, colorless, odorless, non-toxic, high

absorption ability, and excellent stability and constancy in storage with controllable

biodegradability (Ullah et al., 2015). Given their technical features, hydrogels have been

utilized in designing drug delivery systems for years. Hydrogels can protect the drug from

surrounding environments, and their tunable properties plus the ability to retain large

fraction of solvents make them ideal carriers for drug delivery systems. By changing

hydrogel properties, drug release rate can be accurately controlled. Additionally,

hydrogels usually have low affinity with drugs, thus achieve a high fraction of drug release.
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FIGURE 1
Representative mechanisms and applications of light-controlled drug delivery systems. (A) Photoisomerization induced drug release through
guest-host interactions. (B) Photocleavage induced drug release throughmulti mechanisms. (C) Photothermal effect-induced drug release to break
DNA chains. Copyright Qiu et al. (2018) NAS. (D) Two-photon light regulated chemo-photothermal therapy with fast drug release. Used with
permission of RSC from Yuan et al. (2015). (E) NIR-triggered hydrogel degradation using the UV light generated by UCNPs. Adapted with
permission from Yan et al. Copyright 2012 American Chemical Society. (F) Light-induced targeted drug delivery to tumor tissue through

(Continued )
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Hydrogels can be classified into two groups according to their

responses to external stimuli: one is conventional hydrogels,

which have no particular sensation to changes of their

environment, and the other is stimuli-responsive hydrogels,

also known as smart hydrogels that are capable of responding

to physical, chemical or biochemical stimuli (Ji et al.eng, 2020). In

response to external stimuli, these hydrogels undergo a series of

changes in their growth actions, network structure, mechanical

strength and permeability (Zhang et al., 2021; Gil and Hudson,

2004/12). Stimuli-responsive hydrogels contain specific

components as “on-off” sensors able to detect stimulation

signals and subsequently control their changes. For example,

ultrasound amplitude and time duration are associated FITC-

BSA release rate in chitosan hydrogels with reversible Diels-Alder

linkers (Arrizabalaga et al.eng, 2022); and thermosensitive

mPEG-PA-PLL hydrogel was used for controlled oral delivery

of calcitonin (Cheng et al., 2022). Combining two or more stimuli

responsive mechanisms in one hydrogel system, multi-

responsive hydrogels can be formed to respond to more than

two external stimuli. PF127/TMC/PEG-HA can react to both

pH and temperature, and is an example of a dual responsive

hydrogel used for in textile-based transdermal therapy

(Chatterjee et al., 2019).

2 Fundamentals of light responsive
drug delivery system

Light responsive hydrogels are able to respond to light

irradiation and subsequently give rise to structural and

conformational changes (Jiang and Wen, 2015; Bustamante-

Torres et al., 2021). Light is an easy acquired, effective and

non-invasive external stimulus that can be highly focused and

regulated by manipulating its parameters, including intensity,

wavelength, exposure time and beam diameter. Consequently,

light offers accurate and spatiotemporal control of drug delivery,

and thus received great attention in the past decade (Li et al.,

2018a; Rizzo et al., 2021). Light responsive hydrogels are obtained

by incorporating photosensitive moieties into the polymer

structure. Based on the photosensitizer (PS) used, the

response can be reversible or irreversible (Bustamante-Torres

et al., 2021). Light can cause cleavage, isomerization, or

dimerization of photosensitive groups in hydrogels, and leads

to partial or complete decrosslinking, degradation, swelling and/

or shrinkage of the hydrogel structure.

The light-controlled drug delivery systems can be classified

into three broad categories: photoisomerization-based,

photochemical-based, and photothermal-based drug release

platforms. Photoisomerization typically involves

conformational changes of the hydrogels from trans to cis

under light irradiation. During this process, hydrogels open

pore sizes and allow drugs to diffuse out of their matrixes

(Figure 1A). It does not break chemical bonds of hydrogels,

and the process is usually reversible and repeatable (Tomatsu

et al., 2011). Photochemical reactions can lead to network

structure and configuration changes of the hydrogel, and

subsequently induce drug release (Iwaso et al., 2016). Among

all photochemical reactions, photocleavage is the one of most

commonly used ones for controlled drug delivery. This method is

realized by incorporating photocleavable linkers into the

hydrogel structure to create nanoparticles that can be cut off

by light (Figure 1B) (Miranda and Lovell, 2016; Liese and

Hampp, 2011/04). In this case, drugs are tethered to the

hydrogel network at designed or selected sites covalently

through photocleavable linkers, and can maintain their

efficacy and avoid unwanted release to a large extent (Shadish

and DeForest, 2020; Wang et al., 2020). The photothermal

reaction is utilizing materials able to convert light energy into

the heat energy, which in turn induces a disruption of a thermally

sensitive drug carrier (Figure 1C) (Qiu et al., 2018; Bordbar-

Khiabani and Gasik, 2022). The reaction requires two

components - a photosensitizer to convert light into heat, and

a material sensitive to temperature changes for drug release.

