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(E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP) reductase (IspH)

is a [4Fe-4S] cluster-containing enzyme, involved in isoprenoid biosynthesis as

the final enzyme of the methylerythritol phosphate (MEP) pathway found in

many bacteria andmalaria parasites. In recent years, many studies have revealed

that isoprenoid compounds are an alternative to petroleum-derived fuels. Thus,

ecofriendly methods harnessing the methylerythritol phosphate pathway in

microbes to synthesize isoprenoid compounds and IspH itself have received

notable attention from researchers. In addition to its applications in the field of

biosynthesis, IspH is considered to be an attractive drug target for infectious

diseases such as malaria and tuberculosis due to its survivability in most

pathogenic bacterium and its absence in humans. In this mini-review, we

summarize previous reports that have systematically illuminated the

fundamental and structural properties, substrate binding and catalysis,

proposed catalytic mechanism, and novel catalytic activities of IspH.

Potential bioengineering and biotechnological applications of IspH are also

discussed.
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Introduction

Isoprenoids, including steroids and terpenes, are one of the largest and most diverse

classes of natural products. They include essential biological compounds such as vitamins,

cholesterol, steroid hormones, carotenoids, and quinines (Rohmer, 1999; Eisenreich et al.,

2004). In organisms they are derived from the same precursors: isopentenyl diphosphate

(IPP) and dimethylallyl diphosphate (DMAPP) (Oldfield and Lin, 2012). Two distinct

biosynthetic pathways are known to produce both IPP and DMAPP: the mevalonate

(MVA) pathway, which is present in mammals as well as some microorganisms, and the

methylerythritol phosphate (MEP) pathway, found in many pathogenic bacteria such as

Mycobacterium tuberculosi and Plasmodium falciparum (Kuzuyama and Seto, 2003).
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TheMEP pathway (Figure 1) begins with the condensation of

pyruvate and glyceraldehyde 3-phosphate to form 1-deoxy-

D-xylulose-5-phosphate (DXP), catalyzed by the enzyme 1-

deoxyxylulose-5-phosphate synthase (DXS). DXP is then

converted into 2-C-methyl-D-erythritol-4-phosphate by IspC

and is also called 1-deoxyxylulose-5-phosphate

reductoisomerase (DXR). A sequence of steps catalyzed by the

enzymes IspD, IspE, and IspF converts 2-C-methyl-D-erythritol-

4-phosphate into 2-C-methyl-D-erythritol-2,4-cyclodiphosphate

via cytidine diphosphate intermediates (4-diphosphocytidyl-2-

C-methyl-D-erythritol and 4-diphosphocytidyl-2-C-methyl-D-

erythritol-2-phosphate). IspG/GcpE catalyze the penultimate

reaction in the pathway by reducing and opening the cyclic

diphosphate intermediate to form (E)-4-hydroxy-3-methylbut-

2-enyl pyrophosphate (HMBPP). The final step is the conversion

of HMBPP into a mixture of IPP and DMAPP (Wang et al., 2012;

Span et al., 2014). This reductive dehydroxylation (Figure 1) is

catalyzed by IspH, an oxygen-sensitive monomeric protein with a

[4Fe-4S] cluster at the active site. Because it plays a key role in the

biosynthesis of isoprenoids and is essential for survival, IspH has

attracted great interest, particularly with regard to the

development of new antimicrobial drugs as well as novel

biofuels as alternatives to petroleum-derived fuels.

In this mini-review, we summarize the fundamental features

of IspH, its structural properties, substrate binding and catalysis,

proposed catalytic mechanisms, and novel catalytic activities.

Potential bioengineering and biotechnological applications of

IspH are also discussed.

