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Osteoporosis is an age-related systemic skeletal disease leading to bone mass

loss and microarchitectural deterioration. It affects a large number of patients,

thereby economically burdening healthcare systems worldwide. The low

bioavailability and complications, associated with systemic drug

consumption, limit the efficacy of anti-osteoporosis drugs currently

available. Thus, a combination of therapies, including local treatment and

systemic intervention, may be more beneficial over a singular

pharmacological treatment. Hydrogels are attractive materials as fillers for

bone injuries with irregular shapes and as carriers for local therapeutic

treatments. They exhibit low cytotoxicity, excellent biocompatibility, and

biodegradability, and some with excellent mechanical and swelling

properties, and a controlled degradation rate. This review reports the

advantages of hydrogels for adjuvants loading, including nature-based,

synthetic, and composite hydrogels. In addition, we discuss functional

adjuvants loaded with hydrogels, primarily focusing on drugs and cells that

inhibit osteoclast and promote osteoblast. Selecting appropriate hydrogels and

adjuvants is the key to successful treatment. We hope this review serves as a

reference for subsequent research and clinical application of hydrogel-based

delivery systems in osteoporosis therapy.

KEYWORDS

hydrogel, delivery system, osteoporosis, osteoclast, osteoblast, local treatment

1 Introduction

Osteoporosis is an age-related systemic skeletal disease leading to bone mass loss and

microarchitectural deterioration, leading to increased bone fragility and susceptibility to

fracture (Compston et al., 2019). The World Health Organization, based on standard

deviation scores for bone mineral density (BMD), set the criteria to diagnose osteoporosis

as a BMD T-score of –2.5 or less (Kanis, 1994). The prevalence of osteoporosis was found

to be higher for postmenopausal women (32.1%) compared to men aged 50 years or older
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(6.9%) (Wang L. et al., 2021). In addition, the onset of vertebral

compressive fractures among men and women affected by

osteoporosis and aged 80 years or older is nearly 40%, leading

to a high rate of mortality, and in turn increased healthcare costs

(Kado et al., 2003; Burge et al., 2007; Schousboe, 2016; Wang L.

et al., 2021). In fact, nearly six million osteoporosis-related

fractures are expected to occur annually by 2050, accounting

for an expenditure of over $ 25.43 billion (Si et al., 2015).

Despite the intrinsic self-repairing properties of bone tissue,

its regeneration is hindered in the complex osteoporotic

pathological environment; therefore, severe bone defects often

require targeted treatments promoting bone formation or anti-

resorptive therapies (Zhao et al., 2020; Macías et al., 2021).

Pharmacological therapy is commonly used for high-risk

patients in the absence of contraindications, such as

bisphosphonate (BP) drugs (Khosla et al., 2012; McClung

et al., 2013), receptor activator of nuclear factor κB ligand

(RANKL) inhibitors (Rachner et al., 2011), hormone-

replacement (Cauley et al., 2003), selective estrogen-receptor

modulators (Ettinger et al., 1999), and parathyroid hormone-

related protein (Neer et al., 2001; Miller et al., 2016). Despite anti-

resorptive effects and reduced fracture risks, the low

bioavailability and the high risk of complications linked to the

systemic use of these drugs limit their application (Khan et al.,

2015; Tan et al., 2016). For example, the very low bioavailability

of alendronate (0.6%) may cause renal dysfunction,

hypocalcemia, osteonecrosis of the jaw, and esophageal

ulceration after excessive use (Khan et al., 2015; Posadowska

et al., 2015; Hosny and Rizg, 2018; Nafee et al., 2018). Thus, the

development of a local delivery system assumes a high practical

significance in the clinical treatment of osteoporosis.

Hydrogels are cross-linking hydrophilic polymer chains

arranged in 3D networks, exhibiting low cytotoxicity and

excellent biocompatibility and biodegradability. Due to their

unique properties and high similarity to living tissues

(Ossipov et al., 2021; Zheng et al., 2021), hydrogels have

gained increasing attention for various biomedical

applications, such as wound dressing and tissue engineering

(Rinker et al., 2014; Norouzi et al., 2016; Solana Muñoz et al.,

2018; Ghavimi et al., 2019; Ning et al., 2019). However, their use

in bone regeneration is often hampered due to a lack of

mineralization. Thus, hydrogels are loaded with anti-

osteoporosis adjuvants to form a delivery system that can

effectively compensate for this deficiency. In recent years, the

development of hydrogel-related materials to treat osteoporosis

has garnered significant interest, and given the encouraging

results obtained, for instance, a locally-applied treatment was

found to inhibit peri-implant bone resorption, while enhancing

peri-implant bone formation and implant stability (Fu et al.,

2016; Kettenberger et al., 2017). In this review, we summarize the

preclinical research literature on the local treatment of

osteoporosis with hydrogel-based delivery systems developed

in the last decade, including different hydrogels and

adjuvants. Hence, we hope to provide a valid starting point

for subsequent research and clinical application of hydrogel-

based delivery systems for osteoporosis therapy.

