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The use of antibiotics to facilitate resistance to pathogens in aquatic animals is a

traditional method of pathogen control that is harmful to the environment and

human health. RNAi is an emerging technology in which homologous small RNA

molecules target specific genes for degradation, and it has already shown success

in laboratory experiments. However, further research is needed before it can be

applied in aquafarms. Many laboratories inject the dsRNA into aquatic animals for

RNAi, which is obviously impractical and very time consuming in aquafarms.

Therefore, to enable the use of RNAi on a large scale, the methods used to

prepare dsRNA need to be continuously in order to be fast and efficient. At the

same time, it is necessary to consider the issue of biological safety. This review

summarizes the key harmful genes associated with aquatic pathogens (viruses,

bacteria, and parasites) and provides potential targets for the preparation of dsRNA;

it also lists some current examples where RNAi technology is used to control

aquatic species, as well as how to deliver dsRNA to the target hydrobiont.
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1 Introduction

Aquatic animals are very important part of the contemporary food and along with

other industries dominate the global economy. Currently, aquatic organisms are severely

endangered, with infections by various bacterial, fungal pathogens and invasion by viruses

causing a significant decline in aquatic animal populations. For example, infectious

myonecrosis virus (IMNV) poses a serious threat to shrimp farming in many countries

around the world, especially in Brazil (Andrade et al., 2022). Decapod iridescent virus 1

(DIV1) is an emerging virus that has posed a serious threat to crustacean farming in recent

years and has caused significant economic losses (Liao et al., 2022). White spot syndrome

virus (WSSV) is considered one of the most devastating diseases for shrimp farming, and

there are many ways to prevent the invasion of this virus (Kumar et al., 2022). Much

research has been devoted to the safety of aquatic products. For a long time, antibiotics

have been used to protect aquatic animals from pathogens (Jones, 1986; Xu et al., 2021),

but they have severely affected the marine ecosystem, causing eutrophication of the water

and also posing a risk to humans. New ways of aquatic control are thus being sought.
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The phenomenon of RNAi (RNA interference) is a molecularly

mediated post-transcriptional gene-silencing mechanism, and the

molecule is known as double-stranded RNA., which was discovered

in plants (Napoli et al., 1990) and in Caenorhabditis elegans in 1998

(Andrew Fire, 1998). Since the existence of RNAi was reported,

researchers began to use it to study the functions of certain genes.

Also, RNAi can be used for biological control, likely aquaculture and

insects. (Katoch et al., 2013). In this review, we summarize the

applications of RNAi in some aquatic organisms, including studies

targeting viral, bacterial, and parasitic genes. We also explore the

latest pathways used to prepare RNAi and look at the future

of RNAi.

2 Mechanisms of RNAi

RNAi is a pathway through which gene expression is

downregulated, which consists of dsRNA targeting specific mRNAs

inside and outside the cell for degradation (Hannon, 2002). RNAi

represents an innate immune system (Reshi et al., 2014; Gong and

Zhang, 2021), and as an innate immune response, when an exogenous

mRNAenters a cell, it is cleaved to inhibit the replication and translation

of the mRNA (Hannon, 2002). It is this property that allows RNAi

technology to target certain genes for knock out and suppress viral

invasion. In the initiation phase of RNAi, dsRNA is cleaved into small

segments of 21–23nucleotides by anRNase-III-like enzyme, specifically

an ATP-dependent enzyme called Dicer (Hamilton and Baulcombe,

1999; Zamore et al., 2000; Bernstein et al., 2001). These small nucleotide

segments of double-stranded RNA are called siRNA and have

approximately 19 bp duplexes and two-base 3′-overhangs(Lingel
and Izaurralde, 2004). The siRNA is then involved in the formation

of the RNA-induced silencing complex (RISC). RISC is the key role in

RNAi technology (Chendrimada et al., 2005; Schuster et al., 2019).

3 RNAi-mediated inhibition of
Pseudomonas

Pseudomonas plecoglossicida is a pathogen that can cause

significant harm to marine organisms (Zhang et al., 2013) and

TABLE 1 The genes of Pseudomonas can be inhibited by RNAi.