Fundamental features of IspH

As an enzyme in the MEP pathway, IspH occurs in most

bacteria, plant chloroplasts, green algae, and apicomplexan, but it

is absent in humans (Rohmer et al., 2004). The lytB gene,

encoding LytB (EC.1.17.7.4), also called IspH, was first

described in Escherichia coli as a gene involved in penicillin

resistance (Gustafson et al., 1993) and was later reported to be

present in other bacteria (Potter et al., 1998). Cunningham et al.

discovered that the deletion of lytB from Synechocystis

PCC6803 was fatal, but the strain was able to recover when

supplied with an analog of either IPP or DMAPP (3-methyl-3-

butene-1-alcohol or 3-methyl-2-butene-1-alcohol, respectively)

in the culture medium. Moreover, lytB can increase the

biosynthesis of carotenoids when expressed in E. coli

(Cunningham et al., 2000). These findings confirm that lytB is

involved in the MEP pathway. Since these studies, a series of

in vitro experiments have shown that IspH is the last enzyme in

the MEP pathway, responsible for the conversion of HMBPP to

IPP and DMAPP (Altincicek et al., 2002; Petra et al., 2002).

Because IspH contains an oxygen-sensitive [4Fe-4S] cluster

at its active site, it is easily oxidized and inactivated when exposed

FIGURE 1
Microbial MEP pathway. The involved genes and corresponding enzymes are dxs: 1-deoxyxylose-5-phosphate synthase; ispC: 1-deoxyxylose-
5-phosphate reductoisomerase; ispD: 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase; ispE: 4-(cytidine-5′-diphosphate)-2-c-methyl-d-
erythritol kinase; ispF: 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase; ispG: 4-hydroxy-3-methyl-2-(E)-butenyl pyrophosphate
synthase; and ispH (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate reductase. The involved intermediate metabolites are DXP: 1-Deoxy-
D-xylulose-5-phosphate; MEP: 2C-methyl-D-erythritol-4-phosphate; CDP-ME: 4-(cytidine-5′-diphosphate)- 2-c-methyl-d-erythritol; CDP-MEP:
2-C-methyl-D-erythritol-2,4-cyclodiphosphate; MEC: 4-hydroxy-3-methyl-2-(E)-butenyl pyrophosphate; and HMBPP (E)-4-hydroxy-3-
methylbut-2-enyl pyrophosphate.
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to air. Thus, purification of this protein is usually carried out in

an anaerobic chamber. Gräwert et al. reported that a purified (in

anaerobic conditions) solution of IspH was iron-green in color.

When exposed to air for 1 h, the protein gradually deactivated

and turned light brown (Gräwert et al., 2010). Decomposition of

the oxygen-sensitive [4Fe-4S] cluster in IspH leads to partial loss

of the tertiary structure and to complete loss of function, as also

observed for aconitase (Kent et al., 1982) and radical S-adenosyl-

L-methionine (SAM) enzymes (Tamarit et al., 2000; Layer et al.,

2004).

Numerous reports on the biochemical properties and enzyme

kinetics of IspH also exist. Altincicek et al. determined that the

optimum pH of Aquifex aeolicus IspH (AaIspH) was in the range

7.0–7.5. Activity was observed at 30°C–70°C, with maximum

activity occurring at 60°C. The Km value of AaIspH for HMBPP

was 590 ± 60 μM (Altincicek et al., 2002).

Structure, substrate binding, and catalysis
of IspH

Even though IspHs from different microorganisms exhibit a

low sequence homology, for example, the sequence similarity of

E. coli and A. aeolicus IspHs is only 43%, high structural

similarity between different IspHs is observed. X-ray

crystallographic structures of IspHs are available for the

protein in E. coli (EcIspH, PDB: 3F7T) (Gräwert et al., 2010),

A. aeolicus (AaIspH, PDB: 3DNF) (Rekittke et al., 2008), and P.

falciparum (PfIspH, PDB: 4N7B) (Rekittke et al., 2013). These

structures present a similar “trefoil” arrangement consisting of

three α/β domains with the Fe-S cluster bound at the center of the

structure (Figures 2A, B). The [4Fe-4S] cluster is usually present

in the crystallographic structure of IspH. However, the crystal

structure of IspH in A. aeolicus exhibited a [3Fe-4S] center; it is

believed that the [3Fe-4S] center observed in the crystal structure

lost an iron atom during co-crystallization with HMBPP

(Rekittke et al., 2008). In functional IspHs, the oxidized

cluster is in the form [4Fe-4S]2+, which is bound to three

highly conserved cysteine residues. The fourth (unique) Fe

atom is involved in ligand binding and electron transport

during catalysis.