2 Hydrogel carriers

According to the types of the components, here in this

review, we grouped the hydrogels into nature-based ones and

synthetic ones (Figure 1). Besides, composite materials

containing several types of hydrogels were also discussed. The

detailed discussion is listed as follows.

2.1 Nature-based hydrogels

Nature-based hydrogels are derived from cross-linking

components derived from nature. These are characterized

with low cytotoxicity, excellent biocompatibility, and

biodegradability (Table 1; Ito et al., 2012; Ito and Otsuka,

2013; Jiang et al., 2014; Ye et al., 2014; Lee et al., 2015;

Cancian et al., 2016; Ma et al., 2016; Pelled et al., 2016; Kim

et al., 2017; Kim et al., 2018; Nafee et al., 2018; Solana Muñoz

et al., 2018; Ghavimi et al., 2019; Liang et al., 2019; Ning et al.,

2019; Ossipov et al., 2021; van Houdt et al., 2021; Yilmaz et al.,

2021). The commonly used materials include hyaluronic acid

(HA), chitosan, collagen, gelatin, alginate, fibrin, agar and so on.

2.1.1 Hyaluronic acid
HA is a natural mucopolysaccharide acidic polymer and a

main component of the extracellular matrix. It is widely

distributed on the market as a hydrogel carrier (Kettenberger

et al., 2017) owing to its excellent biocompatibility, high

amenability, and multifunctional properties (Qiu et al.,

2021), which make it an optimal candidate for tissue

engineering as well. Ossipov et al. (2021) reported an

injectable and self-healing HA hydrogel that independently

released two different drugs in response to acidic and thiol-

containing microenvironments. Except for the hydrogel carrier

itself, the binding sites available on each individual component

must also be considered when designing hydrogels. For

instance, the BP prodrug is conjugated to HA via a self-

immolative disulfide linker, that is, stable in the blood

plasma and cleavable in the cytoplasm; the resulting HA-

linked BP ligands reversibly bind Ca2+ ions and form

coordination hydrogels (Ossipov et al., 2021).

2.1.2 Chitosan or chitin
Chitosan, a linear and semi-crystalline polysaccharide, is a

direct derivative of chitin, which is the second most abundant

natural polymer after cellulose (Friedman and Juneja, 2010; Gong

et al., 2022). Chitosan has excellent biocompatibility,

biodegradability, adsorption capacity, anti-bacterial properties,
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and thermosensitive properties (Cancian et al., 2016; Nafee et al.,

2018). It can be easily produced through acylation, alkylation,

and carboxylation reactions (Shariatinia, 2019). However,

chitosan-based hydrogels often fail to meet the mechanical

strength requirements of bone fillers. The poor mechanical

strength of chitosan-based hydrogels can be compensated by

incorporating several types of nanofillers, i.e., carbon nanotubes

and cellulose nanocrystals, which is particularly important for

treating managing osteoporotic vertebral compression fractures

(Cancian et al., 2016; Ghavimi et al., 2019; Vitale et al., 2022).

FIGURE 1
Nature-based and synthetic hydrogels. (A) Major components of nature-based and (B) synthetic hydrogels. HA, hyaluronic acid; PEG,
polyethylene glycol; PLGA, poly (lactic-co-glycolic acid); PCL, polycaprolactone; PAA, polyacrylic acid; CMT/HEMA, carboxy methyl tamarind/
hydroxyethyl methacrylate; BDI, butane-diisocyanate.

TABLE 1 Components and characteristics of nature-based hydrogels.

Hydrogels Literatures Characteristics

HA, Ca2+ Ossipov et al. (2021), van Houdt
et al. (2021)

self-healing, two drugs released independently in response to acidic and thiol-containing
microenvironments

HA, β-TCP Lee et al. (2015) porous β-TCP microspheres

Chitosan, β-glycerophosphate Nafee et al. (2018) Thermoreversibility

Chitosan, hydroxyapatite, carbon
nanotubes

Cancian et al. (2016) thermosensitive, higher resistance to compression, controlled release of protein drugs

Chitosan, cellulose nanocrystal Ghavimi et al. (2019) mechanical strength similar to vertebral bone, osteoinductivity

Collagen, hydroxyapatite, genipin Ma et al. (2016) improved mechanical property, higher gel content, lower swelling ratio, and tunable
degradation behaviors against collagenase

Collagen I Jiang et al. (2014) NA

Methacrylated gelatin Ning et al. (2019) prolonged drug release (>10 days)

Gelatin, HPA Kim et al. (2018) NA

Calcium alginate Ye et al. (2014) NA

Alginate, CaP Ito et al. (2012) slow-releasing drug reservoir, protective coating, pH buffer

Ito and Otsuka, (2013)

Silk fibroin Liang et al. (2019) NA

Fibrin Kim et al. (2017) commercially available

Pelled et al. (2016)