Gene Function References

clpV Reducing mortality Sun et al. (2019); Tang et al. (2019c); Wang et al. (2019a); Qi et al.,(2022)

fliA Reducing mortality

L321_RS13075 Reducing mortality Wang et al. (2020)

secY Reducing mortality Zhang et al. (2018a)

dksA Flagellum and ribosome assembly Qi et al. (2019)

impB Reducing lethality and stimulating
immunity

Tang et al. (2019a)

L321_RS1911 Reducing lethality and stimulating
immunity

Zhang et al. (2018a); Qi et al. (2019); Tang et al. (2019a); Tang et al. (2019b); Zhang et al. (2019a); Liu et al.
(2020b); Hu et al. (2021); Jiao et al. (2021); Tang et al. (2022)

L321_23611 Reducing lethality and stimulating
immunity

L321_20267 Reducing lethality and stimulating
immunity

fliG Reducing lethality and stimulating
immunity

TonB Reducing lethality and stimulating
immunity

Hu et al. (2021)

cspA1 Reducing lethality and stimulating
immunity

Luo et al. (2019)

RK21_RS10315 Reducing lethality and stimulating
immunity

He et al. (2022)

ExbB Reducing lethality and stimulating
immunity

Huang et al. (2019b)

L321_RS15240 Influence on host metabolism Huang et al. (2019b)

fusA Ferrous oxygen reducing Sulfur protein
transport

Ilari et al. (2016); He et al. (2021); Huang et al. (2021)

htpG Biofilm formation, adhesion and toxicity

RpoE Biofilm formation, adhesion and toxicity

ZnuABC Blocking the absorption of elements
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has caused serious economic losses to the marine economy. Since

the isolation of P. plecoglossicida, its pathogenic mechanism has

been extensively studied, from which relevant therapeutic targets

can be discovered (Table 1). The silencing of genes in the

bacterium via RNAi technology can significantly reduce

mortality of the host, and these genes share similar functions,

namely, toxicity, adhesion, and flagellar movement.

Trace elements such as Mn and Zn are necessary for

bacterial growth, and these elements are only available

through the host, which uses a pathway to prevent bacterial

uptake of the elements (Kehl-Fie and Skaar, 2010; Hood and

Skaar, 2012). Zn is a very important element that plays a

catalytic role in proteins and is also able to maintain protein

functions and partial bacterial toxicity (Hantke, 2005). Many

bacteria transport Zn via the ZnuABC transporter (Ilari et al.,

2016). It was found that ZnuC is an important protein for Zn

uptake in Pseudomonas aeruginosa (Huang et al., 2021).

Similarly, the authors found that silencing the znuA gene

in this strain could achieve an 89.2% reduction of deaths and

that RNAi-treated strains also induced antibody production in

grouper (He et al., 2021). We have summarized some genes

that we expect to enhance host defense through RNAi

technology (Table 1).

4 RNAi-mediated inhibition of
Aeromonas hydrophila

Aeromonas hydrophila is a species of Aeromonas capable of

causing significant harm to both aquatic organisms and humans,

impacting the aquatic industry worldwide (Sha et al., 2002; Sabili

et al., 2015). Until the mechanisms of A. hydrophila virulence

were understood, antibiotics were used to control related diseases

(Samir et al., 2017). With the introduction of a large number of

antibiotics, A. hydrophila has developed drug resistance (Mao

et al., 2020). People found silencing LuxR by using RNAi

technology can partially restore the susceptibility of A.

hydrophila to antibiotics (Chang et al., 2010). Therefore,

inhibition of this strain with RNAi is a promising approach.

Many genes have important roles in A. hydrophila biofilm

formation, bacterial motility, and virulence.

The escape of bacteria in macrophages is necessary for a

rapid infection process (Qin et al., 2014). In an in vitro invasion

assay ofA. hydrophila, flgEwas found to be an important gene for

flagellogenesis and key to the infestation of macrophages (Qin

et al., 2014). Further, acuC-RNAi strains were able to reduce

mortality in zebrafish (Jiang et al., 2017), which also resulted the

expression of hlyA (a key virulence gene of A. hydrophila)

decreased (Qian et al., 1995), demonstrating that acuC is an

important regulatory protein affecting the survival and

pathogenicity of A. hydrophila. Moreover, icmF is thought to

be an ATPase capable of stimulating the T6SS secretome of A.

hydrophila (Ma et al., 2012). The maximum efficiency of

knockdown for icmF using RNAi technology can reach

94.42%, resulting in a decrease in the survival of A.

hydrophila from 92.3% to 20.58%, as well as a significant

reduction in the probability of escape from

macrophages(Wang S. et al., 2019).