The catalytic reaction of IspH is a redox reaction. The ligand

can be an electron donator, such as a flavodoxin/flavodoxin

reductase/NADH system (E. coli) (Wolff et al., 2002; Puan

et al., 2005), or ferredoxin (in P. falciparum) (Röhrich et al.,

2005), and is essential during catalysis. Chemical reductants,

such as artificial electron donors including photoactivated

deazaflavin (Xiao et al., 2008) and methyl dithionite

(Altincicek et al., 2002), can usually be used in in vitro

experiments (Gräwert et al., 2009).

Co-crystallization of an enzyme with a substrate is the

common method to explore the substrate binding and to

identify active regions of the enzyme. Although most studies

have merely obtained the ligand-free IspH structure which is

challenging to co-crystallize with a substrate, the crystal structure

of the EcIspH-ligand complex has been obtained and analyzed.

In the complex structure, the HMBPP substrate interacted with

multiple amino acid residues via hydrogen bonding. The

substrate-binding region and the key binding sites in

IspH were determined (Figures 2C, D) (Rekittke et al., 2013;

Xu et al., 2016). A number of amino acids residues were very

highly conserved in different IspHs (Figure 2E), and these

residues are mainly involved in catalysis or maintaining

enzyme activity. Three cysteine residues (Cys12, Cys96, and

Cys197 in E. coli IspH) bind to the iron-sulfur center;

mutation of any one of these residues causes a complete loss

of enzymatic activity (Petra et al., 2002; Gräwert et al., 2010). In

A. aeolicus IspH, three histidine residues, His42, His74, and

His124, are also involved in substrate binding (Gräwert et al.,

2009). Another conserved amino acid, Glu126 in E. coli IspH, has

been shown to play a crucial role as a proton donor during

catalysis (Span et al., 2012a). The residue His41 in E. coli

IspH (His42 in A. aeolicus IspH) is predicted to be involved

in the binding of HMBPP, is essential for catalysis, and may be

involved in delivering H+ from Glu126 to the bound HMBPP.

The residue Thr167 may act as a proton relay and Glu126 serves

as the ultimate proton donor (Gräwert et al., 2009).

The mechanism of enzyme catalysis for IspH is controversial

and there have been several proposals related to this (Altincicek

et al., 2002; Wolff et al., 2002; Rohdich et al., 2003; Xiao et al.,

2008; Xiao and Liu, 2008; Gräwert et al., 2009). Three main

hypotheses for the catalytic mechanism have been proposed. In

the Birch Reduction Theory (Figure 3A), the process of reduction

and dehydroxylation of HMBPP is similar to a Birch reduction

reaction. When the HMBPP substrate binds to the protein, an

electron is first transferred from the [4Fe-4S] center to HMBPP,

which then protonates and loses a H2O molecule. After the

hydroxyl is lost, HMBPP forms an allyl carbon free radical;

the intermediate then accepts a second electron and is protonated

to form IPP and DMAPP (Rohdich et al., 2003). The Birch

Reduction Theory is regarded as the most likely mechanism

occurring for IspH-based catalysis.

The second proposal is the Bioorganometallic Theory

(Figure 3B), which was proposed based on the biophysical

properties of the complex formed between the HMBPP

substrate and the IspH Glu126Ala mutant (Wang et al., 2010).

In this mechanism, the substrate hydroxyl group first binds to the

IspH [4Fe-4S] cluster and then receives an electron to form an

HMBPP-[4Fe-4S] complex, similar to a π or 2-alkenyl/

metallacycle complex, which is then dehydrated to form a 1-

allyl intermediate. This receives an electron and is reduced to

form a 3-allyl intermediate complex, which is finally protonated

to form IPP and DMAPP.