Agar, hydroxyapatite Solana Muñoz et al. (2018) screw augmentation effect

Silica-quince seed mucilage Yilmaz et al. (2021) osteogenesis

HA, hyaluronic acid; β-TCP, β-tricalcium phosphate; HPA, hydroxyphenyl propionic acid; CaP, calcium phosphate; NA, not available.
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2.1.3 Collagen or gelatin
Gelatin is a type of protein obtained by the partial hydrolysis

of collagen; both have similar homologies. Collagen has a rod-like

triple-helical structure, which is partially separated and broken

when it is partially hydrolyzed to make gelatin (Veis and Cohen,

1960). Collagen-based hydrogels formed under physiological

conditions using genipin as a cross-linker exhibited markedly

improved mechanical properties, higher gel content, lower

swelling ratio, and tunable degradation behaviors against

collagenase (Ma et al., 2016). In addition, Ning et al. (2019)

reported that the methacrylated gelatin-based hydrogel

prolonged the release of the adjuvant (>10 days).

2.1.4 Alginate
Alginate, derived from algae, is a linear copolymer composed

of beta-d-mannuronic acid and C-5-epimer alpha-l-guluronic

acid. An alginate solution gels when exposed to Ca2+ and other

bivalent cations as these cations strongly bind to the G residues of

the alginate molecule. Therefore, the calcium alginate gel is

considered a three-dimensional network of molecules with

cross-links between the G residues of other long-chain

molecules through the action of Ca2+ (Bjerkan et al., 2004).

The drug-release kinetics from hydrogels are commonly

controlled by the network properties and drug–network

interactions (Ossipov et al., 2021). The alginate gel sometimes

degrades too rapidly under acidic conditions, such as the area

around the osteoporotic bones. Thus, it has been reported that

adding amorphous CaP powders positively affected dissociation

rate (Ito et al., 2012; Ito and Otsuka, 2013), owing to the

pH buffering mechanism inside the gel, thereby allowing for a

controlled drug release.

2.2 Synthetic hydrogels

Synthetic hydrogels are covalently cross-linked with

synthetic materials (Sanyasi et al., 2014; Fu et al., 2016;

Tan et al., 2016; Neuerburg et al., 2019; Li et al., 2020;

Zhao et al., 2020; Wang X. et al., 2021; Chen et al., 2021)

(Table 2). Apart from the excellent mechanical and swelling

properties, some of them allow for a controlled drug release

(Zheng et al., 2021).

2.2.1 Poloxamer 407 and butane-diisocyanate
Some commercially available products, such as Poloxamer

407 and butane-diisocyanate, can be directly used as hydrogels to

carry adjuvants and are mainly used to study the function of

targeted drugs (Neuerburg et al., 2019; Chen et al., 2021). Other

commonly used synthetic materials used to produce hydrogels

are reported below.

2.2.2 Polyethylene glycol
PEG, also known as a macrogol, is a type of nontoxic and

water-soluble polymer with unique hydrophilicity and electrical

neutrality. It consists of chemically active hydroxyl groups at

both ends, thereby promoting the conjugation with other

functional groups (Alper and Pashankar, 2013; Shi et al.,

2021). It can rapidly form biocompatible gels and is easily

injectable; therefore, it is considered an ideal hydrogel carrier

(Li et al., 2020).

2.2.3 Poly lactic-co-glycolic acid
PLGA is a biodegradable polymeric compound formed by

polymerizing lactic acid and glycolic acid, which are by-

products of human metabolic pathways. Therefore, it is

nontoxic, except in those individuals suffering from

lactose deficiency. The co-polymerization between PLGA

and the carried drug may prolong the release time; this

confirms that the release of the drugs from the carrier

depends on the degradation of the hydrogel and the

decomposition of the drug complex (Liu et al., 2017; Peng

et al., 2017). Additionally, PLGA can co-polymerize with

PEG to form new polymers for hydrogel-based delivery

systems (Liu et al., 2017).

TABLE 2 Components and characteristics of synthetic hydrogels.

Hydrogels Literatures Characteristics

Poloxamer 407 Chen et al. (2021) commercially available, thermosensitive

Wang et al. (2021)

Tan et al. (2016)

Fu et al. (2016)

BDI Neuerburg et al.
(2019)

commercially available, thermosensitive

Tetra-PEG Li et al. (2020) biocompatible, rapid gel formation, excellent injectability

PAA, nano-hydroxyapatite, sodium
carbonate

Zhao et al. (2020) initial morphology and mechanical properties maintained under physiological conditions, good primary
stability, biocompatibility, bioactivity, and osteoconductivity

CMT/HEMA Sanyasi et al. (2014) effective adhesion, growth and further clustering of bone precursor cells, without any cytotoxicity

BDI, butane-diisocyanate; PEG, polyethylene glycol; PAA, polyacrylic acid; CMT/HEMA, carboxy methyl tamarind/hydroxyethyl methacrylate.
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2.2.4 CHAp-polyacrylic acid
CHAp-PAA is the term used to refer to a supramolecular

hydrogel composed of nano-hydroxyapatite, sodium carbonate,

and polyacrylic acid (PAA) (Zhao et al., 2020); owing to the high

mineralization, such hydrogel can be used as a scaffold to treat

bone defects in osteoporotic individuals. Because of the

biomineral composition, the hydrogel can mimic the chemical

composition and structural characteristics of natural bones, while

achieving mechanical stability, biocompatibility, and

osteogenesis without delivering any additional therapeutic

agents or stem cells (Zhao et al., 2020).