The commonly used light sources include ultraviolet

(UV), visible light and near-infrared (NIR). UV once was

the most popular light sources because of the availability of a

wide range of UV photosensitizers. But it is mainly for in vitro

experiments due to its cytotoxicity and low tissue penetration.

On the side, NIR is safer for in vivo studies and able to trigger

drug release within deep tissues. Thus, NIR is very attractable

for clinical applications. Due to recent advance of material

science, many new photosensitizers responsive to NIR were

developed. Additionally, the use of two-photon excitation

(Figure 1D) and up-conversion nanoparticles (UCNPs)

(Figure 1E) also greatly expanded situations that NIR can

be used (Pokharel and Park, 2022; Yuan et al., 2015; Yan et al.,

2012/10). Based on above mechanisms, a variety of drug

delivery applications were presented in Table 1 (Tao et al.,

2019; Liang et al.eng, 2020; Pourjavadi et al., 2020; Wei et al.,

2020; Yu et al., 2020).

FIGURE 1 (Continued)
photoisomerization. Adapted with permission from Chen et al. Copyright 2016 American Chemical Society. (G)On-demand protein release by
dual wavelength lights. Adapted with permission from LeValley et al. Copyright 2020 American Chemical Society. (H) NIR induced repetitive on-
demand drug release for chemo-photothermal therapy. Ruan et al. (2019). (I) Combination of photodynamic therapy and chemotherapy through
light-induced drug release. Adapted with permission from Cao et al. Copyright 2018 American Chemical Society. (J)DOX release process from
light-induced multi stimuli responsive system. Used with permission of RSC from Chen et al., 2017. (K) Light and redox dual responsive coumarin
containing micelles as drug nanocarrier for cancer therapy. Shao et al. (2014).
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TABLE 1 Representative light-controlled drug delivery systems.

Delivery systems Stimuli and drug
release mechanisms

Applications Highlights Reference

PEG-Azo2 with alginate-βCD UV/photoisomerization with
guest-host chemistry

Release of small molecules for
tissue engineering and wound

healing

Light induced rapid and controlled
release of small molecules, suitable for

wound healing

Chiang and
Chu, (2015)

HA with Azo and βCD UV/photoisomerization with
guest-host chemistry

BSA release in cell culture
environments

Reversible guest-host interactions and
accurate control of dug release

Rosales et al.
(2018)

PAA with mAzo and βCD Red light/photoisomerization
with guest-host chemistry

in vivo protein release Controlled deep tissue drug delivery Wang et al.
(2015)

SPMA with
spiropyran–merocyanine

UV/photoisomerization
induced volumetric change

in vitro DOX release On-demand reversible drug release with
hydrophobicity switch

(Ghani et al.,
2021/01)

PAA, spiropyran, disulfide-
containing cystamine

UV/photoisomerization
resulted multi stimuli response

in vitro DOX release Light, pH, and redox triple-responsive
nanogel

Chen et al.
(2017)

PEGMA with tethered exosomes Blue light/photocleavage BMP loaded exosome release in
cells to deliver small molecules

Controlled release through hydrogel
structure, efficient cell uptake

Yerneni
et al.eng,
(2022)

Injectable glycol chitosan with
IR783-mHNK

NIR/photocleavage in vivo mHNK release in mice Accurate control, good biocompatibility
and stability, minimum leakage and

efficient light responsibility

Yang et al.
(2022)

PEG-SH, S,S-Tetrazine Green light/photocleavage -
light induced gel degradation

in vivo DOX release in mice for
cancer therapy

Drug release with hyperoxide-
accelerated behaviors and antitumor

effects

Wang et al.
(2020)

PEG, polylysine, coumarin UV/photocleavage induced
light and redox responses

in vivo drug release for cancer
therapy

Good drug loading capacity and
stability, preferred tumor accumulation
and the prolonged tumor residency

Shao et al.
(2014)