The third theory is the allyl cation model (Figure 3C). In this

proposal, the metal center, as a Lewis acid, is more conducive to

fracture of the C4-OH bond and the subsequent formation of an
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FIGURE 2
Structure, active sites, and multiple sequence alignment of IspHs from different species. (A) Three-dimensional structure model of monomeric
IspH. (B) Crystal structure of the IspH-HMBPP complex; the [4Fe-4S] cluster center is shown as a ball-and-stick model with iron atoms colored in
orange and sulfur atoms in gold. (C) Binding of HMBPP at the active site in IspH. HMBPP is shown as a ball-and-stick model in yellow. (D) Binding of
HMBPP shown as a ball-and-stick model in blue and the hydrogen-bonding network shown by the dotted red lines. (E) Multiple sequence
alignment of IspHs in different species. Cysteines coordinating the iron sulfur cluster are indicated by the red arrows. Stringently conserved residues
are highlighted in blue.
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allyl cation intermediate product, which receives two electrons

and is protonated to eventually form the products IPP and

DMAPP (Altincicek et al., 2002).

The common point in these three theories is that the initial

reaction requires the C4-OH in the HMBPP substrate to be

combined with the [4Fe-4S] center in the enzyme, as well as

formation of the final reaction product during a prolongation

step. It is believed that the proportions of IPP and DMAPP are

controlled by the position of the prolongated carbon. Clearly,

more studies are required to further delineate the catalytic

mechanism of IspH. Additional experiments are also needed

to determine how the reaction flux (IPP vs. DMAPP) varies in the

IspH-catalyzed reaction.

Catalytic promiscuity of IspH

IspH is the final enzyme in the MEP pathway, and its natural

catalytic products IPP and DMAPP are crucial precursors for

downstream terpenoids compounds. As the simplest terpenoid,

isoprene is an important platform compound that is widely used

in the production of rubber. In 1957, Sanadze et al. discovered

isoprene emission from woody plants (Sharkey and Yeh, 2001).

Since then, it has also been found that isoprene is produced by

other organisms, including animals, fungi, and bacteria (Kuzma

et al., 1995; Sharkey and Yeh, 2001). Isoprene can be synthesized

via the MEP pathway with DMAPP as the precursor, and this

reaction is catalyzed by an isoprene synthase (IspS) that is only

found in higher plants (Monson et al., 2013). However, in the

study of Bacillus, IspH was found to have the same activity for

catalyzing the formation of isoprene. Hess et al. used

transcriptomic analysis to predict the possible genes involved

in isoprene production in the MEP pathway of B. subtilis, and

showed that the overexpression of IspH was negatively correlated

with isoprene production (Hess et al., 2013). Julsing et al.

analyzed all genes in the MEP pathway by means of a

conditional knockout strategy, aiming to explore the influence

of different genes on the isoprenoids of B. subtilis (Julsing et al.,

2007). The results showed that the yield of isoprene from the

mutant of which the IspH-coding gene yqfP was deleted was

9.8 times lower than that in the wild-type strain. Currently, there

is no direct evidence that B. subtilis IspH is responsible for

producing isoprene; however, Ge et al. confirmed that

IspH derived from an alkaliphilic Bacillus sp. N16-5 exhibits

isoprene synthase activity (it can catalyze the production of

isoprene from endogenous HMBPP and isoamylene from

DMAPP) (Ge et al., 2016). To date, IspS has not been found

in microorganisms (Köksal et al., 2010). The discovery of an

isoprene synthase in microorganisms will undoubtedly be

important.

Some studies have reported other novel activities of IspH.

IspH from E. coli could catalyze the conversion of acetylene to

acetaldehyde and ketone through hydration (Span et al., 2012b).

Other studies confirmed that IspH can use a number of HMBPP

analogs as substrates (Xiao et al., 2011; Wang et al., 2012).

Obviously, microbial IspH presents catalytic promiscuity;

FIGURE 3
Catalytic reaction mechanism in IspH. (A) According to Birch reduction theory; (B) according to the Bioorganometallic mechanism; (C)
according to allyl cation model theory.
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however, these novel catalytic activities are poorly understood. If

the mechanism of the multi-substrate, catalytic function of

IspH can be further explored in future studies, it will provide

a theoretical basis for engineering IspH, providing new enzyme

resources for terpenoid biosynthesis.