Reactive oxygen species (ROS) are an important way for host

macrophages to mitigate bacterial invasion (Grayfer et al., 2014).

Zhang et al. (Zhang M. et al., 2018) found that katG facilitates the

removal of host H2O2 by A. hydrophila and aids in its survival in

macrophages and that RNAi-katG could reduce immune escape

and fish mortality by 85%; the authors also found that sodA-

RNAi and sodB-RNAi were able to reduce A. hydrophila survival

in fish macrophages by 91.8% and 74.9% and reduce immune

evasion by 32% and 92%, respectively, in addition to restoring

ROS content in some macrophages and enhancing host

immunity (Zhang M. et al., 2019). These genes are

summarized. (Table 2).

5 RNAi to target Vibrio alginolyticus

Vibrio alginolyticus is capable of harming coral polyps,

aquatic organisms (Zhenyu et al., 2013; Huang et al., 2019b),

and crustaceans. Oxidative phosphorylation is an important

pathway for aerobic growth and energy acquisition, suggesting

that key oxidative phosphorylation proteins are associated with

bacterial adherence. However, silencing the relevant oxidative

phosphorylation protein-encoding genes via RNAi technology

can result in reduced bacterial adherence and cytochrome C

oxidase activity. The adherence inV. alginolyticus is critical in the

early stages of pathogenesis, and there have beenmany studies on

targeting adhesion genes using RNAi for Vibrio lysozyme (table

below), including some tricarboxylic acid cycle genes (Huang

et al., 2016b). These proteins could be potential targets for the

RNAi-mediated control of aquatic pathogens. Zhang (Liu et al.,

2012) found that luxT promotes the transcription of luxO and

luxR, luxO can regulate MviN (an extracellular protein that

produces toxicity) (Cao et al., 2010), and luxO promotes the

secretion of extracellular substances and the formation of iron

carriers in V. alginolyticus (Wang et al., 2007). The pep protein (a

protein required for Vibrio lysis motility) is also regulated by

luxO (Cao et al., 2011), and luxR regulates extracellular alkaline

serine protease A and reduces the production of extracellular

sugars and motility inV. alginolyticus (Rui et al., 2008). LuxR and

AphA are two of the most important molecules involved in

sensing the Vibrio lysogenicus population. One related study

found that the AphB (Gao et al., 2017) gene can positively

regulate the expression of luxR and the toxin asp (alkaline

serine protease), which is expected to reduce Vibrio lysis by

repressing AphB, whereas AphA can negatively regulate the asp

toxin through luxR (Gu et al., 2016). Further, luxO-luxR can

regulate asp production (Rui et al., 2009). ValR, a gene

homologous to luxR, affects both cell membrane formation
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and bacterial motility by regulating flagellar synthesis (Chang

et al., 2010). DctP, a protein-transporting subunit, was found to

regulate the expression of 22 genes involved in the pathogenesis

of Vibrio lysogenicus, without inducing any morphological

changes, but with significantly reduced adherence and

virulence (Zhang et al., 2022). VqsA (Gao et al., 2018) is a

transcription factor that functions in Type VI secretion

systems. AcfA is a factor required for Vibrio infection, and in

acfA-deficient strains in which DctP (Zhang et al., 2022) and

deoD transcript levels were found to be increased, pepD, arA, fla,

and ompA genes are repressed (Cai et al., 2018). Both TonB

systems are important for virulence in Vibrio lysogenicus, and

the absence of TonB diminishes this virulence (Wang et al.,

2008). A previous team used pulsed-field gel electrophoresis to

isolate a number of Vibrio pathogenesis-related genes for

subsequent RNAi technology (Ren et al., 2013). Huang et al.

(Huang et al., 2015a; Huang et al., 2016a) used high-throughput

sequencing to find a number of non-coding RNA molecules that

they believe play a key role in Vibrio infection of the host.

Srvg17985, a small RNA that regulates various aspects of

stress balance in Vibrio, is involved in adapting to

environmental stress, and is expected to be a new target

(Deng et al., 2019). Vvrr1 (a non-coding RNA) and pykF

interact with each other and are involved in the mechanism

of virulence in V. alginolyticus (Zuo et al., 2019). Qrr (Liu H.

et al., 2020) is a non-coding small molecule RNA that activates

luxR and inhibits aphA.