PVA pBP composite NIR/photothermal effects in vitro congo red release Robust mechanical properties, excellent
biocompatibility, highly controllable

drug release

Yang et al.
(2018)

Oxidized dextran and platinum
nanoparticles

NIR/photothermal effects in vitro and in vivo drug release
for cancer therapy

Long-term repeated PTT with excellent
photothermal effects and good

biocompatibility

Li et al.
(2018b)

Agarose, HK ink,
dihydroartemisinin

NIR-II/photothermal effects
and reversible gel degradation

in vivo release of drug targeting
tissues with pre-injected DHA

Injectable, deep tissue penetration,
accurate tissue targeting

Chen et al.
(2020)

GelPV-DOX-DBNP NIR and red light/hydrogel
degradation and photothermal

effects

in vivo DOX release for cancer
therapy

Combined chemo-photothermal
therapy with two-step accurate control

of drug release

Sun et al.eng,
(2020)

Chitosan/PLA/PNIPAM Hydrogels
coated Gold Nano Rods

NIR/hydrogel volumetric
shrinkage due to photothermal

effects

In vitro study of paclitaxel (PTX)
delivery to cells

Multi-stimuli sensitive systems able to
respond to light, heat, and pH

Pourjavadi
et al. (2020)

PLGA nanoparticles with Graphene
Quantum Dots or Methylene Blue

NIR/hydrogel degradation due
to photothermal effects

Chemo-photothermal or chemo-
photodynamic therapy for cancer

Combined chemotherapy with PTT and
PDT, as well as accurate release control

Liang et al.eng,
(2020)

NIPAm, MPCD with gold nanorods
(GNRs)

NIR/photothermal and
pH responsive effects

Chemophotothermal synergistic
cancer therapy

Good mechanical and swelling
properties, gelation characteristics, and
excellent NIR-responsive property

Xu et al.eng,
(2017)

PNPG-PEG-aCD NIR-II/photothermal effects Cisplatin release for in vivo
chemo-photothermal therapy

Repeatable and accurate controlled drug
release, deep tissue penetration

Ruan et al.
(2019)

Gelatin, PDA and alginate NIR/photothermal effects Localized therapy of breast cancer 3D printed scaffolds for accurate
structure control and drug release

Wei et al.
(2020)

PLGA coated Au-TiO2 NIR/photothermal effects Human papillary thyroid
carcinoma therapy

High efficiency, good biocompatibility,
accurate control

Yu et al. (2020)

Gel-MA, BACA with Cu NPs NIR/photothermal effects and
ROS production

Skin tissue regeneration Multifunctional hydrogel for killing
bacteria and accelerating wound healing

Tao et al.
(2019)
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3 Photoisomerization-based drug
delivery systems

Photoisomerization takes advantage of the conformational

changes of certain molecules when stimulated by light irradiation

(Pan et al., 2021/10). Azobenzene is the most used molecules in

this category. Modifying hydrogels with azobenzene and

cyclodextrin (CD) can create light responsive crosslinking

between the two components. When in the trans isomer form,

azobenzene can have “host-guest” interaction with CD, forming

strong crosslinks. Under UV light irradiation, the azobenzene

changes to cis isomer form which leads to breaking of crosslinks

and drug release.

Light responsive azobenzene-CD guest-host chemistry has

been widely used for controlled release of drugs from hydrogels

under light exposure (Rosales et al., 2018). In one study, the

authors developed a light responsive hydrogel by permeating

diazobenzene-modified poly(ethylene glycol) (PEG) into βCD
grafted alginate. Exposure of UV light leads to controlled cargo

release from the hydrogel which was used in wound healing and

other applications (Chiang and Chu, 2015). In another study, a

model drug was released from a light responsive hydrogel made

from azobenzene and PEG. The system showed reversible

photoisomerization between its cis and trans isomers under

UV-light irradiation allowing model drug release from the

hydrogel network. The authors observed clear volume changes

during the photoisomerization process and characterized the

peak effects at 330 nm and 435 nm respectively. Thus, the

drug release can be controlled by the wavelength and intensity

of light irradiation (Rastogi et al.eng, 2018). Additionally, Nehls

et al. showed similar results with more accurately controlled

release rate of an entrapped model drug based on azobenzene-

CD chemistry in PEG hydrogels (Nehls et al., 2016).