2.2.5 Carboxy methyl tamarind/hydroxyethyl
methacrylate

CMT/HEMA (ratio of 1:10) is a hydrogel with a surface that

promotes the adhesion of bone precursor cells and efficient

growth of bone tissues (Sanyasi et al., 2014). It is highly

compatible with bone cells (RAW264.7) and sensitive to

neuronal (Neuro2a) and human umbilical vein endothelial

(HUVEC) cells (Sanyasi et al., 2014).

2.3 Composite hydrogels

While nature-based hydrogels are unable to withstand the

pressure at the site of the bone injury because of their poor

mechanical properties, their synthetic counterparts generally

exhibit poor biocompatibility, lack interactions with targeted

cells, and tend to cause adverse reactions in the body (Zheng

et al., 2021). Composite hydrogels that combine the

advantages of natural and synthetic hydrogels have been

proposed to overcome these individual drawbacks (Utech

and Boccaccini, 2016; Gačanin et al., 2017; Kettenberger

et al., 2017; Kim et al., 2018; Segredo-Morales et al., 2018;

García-García et al., 2019; Ghavimi et al., 2019; Akbari et al.,

2020; Bai et al., 2020; García-García et al., 2020; Gilarska

et al., 2021; Yoon et al., 2021); some of these composite

hydrogels with their respective characteristics are reported

in Table 3. However, given the treatment required to treat

osteoporosis, a prolonged drug release time was the main aim

while designing the target composite hydrogel, as discussed

below.

TABLE 3 Components and characteristics of composite hydrogels.

Hydrogels Literatures Characteristics

Hydroxypropyl chitin, HA Yu et al. (2020b) thermosensitive, tunable biodegradable property, long-term sustained
drug release (>28 days) with considerable structure stability,
compatibility, osteoconductive potential

Hydroxypropyl chitin, alginate, Ca2+ Yu et al. (2020a) thermosensitive, long-term sustained drug release (>28 days) with
conformation stability, biocompatible, osteoconductive potential

Chitosan, glycerophosphate, gelatin Akbari et al. (2020) High gel strength, slow drug release rate, promotive effect on
differentiation of osteoblasts

Biopolymeric collagen/chitosan/hyaluronic acid matrix, amine group-
functionalized silica particles decorated with apatite, genipin

Gilarska et al. (2021) lack systemic toxicity, particularly useful for the repair of small
osteoporotic bone defects

HA, PVA, hydroxyapatite Kettenberger et al.
(2017)

commercially available

Gellan gum, PLGA Posadowska et al.
(2015)

low release rate

N-chitosan, ADH, HA-ALD Bai et al. (2020) self-healable, injectable, and biodegradable, functions and structures
retained after external damage

Alginate, PLGA García-García et al.
(2020)

injectable, lower porosity, water absorption capacity and bone repair
compared with its solid sponge state

Alginate, PLGA-PEG-PLGA, Ca2+ Liu et al. (2017) thermosensitive, controlled drug release

Chitosan, collagen, 2-hidroxipropil γ-ciclodextrin, nanoparticles of
hydroxyapatite, PLGA

García-García et al.
(2019)

controlled drug release

Human serum albumin, ssDNA, PEG Gačanin et al. (2017) biocompatible, biodegradability, rapid gelation under physiological
conditions, self-healing, spatiotemporally controlled release of active
proteins

Gelatin, PNIPAM, PDMS Yoon et al. (2021) highly interconnected, dense channel networks

PF127, T1307, CD, PLGA, PLA Segredo-Morales et al.
(2018)

thermoresponsive

mPEG-PLGA Peng et al. (2017) extended drug release, biocompatibility

PLGA, PCL, capryol 90 Hosny and Rizg, (2018) higher bioavailability, extended drug release (>3 months)