Micronutrient uptake is necessary for growth and

physiological processes in bacteria (Kehl-Fie and Skaar, 2010;

Hood and Skaar, 2012). OmpU is a pore protein located on the

surface of V. alginolyticus that regulates Fe uptake, and

physiological growth is compromised in strains lacking this

protein (Lv et al., 2020). Branched-chain amino acid

metabolism is also capable of influencing bacterial

physiological activity. Deng et al. (Deng et al., 2017) detected

311 upregulated genes and 251 downregulated genes in nitrogen

source culture, which provides a foundation for subsequent

RNAi applications. Genes which have mentioned are

summarized. (Table 3).

6 Viruses and RNAi

RNAi-mediated long dsRNA or siRNA causes cellular

resistance to foreign nucleic acid invasion and is a natural

mechanism prevalent in many species (Keene et al., 2005;

Wang et al., 2006; Ding and Voinnet, 2007). Aquatic animals

can be infected by many types of viruses, and one virus can carry

multiple disease-causing genes (Table 4). The injection of these

specific viral sequences into shrimp enables the shrimp to

produce RNAi to resist the virus. YHV (yellow head virus), is

a positive sense, single-stranded RNA virus; WSSV, white spot

syndrome virus, is a DNA virus comprised of double-stranded

circular DNA, and we list some evidence for RNAi silencing of

key viral genes. It has been demonstrated that YHV-specific

dsRNA introduced into spotted shrimp can effectively inhibit the

replication of YHV (Tirasophon et al., 2005; Yodmuang et al.,

2006; Tirasophon et al., 2007).

7 Parasites and RNAi

Salmon farming has been largely affect by Lepeophtheirus

salmonis (salmon louse) (Brooker et al., 2018). AGD (Amoebic

gill disease) is a parasitic disease of salmonids (Crosbie et al.,

2012). The use of large amounts of anti-parasitic drugs seems to

alleviate the development of the association disease (Carmichael

et al., 2013). But as we mentioned before, drug abuse can put our

health at risk. We use RNAi to target certain pathway genes,

which can also prevent parasitism. For example, inhibition of the

TABLE 2 The genes of Aeromonas hydrophila can be inhibited by RNAi.

Gene Function References

LuxR Biofilm formation, adhesion and toxicity Qian et al. (1995); Zeng and Xie, (2011); Bontemps-Gallo et al. (2019); Zhang et al. (2020)

EnvZ Biofilm formation, adhesion and toxicity

OmpR Biofilm formation, adhesion and toxicity Qian et al. (1995)

hlyA Biofilm formation, adhesion and toxicity Lin et al. (2017), Huang et al. (2015b); Lin et al. (2017), Huang et al. (2015b)

RbsR Adhesion

MinD Adhesion Qin et al. (2014)

flgE Macrophage infection Wang et al. (2019b)

icmF Escaping macrophages Zhang et al. (2018b); Zhang et al. (2019b)

katG Reactive oxygen species

sodA Reactive oxygen species Zhang et al. (2019b)

sodB Reactive oxygen species Jiang et al. (2017)

acuC Critical regulation of survival and pathogenicity and reducing mortality
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titin synthesis pathway in this parasite is a very effective way of

targeting it (Liu et al., 2019). We list some examples of key genes

in aquatic parasites that have been knocked out using RNAi

technology (Table 5).

8 Preparation and uptake of RNAi

Many RNAi molecules can now be injected in the laboratory

to control the death of aquatic animals, but this is a time-

TABLE 3 The genes of Vibrio alginolyticus can be inhibited by RNAi.