Furthermore, PAA-based hydrogel modified with methoxy-

substituted azobenzene and βCD supramolecular complexes

showed a gel to sol transition in response to red light

irradiation, and subsequently resulted in a dose dependent

manner of loaded BSA release. With higher wavelength than

UV, red light can be used for deep tissue drug delivery with less

energy-induced damage (Wang et al., 2015). Chen et al. designed

a DOX-loaded delivery system targeted tumor tissues using muli-

responsive formation and degradation of the hydrogel

(Figure 1F) (Chen et al.eng, 2016).

Spiropyran is another well-known photosensitizer that can

be incorporated into hydrogel networks. It was used to deliver a

variety of drugs such as doxorubicin and paclitaxel based on

photoisomerization of hydrophobic spiropyran to hydrophilic

merocyanine after UV irradiation. During this process, the

swelling of hydrogels cause water soluble drugs to diffuse out

of the hydrogel networks (Li et al., 2020/05). Tong et al. reported

a nanoparticulate drug delivery system comprising spiropyran

and PEGylated lipid that allows repetitive drug delivery at given

time and location. The light-sensitive switch enables particles to

fluoresce and release drugs inside cells when illuminated with UV

light providing a spatiotemporal control of drug delivery with

and enhanced tissue penetration (Tong et al., 2012). Spiropyrans

within hydrogels have also been used as on and off switch triggers

for controlled drug release in a number of other studies due to its

reversible properties (Ghani et al., 2021/01; Xiao et al.eng, 2016).

4 Photochemical reaction-based
drug delivery systems

Photochemical reactions include photooxidation,

photocleavage and photopolymerization. For photocleavage

induced drug release, o-nitrobenzyl is the most popular

photocleavable linkers. It can be incorporated into many

hydrogels to give them light responsive properties. The

cleavage of o-nitrobenzyls happens at C-O bond in its ester

group after exposure to UV light or high energy visual light. In

one study, o-nitrobenzyl moieties were added into gelatin

methacryloyl(-acetyl) hydrogels with a biotin-functionalized

photocleavable macromer, and then controlled release under

UV-irradiation is studied. The authors found that liquid

chromatography coupled to mass spectrometry analysis of

aqueous linker solutions allows the identification of the main

cleavage products and the cleavage kinetics (Claaßen et al., 2018).

O-nitrobenzyls were also used to cause a macro physical change

in the overall structure for drug delivery (Linsley et al., 2017). In

o-nitrobenzyl linked PEG and PAM hydrogels, cleavage of

o-nitrobenzyls with UV resulted volume shrinking of their

polymeric structure, and caused controlled release of drugs

entrapped within its matrix (Yan et al., 2012/10). In a similar

study for PEG and dextran hydrogel with o-nitrobenzyl linkers,

60 min exposure to UV leads to fifty percent of model drug

release due to hydrogel structure dissociation (Peng et al., 2011).

In another study, authors showed a novel strategy enabling the

use of upconversion luminescence converting NIR light into UV

light, which are received by o-nitrobenzyl groups in PEG

hydrogels. Subsequently, the photocleavage reaction leads to

tethered drugs (Yan et al., 2011/12).

A ruthenium-based photocleavable linker was developed to

form hydrogel with entrapped model drugs, which cannot be

released until exposure to light. By varying the coordinated

ligands, Ru-cross-linkers have 1-photon absorption maxima

that are tunable across the visible spectrum and into the near-

infrared, which enables photoactivation at multiple, different

wavelengths (Rapp and Dmochowski, 2019). In a more recent

study, Yerneni et al. tethered exosomes to poly(ethylene oxide)-

based hydrogels using atom transfer radical polymerization. The

method allowed controlled release over a period of 1 month and

the release profile can be programmed through crosslinking

density and light stimuli conditions (Yerneni et al.eng, 2022).

Yang et al. developed a photocleavable prodrug loaded injectable

glycol chitosan (GC) hydrogel for NIR-triggered repetitive drug
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release. The hydrogel shows good stability, minimum leakage and

efficient light responsibility both in vitro and in vivo (Yang et al.,

2022).

When photocleavable linkers attach model drugs to polymer

matrix covalently, it may cause great reduction to drug activities

as well as unspecified tethers. To overcome these disadvantages,

some researchers used recombinant protein techniques tomodify

proteins with a handle in order to attach a protein of interest to

the hydrogel matrix. In one study, a PEG-based hydrogel was

developed via a click reaction without impact on entrapped

enzyme activity under 60°C thermal stress for weeks. The

study showed a general method to preserve drug activities at

certain conditions and enable controlled drug release when

needed (Sridhar et al., 2018/03). In another study, the authors

developed a technique to use light-sensing proteins as light-

activated reversible binding sites within synthetic poly(ethylene

glycol) (PEG) hydrogels. It has reversible changes between “light”

and “dark” conformations in response to different lights to

control a recombinant protein release from PEG hydrogels

spatiotemporally (Hammer et al., 2020/07). In a recent study,

both nitrobenzyl and coumarin were used for photolabile

crosslinks, and subsequently, on-demand and tunable dual

wavelength release of antibody was achieved (Figure 1G)

(LeValley et al.eng, 2020).