HA, PF127 Akbari et al. (2020) commercially available

HA, hyaluronic acid; PVA, polyvinyl alcohol; PLGA, poly (lactic-co-glycolic acid); N-chitosan, N-carboxyethyl chitosan; ADH, adipic acid dihydrazide; HA-ALD, hyaluronic acid-

aldehyde; PEG, polyethylene glycol; PNIPAM, poly (N-isopropylacrylamide); PDMS, polydimethylsiloxane; PF127, Pluronic F127; T1307, Tetronic 1307; CD, α-cyclodextrin; PLA, poly
lactic acid; PCL, polycaprolactone.
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The combination of natural hydrogels showed interesting

results, as reported in several studies (Akbari et al., 2020; Yu et al.,

2020a; Yu et al., 2020b) investigating the combination of chitin

and chitosan for this scope; the resulting composite materials

showed a good adsorption capacity coupled with a longer drug

release time. Yu et al. combined hydroxypropyl chitin and HA or

alginate, which exhibited a prolonged (28 days) and controlled

drug release and considerable structure stability, and the studies

showed a higher ALP activity, calcium expression and

extracellular calcium deposition without inflammation and

immune responses, indicating its potential for osteoconductive

applications (Yu et al., 2020a; Yu et al., 2020b).

For composite hydrogels formed by the combination of

natural and synthetic, or synthetic and synthetic components,

PLGA is often added to prolong the drug release time

(Posadowska et al., 2015; Liu et al., 2017; Peng et al., 2017;

Hosny and Rizg, 2018; García-García et al., 2019). PLGA is

commonly used in such composite systems to form microsphere

structures. In the study by García-García et al. (2019), the

hydrogel core of a sandwich-like system composed of the

chitosan-collagen complex, 2-hidroxipropil-ciclodextrina and

hydroxyapatite nanoparticles, and the addition of PLGA-based

microspheres controlled the release of the adjuvants. The system

placed in the defect easily adapted to the shape; after 12 weeks,

approximately 50% of the defect was refilled with new tissue.

Hosny and Rizg, (2018) adopted a Box–Behnken experimental

design while using the Statgraphics® software to develop an in

situ hydrogel. The composite material, composed of PLGA, PCL,

and the lipid surfactant capryol®90, exhibited a high

bioavailability and extended drug release (>3 months), which

aided in minimizing the side effects of several anti-osteoporosis

drugs (Hosny and Rizg, 2018).

Several other composite hydrogels have been developed

based on different application requirements. The circulatory

system is the major route used to deliver drugs. Thus, a

highly interconnected and dense channel network can be

achieved by combining gelatin, poly (N-isopropylacrylamide),

and polydimethylsiloxane. This composite material overcame the

200 μmdiffusion limit of any 3D hydrogel (Yoon et al., 2021) and

aided the recovery of the endocrine function. Moreover, it led to a

full endometrium regeneration in the osteoporotic models, while

effectively suppressing the side effects observed with the synthetic

hormone treatment and preventing the representative aftereffects

of menopause (Yoon et al., 2021). Lately, the self-healing capacity

reported for some types of hydrogels has also received attention

(Gačanin et al., 2017; Bai et al., 2020). Adipic acid dihydrazide

(ADH), which is also a cross-linking agent promoting the

formation of relatively stable hydrazone links from aldehydes

(Bystrický et al., 1999) is one such example. It is cross-linked with

N-carboxyethyl chitosan (N-chitosan) and hyaluronic acid-

FIGURE 2
Hydrogel-based delivery systems. HA, hyaluronic acid; PVA, polyvinyl alcohol; HPCH, hydroxypropyl chitin; PEG, polyethylene glycol; PCL,
polycaprolactone; SK, silk fibroin; GG, gellan gum; PLGA, poly (lactic-co-glycolic acid); P407, Poloxamer 407; BDI, butane-diisocyanate; PNIPAM,
poly (N-isopropylacrylamide); PF127, Pluronic F127; T1307, Tetronic 1307; CD, α-cyclodextrin; PLA, poly-lactic acid; HAP, hydroxyapatite; β-TCP, β-
tricalcium phosphate; β-GP, β-glycerophosphate; CNTs, carbon nanotubes; MA, methacrylic anhydride; GP, glycerophosphate; ADH, adipic
acid dihydrazide; ALD, aldehyde; HP-γ-CD, 2-hidroxipropil γ-cyclodextrin; PDMS, polydimethylsiloxane; HPA, hydroxyphenyl propionic acid; BPs,
bisphosphonates; BMP-2, bone morphogenetic protein-2; sCT, salmon calcitonin; ASCs, adipose-derived stem cells; MSC-BMP6, porcine
mesenchymal stem cells overexpressing the BMP6 gene; OPG, osteoprotegerin; BMP-7, bone morphogenetic protein-7; OS, ovarian spheroids;
TMSC, tonsil-derived mesenchymal stem cells.
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aldehyde (HA-ALD) in situ to form an injectable and self-healing

supramolecular hydrogel. This composite hydrogel exhibited a

remarkable self-healing capacity and retained its structural

integrity after it was subjected to external damage (Bai et al.,

2020).