Gene Function References

FlrA,B,C Biofilm formation, adhesion and toxicity Liu et al. (2011); Luo et al. (2016); Huang et al. (2017); Liu et al. (2017); Guo et al. (2018); Huang et al. (2018);
Zhang et al. (2022) Yang et al. (2018) Zuo et al. (2019)rstA,B Biofilm formation, adhesion and toxicity

mcp Biofilm formation, adhesion and toxicity

SecA,D,F Biofilm formation, adhesion and toxicity Guo et al. (2018)

Opp Biofilm formation, adhesion and toxicity Cai et al. (2018)

DctP Biofilm formation, adhesion and toxicity Gu et al. (2019); Huang et al. (2019a)

PppA Biofilm formation, adhesion and toxicity Tian et al. (2008)

Vvrr1 Biofilm formation, adhesion and toxicity Liu et al., (2012)

AcfA Biofilm formation, adhesion and toxicity Gao et al. (2017)

RpoS,E,X Propagation of strains and virulence Gao et al. (2018)

LuxS Flagellum assembly Liu et al. (2020a)

LuxT,R Factors of regulation Cao et al., (2010)

AphB Factors of regulation Gu et al., (2016)

VqsA Factors of regulation Chang et al., (2010)

Qrr Factors of regulation Zhou et al., (2013)

luxO Factors of regulation and iron carrier
formation

Pang et al., (2018)

AphA Group-sensing molecule

valR Regulation of flagellar synthesis Chen et al., (2019)

VscO T3SS secretion system Lv et al., (2020)

hopP T3SS secretion system Deng et al., (2019); Zhou et al. (2013)

sodB Antioxidant and toxicity

OmpU Regulation of Fe intake

srvg17985 Pressure balance

TABLE 4 The genes of viruses can be defended by RNAi.

Virus Gene Host Delivery Production References

YHV gp116,gp64 P. monodon Transfection Transcribed dsRNA Tirasophon et al. (2005)

RdRp P. monodon Transfection Transcribed dsRNA Thedcharoen et al. (2020a)

RdRp L. vannamei Injection Bacterial expressed dsRNA Saksmerprome et al. (2009)

RdRp L. vannamei Oral Microalgal expressed dsRNA Charoonnart et al. (2019)

rr2 L. vannamei Injection Bacterial expressed dsRNA Chaimongkon et al. (2020)

EEA1 P. monodon Injection Bacterial expressed dsRNA Posiri et al. (2019)

WSSV Vp28 L. vannamei Oral Synthesized Ramos-Carreño et al. (2021)

Vp28 L. vannamei Injection Transcribed dsRNA Nilsen et al. (2017)

M. japonicus Injection Synthesized Xu et al. (2007)

Vp37 L. vannamei Injection Synthesized Weerachatyanukul et al. (2021)

rr2 L. vannamei Injection Bacterial expressed dsRNA Chaimongkon et al. (2020)

V9 P. monodon M. japonicus Injection Synthesized Alenton et al. (2016)

V26 L. vannamei Injection Transcribed dsRNA Mejía-Ruíz et al. (2011)

GAV β-actin P. monodon Oral Bacterial expressed dsRNA Sellars et al. (2011)
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consuming and impractical approach for aquaculture farms. The

uptake of RNAi molecules in cells is hampered by properties,

such as the molecular length and volume, charge, and nuclease

degradation (Gupta et al., 2019; Sajid et al., 2020). Therefore, to

apply RNAi in aquaculture farms, two conditions must be met as

follows: 1) more dsRNA production (including the preparation

of dsRNA) and 2) the stable presence of dsRNA in aquatic

organisms (including ingestion of dsRNA).

8.1 Preparation

8.1.1 Expressing in bacteria
The use of fed-batch fermentation was able to increase the

growth of the bacteria and increase the nucleic acids. The

fermentation of E. coli HT115 (DE3) was able to increase the

growth of the bacteria, increase the amount of nucleic acid and

then increase the level of dsRNA molecular, and maximize the

expression function of E. coli HT115 (DE3) (Papić et al.,

2018). Moreover, in E. coli, p19, an siRNA binding protein,

stabilizes the siRNA produced by this bacterium and increases

the amount transferred to siRNA (Huang and Lieberman,

2013).

Yarrowia lipolytica is also a harmless bacterium. Álvarez-

Sánchez et al. (Álvarez-Sánchez et al., 2018) used Y. lipolytica to

produce dsRNA to help L. vannamei resist WSSV, and when Y.

lipolytica produced hairpin RNA against WSSV-orf89, injection

of the extracted RNA into the muscle of shrimp improved

survival after WSSV infection by 25%.

Lactobacillus plantarum is a plant-derived lactic acid

bacterium that is harmless to humans. Thammasorn et al.