5 Photothermal reaction-based drug
delivery systems

Photothermal therapy-based drug delivery system includes a

photothermal agent, which is able to generate heat through light

irradiation. The heat energy is then used to trigger reversible

structure changes of thermal-responsive hydrogels, subsequently

cause drug release from the system (Pan et al., 2021/10). Some

commonly used photothermal agents include both inorganic

nanoparticles and organic compounds, such as rare metal

nanostructures and black phosphorus (BP) nanoparticles,

which have little phototoxicity. These photothermal agents

have minimized damage to cells and good penetration for

high efficiency, and thus can provide safe thermal effects for

controlled drug release (Zhang et al., 2015; Zhu et al., 2015;Wang

et al., 2016; Yang et al., 2018). Commonly used thermal-

responsive hydrogels include poly(N-isopropylacrylamide)

(PNIPAAm), thermosensitive PEG analogs and

thermosensitive elastin peptides (ELPs) (Ward and Georgiou,

2011). Because high temperature can lead to cell necrosis, the

parameters of applied light irradiation should be carefully

selected to avoid thermal damage to surrounding areas of

targeted cells or tissues (Yang et al.eng, 2017). For this reason,

NIR light is widely used to initiate photothermal effects because

of its low energy and deep penetration properties. The drug

release parameters can be accurately controlled by light duration

and intensity, concentration of photothermal agents, and

hydrogel composition (Merino et al., 2015).

BP nanoparticles are one of the most popular photothermal

agents. Qiu et al. developed a low–melting-point agarose drug

delivery nanostructure containing BP. After injected into cancer

tissue, the hydrogel experiences a phase transition to gel states at

body temperature. Under NIR irradiation, the hydrogel entered

in a melting state which caused drug release from its matrix.

Additionally, the release rate is able to be accurately controlled

(Qiu et al., 2018). The system demonstrated a high therapeutic

efficacy for cancers, and it is harmless and degradable in vivo. In

another study, an injectable, NIR-II light-modulated and

thermosensitive hydrogel is synthesized through

supramolecular self-assembly of a conjugated polymer and

alpha-cyclodextrin. This hydrogel intrinsically features NIR

responsive characteristics and thermo-responsive properties

(Figure 1H) (Ruan et al., 2019).

Rare metals are also widely used as photothermal agents. In

one study, platinum nanoparticles were integrated into a NIR

light-responsive hydrogel consisting of αCD and PEG-modified

dendrimer. Under NIR irradiation, this hydrogel underwent a

disruption to release the encapsulated drugs in a controlled

manner via the irradiation time (Wang et al., 2016). Platinum

nanoparticle has a very good photothermal conversion efficiency

and biocompatibility; thus, it is frequently used with hydrogels

for drug delivery. In another similar study, aldehyde-modified

dextran hydrogel containing dendrimer-encapsulated platinum

nanoparticles were developed via imine bond formation. The

hydrogel exhibited excellent biocompatibility, photothermal

effect and biodegradable properties. It can stay in tumors for

days to allow repeated drug release, resulting in tumor regression

(Li et al., 2018b).

For a study using organic compounds as the photothermal

agent, one type of PNIPAM hydrogel has been synthesized with

protoporphyrin IX or pheophorbide as photothermal agents,

which are covalently conjugated to the polymer chains. The

hydrogels showed great biocompatibility with more than 90%

cell viability even at very high photosensitizer concentration

suggesting the hydrogels can be applied for photothermal

therapy (Belali et al.eng, 2018). In another study, the authors

designed a novel type of dynamic-covalent hydrogel (GelPV-

DOX-DBNP) for combined chemical and photothermal therapy

of cancers. Anticancer drug DOX and photosensitizer perylene

diimide zwitterionic polymer (PDS) as well as reductant ascorbic

acid (Vc) were encapsulated. Under 600 nm light irradiation,

PDS and VC can turn oxygen to hydrogen and cause degradation

of hydrogel, subsequently lead to DOX and DBNP release from

hydrogel. DBNPs are able to generate heat under NIR irradiation,

making the system a useful drug delivery platform (Sun et al.eng,

2020). Cao et al. developed a chemo-photodynamic therapy

system using ROS sensitive structure and successfully used for

cancer treatment (Figure 1I) (Cao et al., 2018).
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6 Light-induced multi-stimuli
responsive drug delivery systems