3 Loaded anti-osteoporosis adjuvants

The human skeleton is composed of the cortical and

cancellous bone (the main part of the vertebrae). Bone

remodeling is a process in which osteoclastic bone resorption

and osteoblastic bone formation are regulated to achieve a

dynamic balance in young adults (Hattner et al., 1965). The

process of aging is associated with a negative remodeling balance,

resulting in bone mass loss and disruption of the bone

microarchitecture (Compston et al., 2019). The genetic factors

account for 50%–85% of the normal variance in bone mass. The

general signal pathways in osteoporosis include the receptor

activator of nuclear factor κB (RANK), RANKL,

osteoprotegerin (OPG), bone morphogenic protein (BMP),

and Wingless-related integration site (Wnt) (Rachner et al.,

2011). As discussed below, the loaded adjuvants mainly

inhibit osteoclast formation or promote osteoblasts formation;

several systems composed of the hydrogel-based carrier and

adjuvant have been investigated thus far (Figure 2).

3.1 Inhibition of osteoclastic bone
resorption

3.1.1 Osteoclast differentiation pathways and
bone resorption function

To treat osteoporosis successfully, it is important to

inhibit the formation, differentiation, and resorption

functions of osteoclasts. Osteoclasts are a special type of

terminally differentiated cell deriving from a family of

mononuclear macrophages in the blood. They can be fused

by their mononuclear progenitor cells in various ways to form

a multinuclear giant cell, where the RANKL and macrophage

colony-stimulating factor (M-CSF) play a crucial role

(Rachner et al., 2011). Tumor necrosis factor superfamily

11 (TNFSF11), the gene encoding RANKL, is abundantly

expressed by osteoblasts, bone marrow stromal cells, and T

and B lymphocytes (Rachner et al., 2011). As a homotrimeric

type II transmembrane protein, RANKL can be released from

the cell membrane upon decomposition of several

extracellular proteases, including disintegrin and

metalloprotease (Nagy and Penninger, 2015). RANK and

OPG are the two main receptors of RANKL; such receptors

are also known as tumor necrosis factor receptor superfamily

member 11A (TNFRSF11A) and TNFRSF11B, respectively

(Nagy and Penninger, 2015).

When secreted RANKL binds to the membrane-binding

receptor RANK on the precursor of osteoclasts, it causes the

RANK receptor to polymerize into a trimer that recruits several

junction molecules, including tumor necrosis factor receptor-

associated factor 6 (TRAF6) (Armstrong et al., 2002). The

recruitment of TRAF6 leads to the activation of a variety of

signaling pathway cascades, including inhibitor of nuclear factor

κB kinase (IKK), mitogen-activated protein kinase (MAPK)

family, and cellular Src kinase (c-Src), which enable

osteoclasts to differentiate, survive, polarize, and have

absorptive activity. The MAPK pathway is composed of three

types of molecules: MAPK (including ERK, JNK, and p38),

MAPK kinase (MAPKK or MEK), and MAPKK kinase

(MAPKKK or MEKK) (Lee et al., 2018). The activation of

MAPKs induces the nuclear translocation of c-Fos and c-Jun,

while nuclear factor-κB (NF-κB), derived from the IKK pathway,

up-regulates c-Fos in the nucleus upon nuclear translocation.

The c-Src activates the anti-apoptotic program through protein

kinase B. The nuclear factor of activated T-cells cytoplasmic 1

(NFATc1) is a critical transcription factor for osteoclast

differentiation. Upon the initial activation through NF-κB and

NFATc2, it is then upregulated by the action of c-Jun, p38, c-Fos,

calcineurin, and calcium ions (Zhao et al., 2010). Finally, the up-

regulated c-Fos and NFATc1 synergistically promote the

expression of osteoclast-specific genes, such as tartrate-

resistant acid phosphatase (TRAP), cathepsin K (CtsK),

matrix metalloproteinase-9 (MMP-9), and vesicle-type ATPase

(V-ATPase) V0 domain d2 subunit (Teitelbaum, 2000; Boyle

et al., 2003; Nagy and Penninger, 2015). Bone degradation

includes polarization, acidification, and protein breakdown;

during these steps, the ruffled bone edge formed by

osteoclasts plays an important role. In fact, it secretes protons

(H+) into the bone resorption space through the V-ATPase and

proteases such as TRAP, CtsK, and MMP-9; while the former

degrade the bone minerals, the latter deteriorate the organic bone

components (Georgess et al., 2014) (Figure 3).

3.1.2 Adjuvants commonly used to inhibit
osteoclasts

The binding between RANKL and RANK, and the following

signaling cascade play an important role in osteoclast

differentiation and survival. The inhibition of these pathways

has become a feasible target for the systematic or local treatment

of osteoporosis (Matsumoto and Endo, 2021). Targeting

extracellular pathways, OPG-loaded composite hydrogels

capable of controlling the release of OPG can inhibit the

binding of RANKL and RANK; therefore, the osteoclastic

activation is reduced, while promoting bone regrowth and

osseointegration in osteoporotic defects (Wang X. et al., 2021).