(Thammasorn et al., 2017) modified L. plantarum to produce

hairpin RNA by transferring genes targeting YHV specific to this

probiotic and were able to enhance resistance to YHV in shrimp

consuming the probiotic while retaining the original function of

the probiotic, which is to inhibit the development of some

diseases. Another probiotic, W2, was found to be non-toxic,

containing an active bacteriostatic component, and was able to

antagonize seven strains of aquatic pathogens, while also

promoting shrimp growth (Wei et al., 2022). W2 appears to

be equally useful for RNAi control in the same manner as L.

plantarum. Dekham et al. (Dekham et al., 2022) transferred

hpRNA targeting WSSV-vp28 into L. plantarum and

Lactococcus lactis via pWH1520-VP28 and found that both

probiotics were able to protect the host against the virus, with

L. lactis not only reducing shrimp mortality due to WSSV but

also stimulating RNAi and activating the innate immune system

of the shrimp.

8.1.2 Reorganization of the particles
Sarathi et al., (2008) fed Penaeus monodon inactivated

bacteria specifically expressing dsRNA from WSSV vp28 and

pelleted feed covered with vp28 dsRNA-chitosan composite

nanoparticles and invaded P. monodon by WSSV. Romo-

Quiñonez et al. (Romo et al., 2020) were able to enhance the

antiviral potential of Litopenaeus vannamei after using a silver

nanoparticle, Argovit4, administered as feed. Sinnuengnong

et al., (2018) co-expressed virus-like particles of pstDNV with

dsRNA molecules of YHV-Pro to deliver dsRNA using viral

proteins, which was also very effective. Thedcharoen et al.,

(2020b) used the pLVX-AcGFP1-N1 vector with a gene

encoding long hairpin RNA, namely pLVX-lhRdRp,

introduced under control of the CMV promoter, to inhibit the

RdRp (RNA-dependent RNA polymerase) of YHV with

significant effects.

8.1.3 Small creatures
Artemia, a common feed for marine organisms, is able to

enrich proteins and other molecules in the gut (Subhadra

et al., 2010). Feeding P. monodon with LSNV-enriched dsRNA

TABLE 5 The genes of some parasites in hosts can be defended by RNAi.

Parasite Gene Host Delivery Production References

Lepeophtheirus salmonis LsCHS1 Salmon Incubation Synthesized Braden et al. (2020)

LsCHS2 Salmon Incubation Synthesized Braden et al. (2020)

LsGFAT Salmon Incubation Synthesized Braden et al. (2020)

LsUAP Salmon Incubation Synthesized Braden et al. (2020)

LsAGM Salmon Incubation Synthesized Braden et al. (2020)

LsCDA4557 Salmon Incubation Synthesized Braden et al. (2020)

LsCDA5169 Salmon Incubation Synthesized Braden et al. (2020)

LsCDA5956 Salmon Incubation Synthesized Braden et al. (2020)

MLSWP1,2 Salmon Injection Synthesized Borchel and Nilsen, (2018)

Na+/K ± ATPase Salmon Incubation Synthesized Komisarczuk et al. (2018)

Neoparamoeba pemaquidensis β-actin Salmon Incubation Bacterial expressed dsRNA Lima et al. (2014)

EF1-α
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artemia can effectively inhibit LSNV infection (Thammasorn

et al., 2013).

Microalgae possess essential nutrients for aquatic

organisms, and many natural antimicrobial substances have

become a promising new green and environmentally friendly

platform (Charoonnart et al., 2018; Fayyaz et al., 2020).

Chlamydomonas reinhardtii is a distinct group of

microalgae in which exogenous genes can be recombined

into nuclear DNA or chloroplast DNA to express

recombinant proteins (Rosales-Mendoza et al., 2012;

Shamriz and Ofoghi, 2016). Somchai et al. (Somchai et al.,

2016) transferred dsRNA targeting YHV-RdRp into the

nuclear genome of C. reinhardtii to produce hairpin RNA.

Feeding this to larval shrimp increased their survival by 22%

after YHV infection. However, eukaryotic cell nuclei have

mechanisms associated with RNAi that target dsRNA for

degradation, which are lacking in chloroplasts (Boynton

et al., 1988). In chloroplasts, dsRNA can accumulate and

produce large amounts of dsRNA. At the same time, gene

transformation in chloroplasts is not affected by off-target

effects, mutations, and antibiotic screening (Doron et al.,

2016). Thus, chloroplast transformation to produce dsRNA

is more advantageous than nuclear transformation.