Multi-stimuli responsive hydrogels have been used in a

variety of physiological or pathological conditions. Besides

responding to light, hydrogels can also be designed to respond

to pH, magnetic field and reductant etc (Sharifzadeh and

Hosseinkhani, 2017; Pham et al., 2020). In one study,

hydrogels that can respond to both pH and NIR is designed

to release adamantane-modified doxorubicin (DOX) prodrug

using N-isopropylacrylamide (NIPAm) and βCD-based
hydrogel. The pH-responsive release of DOX from the

nanocomposite hydrogel was observed owing to the cleavage

of acid-labile hydrazone bond between DOX and the adamantyl

group in acidic environment. NIR irradiation led to accelerated

release of DOX from hydrogels because of photothermal effects.

The hydrogel can respond to both pH and NIR light and speed up

drug release rate in a controlled manner (Xu et al.eng, 2017). In

another study combining light and magnetic field, the authors

designed a temperature-responsive PNIPAm hydrogel

microfibers with controlled shapes and sizes. Then they

fabricated light-responsive materials by incorporating

photothermal magnetic nanoparticles within the PNIPAm

microfibers. The magnetic nanoparticles were incorporated

into the PNIPAm microfibers and created heat when

subjected to visible light exposure. Volume changes of the

PNIPAm hydrogel can be induced by both light irradiation

and temperature, suggesting its potential use for drug delivery

(Lim et al., 2015). Shao et al. developed a PEG based nanocarrier

with light and redox dual responsive properties for cancer

therapy. The system possesses good drug loading capacity and

stability, and showed preferred tumor accumulation and the

prolonged tumor residency by in vivo and ex vivo experiments

(Shao et al., 2014). In another study, photo, pH and redox multi-

responsive nanogels were developed for drug delivery and

fluorescence cell imaging (Chen et al., 2017) (Figures 1J, K).

Multi-stimuli responsive hydrogels are multi-functional, and

suitable for multi-step drug delivery systems especially for

complicated in vivo studies.

7 Discussion

Light is a powerful trigger for controlled drug delivery

systems. Intensity, spatial and temporal control of light

allows excellent manipulation of therapeutic agents in

comparison with other physical, chemical, and biological

stimuli (Chen et al., 2020). So far, much progress has been

made in developing of innovative light responsive hydrogel

drug delivery systems with both breadth and depth. But

translating these studies into clinical applications still poses

a significant challenge. Major issues need to be addressed

includes: 1) most tumors are deep within the body, and it is

difficult to deliver drugs to these locations. 2) the in vivo

biological conditions of human are complex, therapeutic

effects of drugs are low comparing in vitro or animal studies.

3) biomaterials of the drug delivery system, including hydrogel,

photosensitizer, drug carrier and other components, may

accumulate within human body after long-term

administration. 4) most light induced drug delivery systems

are irreversible, which made drug release inconsistent during

the process. 5) non-specific photoreactions in normal tissues

need to be considered. 6) photosensitizers are still active in dark

conditions, and thus stability of loaded drugs cannot be

maintained especially for long-term use.

Considering above issues, potential future developments may

include: 1) designing photosensitizers responsive to low energy

light source with fast response, high efficacy and deep tissue

penetration (Li et al., 2019). Low energy lights, such as NIR, also

cause less non-specific phototoxicity in normal tissues. 2)

characterizing in vivo biological conditions, such as pH,

temperature, redox and enzymatic reactions. These stimuli

should be used together with light for drug release. 3)

developing highly biocompatible materials for drug delivery

systems. Natural biomaterials that mimic human tissues may

be promising. 4) combing photoisomerization with other

reactions to design reversible systems. Light-responsive

proteins may have wider applications for this purpose (Tao

et al., 2020). 5) besides using low energy light, monitoring real

time drug distribution within tissue is another way minimize

non-specific photoreactions. 6) developing stable

photosensitizers for long-term stable drug release.

Additionally, combining two or more independent photo-

induced reactions into one drug delivery system is appealing

for clinical use (LeValley et al.eng, 2020).
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