Alendronate, which is widely used to alleviate osteoporosis by

inhibiting osteoclasts, is one of the most common drugs loaded

on hydrogels (Posadowska et al., 2015; Nafee et al., 2018; Li et al.,

2020; Gilarska et al., 2021; Jiang et al., 2022); such a complex
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would likely inhibit the rate-limiting step in the cholesterol

biosynthesis pathway, essential for osteoclast function (Fisher

et al., 1999). In addition, it was observed that the loading of

zoledronate does not affect its action; in fact, the inhibition of the

degradation of the mineralized hydrogel and the resorption of the

peri-implant bone are effectively carried out by the loaded and

unbound zoledronate (Kettenberger et al., 2017).

3.2 Promotion of osteogenesis

3.2.1 Osteogenic differentiation pathways
During osteoporosis development, bone marrow mesenchymal

stem cells (MSCs) promote the depletion of osteoblasts while

increasing the amount of adipocytes, thereby resulting in a slower

bone formation rate and improved marrow fat accumulation

(Moerman et al., 2004; Li et al., 2015). The specific differentiation

direction is precisely regulated by factors in the signaling pathways,

transcription factors, and microRNAs. Among numerous studies of

signaling pathways, the wingless and int-1 (Wnt) classes and BMP

represent two critical signaling pathways (Hu et al., 2018).

The canonical Wnt signaling, also called Wnt/β-catenin, is
essential for determining the fate of osteoblast cells. It binds a

seven-transmembrane-spanning frizzled protein (Frz) receptor

with the low-density lipoprotein receptor-related protein (LRP)

5/6 co-receptor to prevent the phosphorylation and degradation

of β-catenin (Kim et al., 2013). Then, β-catenin translocates into

the nucleus to promote osteogenesis while inhibiting

adipogenesis, regulated by MSCs (Etheridge et al., 2004; Shen

et al., 2011; Yuan et al., 2016). Moreover, this function may be

achieved by inducing the expression of runt-related transcription

factor-2 (runx-2) and osterix, and inhibiting peroxisome

proliferation-activated receptor γ (PPARγ) (Bennett et al.,

2005; Kang et al., 2007). BMP is the collective name for a

series of transforming growth factor-β (TGF-β) family

members and operates through either canonical or non-

canonical BMP signaling (Chen et al., 2012) upon binding to

bone morphogenetic protein receptor I (BMPR-I) and BMPR-II.

The canonical BMP signaling induces phosphorylation of

Smad1/5/8, which translocates into the nucleus upon the

formation of complexes with Smad4; the non-canonical BMP

signaling occurs mainly through the p38 MAPK pathway (Chen

FIGURE 3
Osteoclast differentiation pathways and its bone resorption function. RANKL, ligand of receptor activator of nuclear factor κB; RANK, receptor
activator of nuclear factor κB; OPG, osteoprotegerin; TRAF6, tumor necrosis factor receptor-associated factor 6; IKK, inhibitor of nuclear factor κB
kinase; IκB, inhibitor of nuclear factor kappa B; NF-κB, nuclear factor-κB; PKB, protein kinase B; MAPKKK, mitogen-activated protein kinase; MAPKK,
mitogen-activated protein kinase; MAPK, mitogen-activated protein kinase; ERK, extracellular regulated protein kinase; JNK, c-Jun N-terminal
kinase; NFATc1, nuclear factor of activated T cell cytoplasmic 1; NFATc2, nuclear factor of activated T cell cytoplasmic 2; V-ATPase, vacuolar H (+)
ATPase; TRAP, tartrate-resistant acid phosphatase; MMP9, matrix metalloproteinase 9; Ctsk, cathepsin K.
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et al., 2012). Both signaling can regulate the target gene

expression of runx-2, osterix, and PPARγ, showing dual roles

in inducing osteogenic and adipogenic differentiation of MSCs

(Kang et al., 2009). Several studies (Wang et al., 1993; Gori et al.,

1999) indicate that a high BMP-2 concentration accelerates

osteoblast differentiation, while adipocyte formation is

promoted at low concentrations and in the presence of BMP-

4 (Tang et al., 2004) (Figure 4).