Biotechnological potential

Isoprenoids are a large family, many of which are important

industrial compounds with high added values. The simplest is

isoprene, which is used as a raw material for the production of

rubber. In addition, complicated-structure terpenoids such as

limonene, linalool, vitamin E, vitamin K, and β-carotene are

antioxidants. Many studies have already reported that isoprenoid

compounds can be synthesized in microorganisms via either the

MEP or MVA pathways (Rohmer, 1999; Kuzuyama, 2002). Using

synthetic biology approaches, many studies have achieved high-level

production of many isoprenoid compounds in engineered microbes,

including in E. coli, Saccharomyces cerevisiae, and B. subtilis. It was

proposed that the MEP pathway may present several potential

control points, each exhibiting different degrees of control (Li

et al., 2018). IspH is a crucial rate-limiting step for amplifying the

isoprenoid flux. To increase β-carotene production in E. coli, a strong
promoter was employed to replace the native promoter IspH in order

to increase the isoprenoid flux (Yuan et al., 2006; Suh, 2012). lytB

(encoding IspH) from Thermosynechococcus elongatus was

introduced into E. coli, resulting in efficient isoprene production

(Chotani et al., 2013).

Development of novel anti-infectives

In addition to serving as a target in MEP pathways to

improve the production of terpenes via metabolic engineering,

IspH can also be used as a target in protein inhibitors for the

development of antibacterial drugs. The MEP pathway is absent

in mammals but is essential for the survival of many pathogenic

bacteria; thus, it provides a new route for the development of

novel antibacterial drugs (Rohdich et al., 2005). Most studies

have focused on the development of compounds that inhibit the

activity of IspH. Reported IspH inhibitors include substrate

analogs, pyridine diphosphates, alkyne derivatives, and non-

diphosphate compounds.

Two HMBPP analogs were designed, wherein a thiol or amino

group replaced the hydroxyl group in HMBPP. A complete kinetic

investigation in anaerobic conditions revealed that these analogs were

extremely potent inhibitors of E. coli IspH, displaying competitive

modes of inhibition (Ahrens-Botzong et al., 2011; Janthawornpong

et al., 2013). Wang et al. studied a set of pyridine derivatives

substituted in the ortho, meta, and para positions as potential

inhibitors of IspH in A. aeolicus, and found that two of them

exhibited superior inhibitory potencies (Wang et al., 2010). In

addition, Wang et al. also demonstrated that alkyne diphosphate

can function as an inhibitor of A. aeolicus IspH (Wang et al., 2010).

O’Dowd et al. used an in silico approach to screen a series of

compounds from ZINC and NCI libraries; the authors identified

two drug-like compounds that acted as IspH inhibitors (O’Dowd

et al., 2017). However, although a number of potent IspH inhibitors

have been discovered, to date, no reports exist on research using these

inhibitors against pathogenic bacteria.

Conclusions and perspectives

The microbial MEP pathway has long been known; however,

few studies regarding individual enzymes in the pathway have been

reported, particularly the last enzyme in the MEP pathway, IspH.

Because IspH contains an iron-sulfur cluster that degrades in air,

the technical conditions required for the expression and

purification of the protein are relatively strict. However,

considering its importance in both the MEP pathway and

isoprenoid compound biosynthesis, further research on this

protein is required, and should include: 1) Studies for

improving the enzyme’s properties, such as stability, catalytic

activity, substrate binding, product specificity, and cofactor-

binding affinity to further enhance its application potential. 2)

Solving the mismatch in the reduction potential issue and the

difficulties faced in [4Fe-4S] cluster reduction in IspH. 3) Research

on IspH inhibitors has been limited to in vitro experiments,

therefore future research should focus on in vivo experiments to

provide a theoretical basis for the development of new antibacterial

drugs targeting IspH. A systematic and in-depth study of the

biochemical properties and structure–function relationships in

IspH will provide valuable information for engineering and

using IspH in future biotechnological applications.
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