Charoonnart et al., (2019) transferred dsRNA targeting

YHV-RdRp into chloroplasts of C. reinhardtii, and 8 days

after YHV infection, the survival of shrimp consuming

dsRNA-expressing microalgae increased by 34% compared

to that in controls, although the microalgae produced less

dsRNA than that with nuclear transformation. Purton et al.

(Kiataramgul et al., 2020) used WSSV-vp28 gene to integrate

into C. reinhardtii which is a chloroplast of cell wall-deficient,

and the C. reinhardtii was fed to shrimp, and the survival rate

of shrimp was 87% in the presence of WSSV invasion. Pham

et al., (2021) transferred the vp28 protein of WSSV into the

nucleus of C. reinhardtii cells, and after feeding, the shrimp

developed an immune response against WSSV. These results

indicate that C. reinhardtii is a very promising oral substance

that could be used to protect aquatic animals from pathogens.

8.2 Oral delivery is very common

Rattanarojpong et al., (2016) transferred dsRNA targeting the

rr2 gene into a recombinant baculovirus expressing vp28 and

then injected it into shrimp. Shrimp mortality was greatly

reduced and WSSV infection was also prevented.

Weerachatyanukul et al., (2021) co-packaged genes for

silencing vp28 and vp37 into a virus like particle-IHHNV and

injected this particle into shrimp, which not only improved

survival but also stimulated the immune response.

The most promising method of RNAi delivery in aquatic

waters is oral. Pathogens such as microorganisms and viruses can

overcome host immunity and cellular barriers that facilitate the

delivery of RNAi molecules (Abo-Al-Ela, 2020). Thammasorn

et al. (Ongvarrasopone and Panyim, 2007; Thammasorn et al.,

2015) used Escherichia coli to express dsRNA targeting the

vp28 and WSSV051 structural protein-encoding genes of

WSSV and used oral delivery of dsRNA to shrimp, which was

able to reduce the risk of WSSV infection and mortality in

shrimp, and this method was less costly than traditional

transcriptional techniques.

They found that the numbers of surviving inactivated

bacteria consumed were higher than those in shrimp that

were orally fed nanoparticles, suggesting that the oral delivery

of dsRNA-expressing bacteria improves host survival, as

illustrated in another study (Leigh et al., 2015).

9 Outlook

Aquaculture is becoming increasingly important and a major

support for the world economy. At the same time, there are many

pathogens in aquaculture that are constantly attacking aquatic

organisms. People began to use antibiotics in large quantities to

address this (Monahan et al., 2021), which has had a considerable

impact on the environment and human health. With the

continuous research on and maturity of RNAi technology,

researchers have shifted their attention from antibiotics to

RNAi for the control of aquatic aquaculture. This paper

highlights the potential dsRNA target genes in aquatic

pathogens that can reduce pathogen infection and improve

the survival of aquatic host animals after silencing and also

introduces species used as feed for oral-based dsRNA, such as

E. coli and microalgae. An increasing number of studies has

shown that the use of E. coli is a very inexpensive way to

synthesize dsRNA, and E. coli is constantly being modified to

obtain high yields (Hashiro and Yasueda, 2022).

However, the long-term effects of the regular use of E. coli

cells in shrimp feed on animals and the environment have yet

to be studied. Therefore, finding alternative dsRNA

production and delivery systems that can be used safely in

shrimp farms is a key challenge for future applications of this

technology. C. reinhardtii is considered a very safe organism

(Enzing et al., 2014) that has great appeal as a cell factory.

Probiotics are also very promising as oral feed for delivering

dsRNA, while enhancing host immunity.

At the same time, to be able to apply RNAi technology in

farms, we have to consider the cost and safety. Since dsRNA

molecules are constantly degraded, a large amount of dsRNA is

needed for the organisms, and ways to increase the yield while

controlling the cost is a problem that needs to be solved (Papić

et al., 2018; Huang and Lieberman, 2013). The use of RNAi

technology for aquatic control needs to be improved and the

threat to biodiversity needs to be further explored. The

continuous development of RNAi molecule production and

delivery methods targeting pathogen genes to reduce off-target
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effects and enhance host resistance remains a direction to be

pursued.
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