3.2.2 Adjuvants commonly used to promote
osteogenesis

Since a high concentration of BMP-2 promotes

osseointegration, it is one of the most common drugs loaded

in hydrogel scaffolds (Lee et al., 2015; Segredo-Morales et al.,

2018; García-García et al., 2019; Bai et al., 2020; García-García

et al., 2020; Wang et al., 2021b; van Houdt et al., 2021). BMP-7 or

BMP-6 loaded hydrogels have been used in local treatment, are

potent stimulators of osteogenesis, and can reduce the risk of

further osteoporosis-associated secondary fractures (Pelled et al.,

2016; Neuerburg et al., 2019). Alternatively, Rosuvastatin is a

popular drug that promotes osteogenic differentiation of MSCs

in the model of osteoporosis by the Wnt/β-catenin signaling

(Wang et al., 2019; Akbari et al., 2020). Simvastatin can also

promote osteogenesis, and the underlying mechanism appears to

involve a higher expression of BMP-2 (Ito et al., 2012; Fu et al.,

2016; Tan et al., 2016; Zhu et al., 2021). In addition, carrying Si or

Sr ions has been shown to promote osteogenic differentiation,

with the former being controlled by upregulating the expression

of the osteogenesis-related genes (Peng et al., 2017; Yilmaz et al.,

2021). Hydrogels can also be directly loaded with MSCs, showing

FIGURE 4
Osteogenic differentiation pathways and possible fates of osteoblasts. MSC, mesenchymal stem cell; BMP, bone morphogenic protein; BMPR,
bonemorphogenic protein receptor; MAPK,mitogen-activated protein kinase; Smad, small mothers against decapentaplegic;Wnt, wingless and int-
1; LRP, low density lipoprotein receptor-related protein; GSK, glycogen synthase kinase; Runx2, runt-related transcription factor 2; ALP, alkaline
phosphatase; OCN, osteocalcin; COL-1, collagen-1; BSP, bone sialoprotein; OPN, osteopontin; PPARγ, peroxisome proliferation-activated
receptor γ.
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potential as a supplement or alternative to the current therapies

proposed (Kim et al., 2018; Chang et al., 2019). Adipose-derived

stem cells are also able to promote osteogenesis and inhibit

adipogenesis of osteoporotic MSCs through activation of the

BMP-2/BMP receptor-type IB signal pathway in the local

delivery system (Jiang et al., 2014; Ye et al., 2014).

Interestingly, it was observed that the treatment of drug-

loaded hydrogels by extracorporeal shockwaves can promote

bone formation by upregulating the alkaline phosphatase

activity, mineralization, and expression of runx-2, type-I

collagen, osteocalcin, and osteopontin (Chen et al., 2021).

3.3 Hormone analogs and osteo
immunomodulators

The use of hormones and their analogs often play an

important role in osteoporosis treatment, triggering

complex physiological mechanisms, which have effects on

osteoclasts and osteoblasts. Abaloparatide, as an analog of

the human recombinant parathyroid hormone-related protein

(PTHrp) that selectively binds to the RG conformation of the

parathyroid hormone type one receptor, may represent a

successful option for postmenopausal women affected by

osteoporosis (Hattersley et al., 2016; Miller et al., 2016). Its

role as a drug in hydrogel scaffold has also been proven (Ning

et al., 2019). The hydrogel system containing calcitonin

effectively reduced serum calcium levels, while promoting

the reconstruction of bone trabecula (Liu et al., 2017; Yu

et al., 2020b). Estrogens have also been tested for drug delivery

in hydrogel carriers; for instance, 17β-estradiol is often locally

delivered along with BMP (Segredo-Morales et al., 2018;

García-García et al., 2019). In addition, hormone

autocrination by vascularized hydrogel delivery of ovary

spheroids (VHOS) to treat ovarian dysfunctions is

successively conducted. The VHOS implantation effectively

suppresses the side effects usually observed with synthetic

hormone treatment, such as tissue overgrowth, hyperplasia,

cancer progression, and deep vein thrombosis (Yoon et al.,

2021). Moreover, recent studies have emphasized the use of

immune cells in bone regeneration, giving rise to a new

research field termed “osteoimmunology” (Liu et al., 2018;

Fan et al., 2021). Among various innate immune cells,

macrophages are one of the most vital effectors; as an

example, they are the earliest cells approaching the implant

area upon surgery. In the study of Jin et al. (2019) biomimetic

hierarchical intrafibrillarly mineralized collagen loading IL-4

potently induced osteogenesis by promoting CD68+CD163+

M2 macrophage polarization in response to the critical-sized

bone defects. In terms of other immune cells, hydroxyapatite

nanorods with different aspect ratios could regulate

osteogenesis through the modulation of T cells and IL-22

during bone regeneration (Yu et al., 2022).

4 Perspective and conclusion

As osteoporosis is a systemic disease, its local treatment has often

been underestimated in the past; however, a hydrogel-adjuvant

delivery system might lead to significant advantages in some

specific cases, including local bone augment in surgery to prevent

screw loosening or accelerating local bone healing after fracture. The

inherent advantages of using natural hydrogels, i.e., good

biocompatibility, cannot offset their lacking in mechanical

properties; therefore, the modification of these natural components

or the addition of synthetic ones is usually inevitable. The resulting

composite hydrogel would ideally have excellent mechanical and

swelling properties, controlled degradation and release rate, high

drug-loading capacity, low cytotoxicity, and high biocompatibility.

Regarding the loaded adjuvants, they should effectively promote

osteoblasts while inhibiting the formation of osteoclasts. Despite

the tremendous progress made in the field of tissue engineering

over the past several decades, the passage from basic research to

clinical application remains a critical challenge. The detection of the

ideal hydrogel-adjuvant system has the potential to ease such a

transition, but it requires the joint efforts of clinicians and researchers.
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